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Abstract. Aerial video images can be stitched together into a common
panoramic image. For that, the global motion between images can be
estimated by detecting Harris corner features which are linked to corre-
spondences by a feature tracker. Assuming a planar ground, a homogra-
phy can be estimated after an appropriate outlier removal. Since Harris
features tend to occur clustered at highly structured 3D objects, these
features are located in various different planes leading to an inaccurate
global motion estimation (gme). Moreover, if only a small number of fea-
tures is detected or features are located at moving objects, the accuracy
of the gme is also negatively affected, leading to severe stitching errors
in the panorama.

To overcome these issues, we propose: Firstly, the feature correspon-
dences are weighted to approximate a uniform distribution over the
image. Secondly, we enforce a fixed number of correspondences of high-
est possible quality. Thirdly, we propose a temporally variable tracking
distance approach to remove outliers located at slowly moving objects.

As a result we improve the gme accuracy by 10% for synthetic data
and highly reduce the structural dissimilarity (DSSIM) caused by stitch-
ing errors from 0.12 to 0.035.

1 Introduction

For the visualization of aerial videos, e. g. captured from Unmanned Aerial Vehi-
cles (UAVs) in a nadir view (orthorectified video), one common approach is to
stitch the video images together to a panoramic image by mosaicking. For the
generation of this panorama, each video image is registered into a common coor-
dinate system. Since GPS/IMS systems can not provide a satisfactory accuracy,
the global motion has to be estimated from the video images. One common app-
roach is the detection of features, e. g. Harris Corner features [4] in one video
image and its correspondence in the preceding image (feature correspondence)
by a KLT feature tracker [16]. Assuming a planar ground and thus a uniform
motion of detected feature points, RANSAC [2] can be used to remove feature
correspondences not matching the global motion (outliers). From the remaining
feature correspondences (inliers), a homography can be estimated. However, for a
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small number of detected features – e. g. due to unstructured, blurry or low qual-
ity content – and small local displacements of moving objects between images
(e. g. for pedestrians), RANSAC is not able to remove wrong correspondences
anymore. Thus, a reliable estimation of a projective transform representing the
global motion of the surface of the earth in the video is not possible. Moreover,
features are often detected on non-planar structures, e. g. houses or trees whose
motion does not match the motion of the ground plane of the scene. Further-
more, those features tend to be spatially clustered, which is known to negatively
influence the quality of the global motion estimation [3]. Figure 1 shows an exam-
ple of a wrong stitching based on the global motion estimation (gme) from [8]
and using a standard mosaicking approach like [7,10].

Fig. 1. Panoramic image from 3000 images of the self-recorded Soccer sequence and
magnifications in (b).

In this paper we propose different methods to increase the quality of the
global motion estimation, which are mainly based on the usage of weighted
features. To prevent an over-proportional weighting of feature clusters at highly
structured areas in the image (like 3D objects), we propose to approximate a
uniform distribution of the features in the entire image, considering the detected
feature positions (Subsect. 3.1). In order to provide enough features for a reliable
motion estimation, we propose to use a high, fixed number of features of highest
possible quality (Subsect. 3.2). To further improve the quality of the resulting
estimation, we rely on tracking over long temporal distances in order to remove
features positioned at (slowly) moving objects which are not detected as outliers
by a common RANSAC in case of small motion (Subsect. 3.3).

The remaining paper is organized as follows: Sect. 2 gives a short overview of
global motion estimation for aerial videos. In Sect. 3 we describe our proposed
robust long-term mosaicking approach. Our weighting algorithm for RANSAC
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which approximates a uniform distribution of the features in the image is intro-
duced in Subsect. 3.1. Furthermore, we introduce a straight forward approach
for detecting sufficient high quality features in the image in Subsect. 3.2. The
tracking over long temporal distances is explained in Subsect. 3.3. In Sect. 4 we
present experimental results for synthetic as well as real-world data, using the
structural dissimilarity DSSIM [12] as quality metric. Finally, Sect. 5 concludes
the paper.

