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ABSTRACT

Given a pre-registered 3D mesh sequence and accompany-
ing phoneme-labeled audio, our system creates an animat-
able face model and a mapping procedure to produce real-
istic speech animations for arbitrary speech input. Mapping
of speech features to model parameters is done using random
forests for regression. We propose a new speech feature based
on phonemic labels and acoustic features. The novel fea-
ture produces more expressive facial animation and it robustly
handles temporal labeling errors. Furthermore, by employing
a sliding window approach to feature extraction, the system
is easy to train and allows for low-delay synthesis. We show
that our novel combination of speech features improves visual
speech synthesis. Our findings are confirmed by a subjective
user study.

Index Terms— Visual Speech Synthesis, Facial Anima-
tion, Lip Synchronization, Speech Features

1. INTRODUCTION

During the last decades the synthesis of realistic talking vir-
tual human faces has been a major concern of research. The
goal is to produce visuals indistinguishable from real faces
and further to produce linguistically correct speech anima-
tion. Recent advances in 3D facial performance capture al-
low automatic capture of very realistic facial geometry (mesh
sequences), ideal for creating digital doubles. While visual
speech synthesis has been based on various recordings, an
efficient automatic solution based on captured 3D mesh se-
quences is still missing. Synthesis of visual speech is usually
driven by a sequence of phoneme labels, but the results of au-
tomatic or manual phoneme labeling can be imprecise. Fur-
thermore, phonemes only describe a fixed set of speech units,
information about the individual acoustic presentation is lost.

To address these issues, this paper proposes an effective
framework for visual speech synthesis. Our animation sys-
tem can be driven by arbitrary speech features, but we sug-
gest a novel combination to robustly handle inaccuracies in
phoneme labeling and produce more expressive animations.
Our system can be driven from text-to-speech output or real
audio recordings using acoustic and phonemic descriptions of

speech. We directly create our model from 3D performance
capture data, and no manual modeling is required. We do not
define or need a frame or motion dictionary for visual syn-
thesis, such as visemes. Instead of using specifically hand
tailored methods, we use an off-the-shelf regression method.
Our contributions are as followed:

• We propose a new phonemic feature vector for facial
animation and further show the benefits of combining
different speech features.

• We show how 3D facial performance capture data can
be used for visual speech synthesis with a regression
based method and propose automatic phoneme-guided
3D mesh processing.

• We are the first to use a publicly available database [1]
to synthesize 3D visual speech to make results compa-
rable.

Furthermore, we show the effectiveness of our approach in
a subjective user study. From the results it seems that our
approach already works well from a small database of 40 sen-
tences.

The paper begins by reviewing related work. Section 3 in-
troduces the components of our framework. We explain how
to use performance capture data and present the extraction of
combined speech features. In Section 4 we describe the de-
sign and conduction of a subjective user study to evaluate our
method and subsequently conclude our work.

2. RELATED WORK

Over the last years numerous visual speech synthesis systems
have been proposed. A very detailed and recent review can
be found in [2]. Highly related to visual speech synthesis is
the field of audio-visual speech synthesis. These approaches
(e.g. [3]) jointly synthesize auditory and visual speech from
text input. In this work we focus on visual speech synthesis,
to keep the synthesis of auditory speech and visual speech
untangled.

The general task of visual speech synthesis is to provide a
mapping from a given auditory speech input, possibly with

978-1-5090-6067-2/17/$31.00 c©2017 IEEE



additional information, to a visual speech animation using a
face model.

Auditory speech input: Visual speech synthesis systems
can be driven by categorical speech features such as phoneme
labels or by continuous acoustic speech features such as Mel
Frequency Cepstral Coefficients (MFCC) extracted from au-
ditory speech input. To model coarticulation (see Section 3.4)
phoneme driven systems often assume a temporal context and
model speech by tri- or quinphones [4]. A simpler approach
is to sample the phoneme labels at fixed time steps [5] for a
given temporal context. Similarly, acoustic speech features
such as MFCC and others (see [6] for a comparison) sampled
at different time steps can be combined to yield one context
dependent feature [4,6–8].Another widespread approach is to
use MFCC delta features (e.g. [9]).

