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Abstract

A new differential displacement estimation algorithm for television sequences is
presented. It minimizes the local mean squared displaced frame difference rather than
maximizing the local cross correlation of displaced frames, as it can be shown that there
is frequently no correspondence between the cross correlation peak and the actual
displacement of a moving object. The algorithm is applied iteratively, i.e. in each step
of iteration the resulting estimate of the displacement vector serves as an initial gquess
for the next step. Compared to known technigues stability is improved by introducing a
more accurate two-dimensional image model. The approximation of spatial gradients as an
average of spatial differences of two successive frames yields an increased accuracy of
the displacement estimate.

Introduction

Temporal luminance changes of successive pictures in television sequences are oftentimes
due to the motion of objects. The velocity parameters obtained by a motion estimation
algorithm can be applied to motion compensation techniques, such as motion compensated
predictive coding, frame interpolation, or noise reduction. Huang €13 has proposed an
approach to estimate the motion parameters for the model of three-dimensional rigid
objects with translatory and rotatory motion. With respect to the requirements of real-
time digital signal processing the complexity of a motion estimation algorithm has to be
relatively small. Hence, several methods have been derived, which estimate a displacement
vector assuming objects translatorily displaced in the image plane. Two main classes of
algorithms are known, matching techniques and spatio-temporal gradient methods [2].

Frequently the measurement of translatory displacement is performed by determining the
peak of the local cross correlation function of displaced frames [3],[4]. In order to
estimate the local maximum of the cross correlation function, e.g. a gradient algorithm is
applied for rectangular measurement windows containing small image regions of two
successive frames. This approach fails, if there is no correspondence between the cross
correlation peak and the actual displacement of a moving object. This happens for example
in the case of a translatorily displaced luminance plane, which corresponds to a slight
luminance edge. Then the normalized cross correlation is constant and the displacement
estimate is mainly affected by the present noise. Furthermore, investigations of Beyer [5]
have shown that an evaluation of the luminance signal on small measurement windows yields
an unsymmetrical cross correlation function and therefore an estimation error is inherent,
even if the correlation peak corresponds with the actual displacement. Other Xknown
displacement estimation algorithms minimize the local mean squared displaced frame
difference rather than maximizing the local cross correlation function of displaced frames
[53-[83. In the case of pure translatory displacement the displaced frame difference
always has a local minimum corresponding with the actual displacement.

In this contribution a differential displacement estimation algorithm is presented, that
minimizes the local mean squared displaced frame difference by means of a spatio-temporal
gradient method. It is related to the algorithms proposed by Cafforio and Rocca [6] and
Bergmann [73. Stability is improved using a more accurate two-~dimensional image model.
First the algorithm is derived, then experimental results are presented.

The algorithm

Assume a pure translatorily moving object that does not change its luminance from frame
k-1 to frame k. The luminance Sk_l(x,y) at the position x,y in frame k-1 is given by

S, (x,y) = S, (x+dx,y+dy) (1)



where dx,dy are the components of the displacement vector B. Using a Taylor series
expansion to express the luminance function we obtain

i

Sk(x+dx,y+dy) Sk(x,y)

+

{ask(x,y)/ax}-dx + {aSk(x,y)/ay}~dy

+

[9%s, (x,y)/0x%] -ax?/2

+ {a%s, (x,y)/8y%) -ay?r2

+ {BZSk(x,y)/axay]-dxdy + r(x,y) (2)
where r(x,y) denotes the higher order terms of the taylor series expansion, which will be
neglected in the following. In contrast to the algorithm in 6}, the second order

derivatives are not discarded. This image model is more accurate than a simple linear
function. Assuming r{x,y) to be zero we obtain with (1) and (2)

S, (x+dx,y+dy) = S (x,y) + G (x,y)-dx + Ey(x,y)-dy
with
G (x,y) = [88,(x,y)/8x + 85, (x,y)/0x] / 2

G (x,y) = (85, (x,y)/3y + 85,_,(x,y)/3y] 7 2 )

Thus the second order derivatives are taken into account by averaglng the spatial
gradients of _two successive frames. The frame difference FD(x,y, B) generated by a
displacement D results as

FD(x,y,B) S (x,y) - Sp-1(x,¥)

¥
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(4)

_With this approximation the displacement vector B can be estimated by D = (dx,dy)T such
that the mean sguared difference between the measured frame difference FD and the
approximated frame difference FD is minimized

E[{ FD(x,y,B) - ;D(x,y,g) }2] + Min. (5)

which is exactly the same as minimizing the mean squared displaced frame difference as a
function of the estimated displacement vector
I

[ DFD(x,y,B) = 5, (x+dx,y+dy) - S, _ (x,y) [ T (6)