2 Related Work: Global Motion Estimation
for Aerial Videos

A lot of research has been done for the reliable estimation of the global motion
in video sequences. Typical approaches are based on defining discriminative fea-
tures like SIFT/SURF [1], Harris corners [4], mser [6] etc. in one video image
[9,15,20,22], the generation of trajectories for these features (e. g. by feature relo-
cation [16], dense [14] or sparse optical flow [11]), and finally the estimation of the
global motion according to an assumed scene model, e. g. using RANSAC [2].

In this work we extend the global motion estimation framework from [9] which
is designed for the usage onboard of UAVs with limited energy and processing
power. We also rely on KLT tracking of Harris corners, which are highly efficient
to be computed compared to other features like SIFT or SURF. Whereas the
common approach consisting of feature detection, RANSAC and least-square-
minimization works well for a lot of applications, it fails for certain conditions as
outlined above based on the example from Fig. 1. Thus, we aim at the improve-
ment of the global motion estimation using RANSAC for videos captured from
UAVs with low translational movement and slowly moving objects in the scene,
e. g. in an aerial police surveillance scenario for soccer games.

3 Robust Long-Term Global Motion Estimation
for Aerial Videos

Assuming the surface of the earth to be planar – which is valid for flight altitudes
of several hundred meters – we can project one camera image Ik into the pre-
vious image Ik−1 using a homography Hk−1

k which is described by a projective
transform with 8 parameters �ak = (a1,k, a2,k, . . . , a8,k)�:

Hk−1
k =

⎛
⎝

a1,k a2,k a3,k

a4,k a5,k a6,k

a7,k a8,k 1

⎞
⎠ . (1)

We can calculate the transformed pixel coordinates (xk−1, yk−1) in image
k − 1 from the image coordinates (xk, yk) in image k:

xk−1=
a1,kxk + a2,kyk + a3,k

a7,kxk + a8,kyk + 1
, yk−1=

a4,kxk + a5,kyk + a6,k

a7,kxk + a8,kyk + 1
. (2)



138 H. Meuel et al.

Fig. 2. Video image from the Soccer sequence with inliers and their trajectories (yel-
low lines) after KLT & RANSAC. The inliers are highly clustered at 3D structures
(trees/houses) on the left (white ellipse). Moreover, a correspondence located at a player
was errouneously considered as inlier (red circle). (Color figure online)

However, for a reliable homography estimation, the detected feature corre-
spondences have to be located in one plane which becomes even more important
for the projection of several video images into one common panoramic image.
This plane optimally should be the ground plane, i. e. the feature correspon-
dences have to be located on the surface of the earth. Whereas RANSAC is
often capable of removing correspondences not matching the global motion, it
may fail in removing correspondences not matching the global motion of the
ground plane, if from the set of all correspondences C the amount of correspon-
dences located on the ground J ∈ C (inliers) is small compared to the amount
of correspondences located on various different planes O ∈ C (outliers). As a
consequence, the estimated plane does not reflect the real ground plane which
leads to an estimated global motion not reflecting the true motion of the sur-
face of the earth. If O � J (Fig. 2, white ellipse), the ground plane estimation
becomes instable, resulting in stitching errors (Fig. 1).

3.1 Weighted Feature-Based Global Motion Estimation

Since only a few high quality features are typically located in unstructured areas
(e. g. on the lawn in our example) compared to the number of features located at
3D structures (e. g. trees or houses), the former features have to be considered
stronger within the least-square optimization in order to retain a homography
representing the real global motion. Based on this idea, we formulate the least-
squared minimization problem for the set of inliers J as:

min
∑
j∈J

(
(x̃j,k−1 − xj,k−1)2 + (ỹj,k−1 − yj,k−1)2

)
· (Wj,k)2, (3)
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where (x̃j,k−1, ỹj,k−1) are the estimated coordinates and Wj,k is a weighting
function in dependence of xj,k and yj,k. Based on Eqs. (3) and (2) we build a
linear equation system which can be solved with a least-squares approach.

The weighting function Wj,k is modeled with an instance reweighting app-
roach, such that a uniform distribution pe(x, y) of the feature correspondences
is approximated over the entire image.