Phoneme labels assume a fixed dictionary of speech
sounds. As a result, information about the individual acoustic
presentation of a phoneme is lost. If a phonemic labeling is
used to drive the animation, the labeling of the training and
testing data is often produced or corrected by a human an-
notator (e.g. [10–12]) as automatic phoneme labeling can be
inaccurate.

To our knowledge, the effects of using both, acoustic and
phonemic speech features, have not been explored yet.

Face Models: Earlier approaches used 2D image-based
rendering techniques to produce speech animations e.g. [13].
More flexibility is provided by 2D models, with the most used
being active appearance models (AAMs) [14]. However, con-
trollable 3D models have the benefit that they can be used to
synthesize arbitrary head poses, lighting conditions and can
be placed in any virtual environment. Recent advances in 3D
facial performance capture demonstrate that high fidelity 3D
capture of human facial appearance is possible [15,16]. How-
ever, there is no publicly available speech database from these
recent capture systems. A 3D speech database was introduced
by Fanelli et al. [1] but to date, no system has been proposed
to directly synthesize visual speech based on their data.

Most 3D visual speech synthesis approaches use motion-
capture data (a sparse set of points, tracked on the record-
ing) to animate a predefined, manually created, face model
(e.g. [17]), or animate a denser mesh by interpolating the
dense vertices from a sparse set of captured vertices [8]. An-
other technique is 2D-to-3D reconstruction, where the source
material is a 2D video wrapped to a 3D head [9].

Wampler et al. [12] and Müller et al. [18] generate face
models from performance capture data or 3D scans of multi-
ple persons. However, their main focus is on building multi-
person models that can be adapted to (at least) a single input
3D mesh.

Mapping: Mapping speech features to model parameters
can be done in various ways [2]. Typically Hidden Markov
Models (HMMs) are used to predict the facial appearance
from speech features.

Another approach, unit selection, selects appropriate sam-

ples from a database. Concatenation of original visual frames
or subsequences like visemes, dynamic visemes [11], or ani-
mes [12, 17] produces a novel speech animation. The major-
ity of systems assume such a fixed dictionary of visual speech
units. Any concatenation of original recording data provides
static realism. However, good synchronization and realistic
motion of the concatenated sequence is not guaranteed. Be-
sides, using any kind of visual dictionary requires us to gen-
erate it first (e.g. using clustering [11]).

Regression methods directly map speech features to vi-
sual appearance without assuming any fixed units of visual
speech, neither during prediction nor during visual synthe-
sis. We exclude HMMs here, as they internally work with
states. Craig et al. [7] use multilinear regression to map
multiple adjacent MFCCs to face model parameters. Neural
Networks (NN) have been used, among others, by Theobald
and Matthews [4] and Takacs et al. [19]. Recently, Kim et
al. [5] proposed a general framework for spatiotemporal se-
quence prediction. They extract phoneme labels using a slid-
ing window approach and use random forests [20] to esti-
mate the parameters of an AAM to synthesize speech anima-
tions. Regression-based methods require less prior assump-
tions about how to model speech by assuming that a fixed-
length temporal context is sufficient to model visual speech.
Therefore we choose the regression approach as mapping pro-
cedure. Our work is related to the works of Kim et al. [5] but
we extend their method to 3D performance capture data and
a novel speech feature combination.

3. VISUAL SPEECH FROM FACIAL
PERFORMANCE CAPTURE

3.1. Input data

We assume a given 3D mesh sequence which we define as a
sequence of registered 3D face scans (meshes) of a person.
The number of vertices N is constant and inter-frame vertex
correspondence is known for all frames M . While obtaining
such data is a challenging task on its own, we leave it to the
performance capture community. Furthermore, we assume a
corresponding audio recording for every 3D mesh sequence.
Every audio recording has a phonemic labeling. Phoneme la-
bels can be produced automatically from a speech transcript
or automatic speech recognition using forced alignment tech-
niques.