The solution ls obtained by setting the partial derivatives with respect to the vector
components dx dy of the left hand side of (5) to zero and solving a system of two linear
equations, which yields

ax - { E[6,-5,]-6[FD.T,] - E[FD-EX]-E[Ei] } 7 pET
ay - { B[(8,-5,]-8[FD:T,] - E[Fn.ay].z[ai} } 7 DET
with (7)
DET = E[Ei]-E[Es] - Ez[ix.ﬁy]

where the coordinates x,y are omitted for simplicity. Of course, in digital video
processing the expected values have to be approximated by summing over measurement
windows, placed in the moving area of two successive frames. An estimate obtained from
equation (7) is then assigned to the center of a measurement window. The spatial gradients
of the luminance signal can be calculated by centered differences, adopting a proposal of
Cafforio and Rocca [83. The denominator DET in equation (7) is the determinant of the set
of linear equations. Therefore no unique solution 'is obtainable, if the denominator is
zero. In fact, using relatively small measurement windows the displacement vector is



ambiguous if the signal gradient locally is zero in one arbitrary direction. It is easy to
show that in this case the ratio GX/G is a constant value and therefore the denominator
DET in (7) is zero. To overcome thls %roblem, the addition of a positive constant in the
denominator has been suggested by Cafforio and Rocca [8). Nevertheless, it is possible to
obtain a more reasonable solution in the case of a locally ambiguous displacement vector
by selecting the vector with minimum magnitude, minimizing the local displaced frame
difference at the same time. With the additional constraint of a minimum magnitude vector
and with zero denominator DET we obtain instead of equation (7)

ix = - E[FD-G,] / { E[c2] + E[Ei] }
dy = - B[FDG,] / | E[G2] + E[Ei} }

(8)

The displacement estimate can be improved by a motion compensated iteration of the

algorithm, i.e. in the i-th step of iteration the coordinates x,y of all terms belgnging

to frame k-1 are substituted by x-dx. ,,y-dy. to obtain a more accurate estimate D.. In
. \ . i-1 i-1 1

the i-th iteration, for example

Si-q,1 (X0¥) = Sy joq(x=dXy_q,y=d¥y_q) (%)

Additionally, a spatial recursion can increase the accuracy of the estimate by using the
estimate previously calculated for adjacent picture elements, as has been pointed out in

[8l.

The estimation algorithm given by equation (7) is related to the algorithm proposed by
Cafforio and Rocca [63, however, the accuracy of the estimate has been increased by
introducing a two-dimensional quadratic image model. The algorithm by Cafforio and Rocca
assumes a linear luminance function. Furthermore it should be noted that the
consideration of the correlation of the components of the spatial gradient vector is
important to ensure a sufficient stability behaviour. By neglecting the terms E[E e} }in
equation (7) and with the additional assumption of stationary luminance signal we obtaln

dx = - E[FD-EX] / E[Ex-ask(x,y)/ax]
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which is nearly identical to the algorithm proposed by Bergmann [7]. The assumption of a
zero correlation of the components of the spatial gradient vector is only valid for 1large
measurement windows and obviously yields an algorithm based on an one-dimensional image
model. This results in an insufficient stability especially at moving diagonal structures,
as shown by experimental evaluations. On the other hand the complexity of the algorithm
given by equation (10) is only 1little smaller than that one given by equation (7).,
considering that the approximation of the expected values is the main computational load:
equation (10) requires the computation of 4, equation (7) of 5 distinct expected values.

Experimental results

The displacement estimation algorithm given by equation (7) has been compared
experimentally to the algorithms of Cafforio and Rocca [6] and Bergmann (7). The test
sequence, recorded with a camera, sampled at 10 MHz and quantized according to 8
bit/sample, shows vertical and diagonal black bars moving at a horizontal velocity of
about 5.4 pel/frame. The evaluations have been carried out only with the odd fields of two
successive frames to avoid effects from line interleaving. Fig. la shows the first of two
fields, which have been used. For each picture element the displacement vector has been
estimated independently, i.e. no spatial recursion has been applied. The measurement
windows consisted of 13 by 13 pels, and 3 steps of iteration were used. In order to
achieve an estimate with sub-pel accuracy the luminance values according to equation (9)
were interpolated in the case of nonintegral displacement vector components. Fig. 1lb shows
the frame differences caused by the motion, where positive and negative differences are
displayed with white and black, zero differences with gray luminance values. Fig. lc - le
show the displaced frame differences obtained by applying the considered estimation
algorithms. Table 1 shows the entropies and variances of the displaced frame differences
for the different algorithms. The algorithm of Bergmann only performs well in those image
parts, where the assumption of an one-dimensional image model is valid. The algorithm
given by equation (7) proves most favorable as a result of a more accurate image model.
This is confirmed by the variances of the displaced frame differences listed in Table 1.



Figure 1 Illustration of the displaced frame differences obtained with several estimation
algorithms. One field of the test sequence used for the computer simulations is
[a]b Jc |shown in a) ( <- : direction of movement). Displaced frame differences obtained
b) without motion compensation, c) using the algorithm of Bergmann [7], d) using
the algorithm of Cafforio and Rocca {61, e) using the algorithm given by equation

(7).

Table 1 Entropies and variances of the displaced
frame differences shown in Figure 1

Algorithm Entropy Variance

no motion 6.2 bit/pel 2921

compensation

Bergmann [73 5.8 bit/pel 1368

Cafforio and 4.4 bit/pel 148

Rocca [6]

Equation (7) 4.2 bit/pel 37
Conclusion

A new differential displacement estimation algorithm for digital television sequences has
been presented. It minimizes the local mean sguared displaced frame difference. The
algorithm is applied iteratively, i.e. in each step of iteration the resulting estimate of
the displacement vector serves as an initial guess for the next step. Compared to known
techniques stability behaviour and the precision of the estimate is improved by a two-
dimensional quadratic image model. Experimental results confirm that the algorithm
performs well, even for small measurement windows.

Further investigations should extend the convergency range of the algorithm by
prefiltering the picture signal, applied in the first steps of iteration to cope with
large initial displacements. ’
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