The real feature distribution pfeat(x, y) in the image for the (discrete) feature
positions with the kernel function K is given as:

pfeat,k(x, y) =
1
J

J∑
i=1

K(x − xi,k, y − yi,k). (4)

We approximate K by a Gaussian probability density function (pdf) pg(x, y)
to model the neighborhood of each feature [18]:

pg(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
(5)

As suggested in [13], we define the variances σx and σy being the mean value
of the pairwise distances of all feature correspondences and κ being a scaling
factor:

σx = σy = κ · 2
J2

J∑
j=1

j−1∑
i=1

√
(xi − xj)2 + (yi − yj)2 (6)

The weighting function Wj,k finally is calculated by dividing pt by pfeat
[17,19], i. e. the weighting for each feature is the reciprocal of the real feature
distribution:

Wj,k =
pe

pfeat,k(xj,k, yj,k)
= J · 2πσxσy∑J

i=1 exp
[
− 1

2

(
(xj,k−xi,k)2

σ2
x

+ (yj,k−yi,k)2

σ2
y

)] (7)

3.2 Increase of the Number of Features with Highest Possible
Quality (“More Features”)

The approximation of a uniform distribution of the feature correspondences over
the entire image as described in the last subsection leads to highly improved
global motion results. However, if only a small number of features can be detected
e. g. due to bad input image quality or unstructured areas, an accurate solution
for the global motion can not be determined.

Therefore, we propose to include a predefined minimum number of Har-
ris features in the global motion estimation, always using the best available
detected features. First, we calculate the Jacobian matrix and its lowest eigen-
value for each image pixel and sort them in a list. As a second step, we select the
n-best features from the sorted list, with n being a predefined number of features.
These n features are fed into subsequent motion estimation steps (RANSAC and
homography estimation).
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3.3 Variable Tracking Distance

Whereas we focused on the improvement of feature correspondences based on
their spatial position in the image in Subsect. 3.1 and on the number of detected
features in Subsect. 3.2, feature correspondences located at slow moving objects
may not be recognized as wrong correspondences and thus not be removed as
outliers by RANSAC (Fig. 2, red circle). As a consequence, these correspondences
negatively influence the accuracy of the homography estimation. To overcome
this issue, we propose to increase the temporal distance d between the images
used for the homography estimation. Thereby, local motion tends to be larger
and RANSAC is more likely able to remove features located on moving objects
as outliers. Furthermore, to reduce drift as it may occur in image-to-image-based
approaches, we aim at tracking against one specific image (reference image) as
long as possible. Whereas in general it is beneficial to have a larger temporal
tracking distance d, it may be disadvantageous, if the temporal distance between
the images becomes too large. In such a case, KLT may not be able to reliably
find correspondences due to shape changes or rotations which impairs the fea-
ture correspondence accuracy. Thus, we propose to use a constraint variable
tracking distance d between the images. Summarizing, we aim at using one spe-
cific reference image for the estimation of homographies of several consecutive
video images, whereas we limit the temporal distance to a predefined maximum
value dmax and try to prefer large tracking distances. For each image k, we first
calculate the distance d:

d = (k mod
dcurrref

2
) + 1 +

dcurrref

2
, (8)

with dcurrref being an intermediate tracking distance (initialized to dmax for each
image). The first term of Eq. (8) selects the same reference image as long as
possible, whereas the last term enforces high tracking distances. Assuming a
linear global motion, we approximate an estimated homography H̃k−d

k = Hk−d
k−1 ·

Hk−2
k−1 from already known homographies and transform all features from the

current image using this H̃k−d
k . Then we check, if the following conditions are

fulfilled:

1. Are enough transformed features located within the area of image Ik−d?
2. Is the intersection area of images Ik and Ik−d large enough?

If at least one of these conditions is violated, we halve dcurrref and restart again
with the computation of d. If all conditions are fulfilled, we use a guided tracking
for the generation of accurate feature correspondences. For that, we apply the
extrapolated homography H̃k−d

k to all features in image Ik and use the result
as seed position for the KLT search, resulting in accurate correspondences. The
latter are used for the subsequent outlier removal and for the estimation of the
improved, final homography Hk−d

k .
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4 Experiments

We present results for synthetic data in the Subsect. 4.1 before we evaluate our
approach in detail for camera captured (real world) data in Subsect. 4.2.

4.1 Synthetic Data

In order to show that our method reliably improves the homography estimation,
we generated a synthetic scene. We defined an array containing 30 × 17 blocks,
each of size 64×64 pixels, which is approximately the size of one hdtv resolution
image. For each block we randomly defined if it is supposed to be a block con-
taining 3D structure (“house block”) or not, and limited the amount of house
blocks to 25%. In order to simulate a unequal feature distribution, we randomly
draw a predefined mean number of feature positions nh = [0 . . . 50] for the house
blocks (green) and for the non-house blocks (blue) nn = 4 (Fig. 3).

Fig. 3. Visualization of a synthetic image with “house blocks” (green), non-house
blocks (blue) and randomly drawn features (white dots) and their simulated move-
ment (white arrows). (Color figure online)

Furthermore, we manually generated homography parameters asynk
similar

to those which we observed in real multicopter videos (Table 1).

Table 1. Example synthetic homography parameters asynk
.

k ak,1 ak,2 ak,3 ak,4 ak,5 ak,6 ak,7 ak,8 ak,9

1 1 0 0.6 0.0001 1 −0.5 0 0 1

2 1 0 −0.8 0 1 −2.8 0 0 1

3 1 0 −0.1 0 0.9999 0.1 0 0 1

4 1 0 0.6 0 1 0.7 0 0.0001 1

...
...

30 1 0 −0.6 0 1 0 0 0 1

The feature points from the current image Ik were transformed according to
the synthetic homographies. We simulated motion parallax effects by moving all
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features on house blocks after the global motion compensation in the direction of
the image center by m pixels. Since m should correspond to the motion parallax
which can be observed in real scenes, we linearly increase m dependent on its
distance to the image center up to a maximum of m = 50 pixels (which is a
realistic motion parallax to be observed for high 3D structures and relatively
low flight altitudes). Afterwards we applied zero-mean Gaussian noise with a
variance of σ2 = 2 pel to all feature positions.

Finally we used the synthetic scene as input for the motion estimation system,
one time without and one time with our proposals, and compared the accuracy
of the estimated homographies. For the improvement measure we applied each
estimated homography to the corner pixels of the image and calculate the errors
compared to the projected point position using the real homography parameters
asyn. We varied the mean number of features nh located in each house block
between 10 . . . 50. The average error at the corner points was decreased from
10.1 to 9.0 pel which corresponds to 10.6% for nh = 10 and from 18.1 to 16.4
pel for nh = 50 (9.4%).

4.2 Camera Captured Videos

In this subsection we present results for real world data. Since the amount of test
sequences providing a nadir view of the camera and containing 3D structured
areas as well as plain areas is limited (although it may be the predominant view
for aerial surveillance missions from UAVs), we recorded a test sequence of a
soccer game (Soccer sequence) and present detailed results for this sequence. To
underline the versatility of our proposals, we also provide results for the 1500 m
sequence from the TNT Aerial Video Testset (tavt) [5,9]. We will show that we
can improve the homography estimation leading to subjectively highly improved
results in panoramic images, especially in terms of line consistency.

Fig. 4. Structural dissimilarity (DSSIM) [12] values (smaller is better) of reconstructed
video images from panoramic image for different numbers of features for the Soccer
sequence.

We generate a mosaic from the videos based on the estimated homogra-
phies. From this, we reconstruct video images again as described in [7,10]. For
the quality measure we reconstruct video images from the mosaic and compare
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them image-wise with the input sequence. Due to the image reconstruction from
the mosaic, no motion parallax is contained in the reconstructed video images.
Thus, we cannot rely on a psnr-based quality evaluation but use the struc-
tural dissimilarity (DSSIM) [12] instead. The structural dissimilarity is based on
the well-known structural similarity (SSIM) [21] and lies between 0 (identical
images) and ∞ (no similarity). It reflects the subjective impression in terms of
cross-correlation between both images (structure), luminance similarity as well
as contrast similarity.

Quality measures for the self-recorded Soccer sequence and the 1500m
sequence from the data set TAVT [5,9] are presented in Table 2 and in Fig. 5
for each proposed method alone and all combinations.

Table 2. Results of different methods for the Soccer sequence, 3000 images ((∗): manual
reference only for 100 images) and the 1500 m sequence from TAVT [5,9].

Sequence Soccer seq. DSSIM 1500 m seq. DSSIM

Method Mean Max Mean Max

Manual reference 0.036(∗) 0.060(∗) — —

Baseline (w/o proposed methods) 0.120 0.146 0.067 0.156

Weighting of correspondences 0.123 0.151 0.066 0.155

More features 0.094 0.129 0.065 0.133

Weighting & more features 0.094 0.128 0.064 0.133

Variable tracking 0.054 0.079 0.062 0.094

Weighting & variable tracking 0.045 0.071 0.063 0.099

Weighting & more feat. & var. track. 0.035 0.051 0.061 0.088

From the detailed results it is obvious, that our proposed weighting algorithm
can improve the quality of the global motion estimation, if enough features are in
the image (Weighting & more features in the tables: 0.120 to 0.094 for the Soccer
sequence, Fig. 5c, 0.067 to 0.064 for the 1500 m sequence). Simulations for the
hdtv resolution Soccer sequence lead to an optimal value of about n = 1050
features (Fig. 4), which is in the range of n = [900 . . . 1200] we found as optimal
number of features also for other sequences we tested. If the number of features
is too small, we only can observe small average gains (0.067 to 0.066 for the
1500 m sequence) or even small (average) losses (0.120 to 0.123 for the Soccer
sequence, Fig. 5a) if – like in the latter case – not enough features of high quality
are contained due to a low image quality. Thus, the combination of weighting
and more features is always beneficial for low as well as for high quality videos.
The usage of a variable tracking distance is recommendable in any case, since
it improves the line accuracy by enforcing tracking against one reference image
for several video images. Thus, drift is highly reduced and the objective and
subjective results are improved on average (0.120 to 0.054 for the Soccer seq.,
0.067 to 0.062 for the 1500 m sequence) as well as for the maximum DSSIM
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Fig. 5. Subjective comparison of different proposed methods and combinations for the
self-recorded Soccer sequence.

Fig. 6. Final panorama using all proposed improvements for global motion estimation
with uniform distribution and weight of κ = 0.575. (b) magnifications.

values (0.146 to 0.079 for the Soccer sequence, Fig. 5d, 0.156 to 0.094 for the
1500 m sequence). This holds also true for the combined approaches with the
variable tracking (Figs. 5e and f).

Combining our approaches, we observe that we highly improve the DSSIM

from 0.12 to 0.035 for the Soccer sequence. Our combined methods even
slightly outperform a manually generated reference, which matches the sub-
jective impression. For the 1500 m sequence we achieve an improvement from
0.067 to 0.061 in terms of mean DSSIM. Although the average gain for the latter
sequence is smaller than for the Soccer sequence, the maximal structural dissim-
ilarity was drastically reduced (Soccer seq.: 0.146 to 0.051; 1500 m seq.: 0.156 to
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Fig. 7. Subjective results for the 1500 m sequence from the TAVT data set [5,9].

0.088) which results in smaller maximal distortions leading to subjectively much
more pleasing results, especially in terms of line accuracy (Figs. 5f and 7b). In
Fig. 6 we present the final long-term panoramic image after the fully automatic
processing of 3000 images. A subjective impression for the 1500 m sequence is
shown in the magnifications from the panoramic image in Fig. 7.

5 Conclusions

In this paper, we aim at a robust global motion estimation for UAV captured
ortho-videos which contain distinct 3D structures (e. g. houses, trees) as well as
real ground.

We propose to tackle the problem of a unequal feature correspondence distri-
bution over the image by introducing a weighting function which approximates
a uniform distribution over the image. In order to provide enough features also
in scenarios with only a small number of high-quality features, we additionally
propose to use a high but fixed number of features based on the feature quality.
Finally, our third contribution is to track over long temporal distances with a
variable tracking distance. The benefits of this approach are twofold: firstly, we
use the same reference image for several images which reduces drift. Secondly,
the motion of small and slow moving objects can more likely be removed by an
outlier removal (RANSAC).

We show, using synthetic data, that our feature correspondence weighting
proposal improve the estimation accuracy by up to 10% for realistic assumptions.
For camera captured data, the resulting panoramic images which were generated
based on the estimated global motions were improved and provide much better
and virtually drift free reconstruction of linear structures (e. g. lines at a Soccer
play ground). The structural dissimilarity (DSSIM) for reconstructed images
from the panoramic image was highly reduced, e. g. from 0.120 to 0.035 on
average for the self-recorded Soccer sequence.
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