3.2. Face model

Using the aligned meshes directly as visual model would be
computational unfeasible. We follow the common approach
to create a decomposition of the geometric vertex points into
a component model. To compute a linear component face
model we perform Principle Component Analysis (PCA) on
the aligned meshes. We can, however, without any change of
method, switch to a different parameter-driven model, such



as a blendshape model. The PCA model allows us to remove
components with low explanatory value, which will greatly
reduce the computational burden required in the following
steps. Using PCA can even remove noise in the performance
capture data, as we encountered in Section 4. Projecting our
training meshes Vi=1,...,M ∈ RN3 into the truncated PCA
space, we obtain low dimensional visual parameter vectors
Yi=1,...,M ∈ RD for all meshes of our recording.

3.3. Visual data preparation

Visual speech should be captured with high frame rates to
capture the subtle motions of speech and the fine temporal de-
pendence between auditory and visual speech. If high frame
recordings are not available, upsampling can improve the syn-
thesis results. As we now have a sequence of Y s we in-
terpolate between them using cubic splines, to produce new
intermediate frames. To ensure bilabial mouth closure we
correct the interpolation using a bilabial constraint (see be-
low). These frames might not replace original high frame
rate recordings, but for us, improved synthesis quality non
the less.

Unvoiced parts of the recordings provide no speech fea-
tures and wide variations of facial movements such as breath-
ing and facial gestures. These parts can be simply replaced
by a neutral face of the subject.

Bilabial constraint: Bilabial (p,b,m) mouth closure can
be lost due to model smoothing during performance capture
and/or low recording frame rate. Phonemic labels can be used
to restore mouth closure for bilabials. To do so, we need to
measure the mouth closure of our mesh. One way is to locate
two vertices that represent upper and lower lip. This can be
done either manually or using a facial feature point detector.
The Euclidean distance between a centered lower lip vertex
and a centered upper lip vertex is our closure measure. Now,
we need to search for local closure maxima near frames with
bilabials as phoneme labels. To force mouth closure, we cal-
culate the parameter directions of closure G from our visual
parameters around the frame with maximum closure found at
index tm with

G = Ytm −
1

2
(Ytm−1 + Ytm+1). (1)

Then we search for the weighted amount ofG that needs to be
added to Ytm to achieve full mouth closure. Smoothing this
change over the neighboring frames provides more realistic
results. This idea can be extended, e.g. to enforce protrusion
for certain phonemes.

3.4. Speech feature extraction

The acoustics of speech are classically modeled with
phonemes. Phonemes describe a fixed dictionary of sounds
to produce speech. In phonology the concept of allophones

Fig. 1. Input data and feature extraction: The data used in our
speech synthesis system is shown in the lanes a to g with ex-
emplary feature extraction for frames 4,12 and 20. Lanes: (a)
Textured mesh sequence. (b) Audio waveform. (c) MFCCs.
(d) MFCC feature matrices C extracted using a sliding win-
dow. (e) Phoneme labels. (f) Smooth phoneme signals. (g)
Smooth phoneme feature vectors sampled from (f).

describes that a single phoneme can be pronounced in dif-
ferent ways, resulting in different visual and acoustical ver-
sions of the same phoneme. This effect is tightly linked
to coarticulation, the effect that the preceding and follow-
ing speech influence the current articulation. The effect of
coarticulation is dependent on the sequence of phonemes and
speech rate.

Acknowledging both phenomena we conclude that visual
speech needs to be derived from an auditory context, where
the local characteristics loudness, duration and spectral shape
of speech are considered. These characteristics are contained
in acoustic speech features such as MFCCs. Similar to pre-
vious works we therefore extract acoustic features from a
sliding window of length L around the corresponding visual
frame. We use MFCCs on overlapping subsequences of the



analysis window. The resulting MFCCs are concatenated to
yield one context feature matrix C per frame, similar to a
spectrogram. The process is visualized in Figure 1, lanes (c)
and (d).

Smoothed phoneme feature vector: Despite the men-
tioned limitations, phoneme labels have the advantage that
they are usually generated using language models, i.e. the la-
beling process incorporates knowledge of the language. This
makes them much more robust than acoustic features to noise
or mumbling and ambiguity errors. We therefore expect an
improvement if phonemic features are added to the acoustic
feature matrix.

We could sample the phonemic labels with the same slid-
ing window procedure as for the MFCC features, to obtain
a representation such as in [5]. The resulting vector P has
categorical entries, and the temporal resolution is fixed to the
sampling frequency. We therefore propose a novel phone-
mic feature that models the phoneme context as a continu-
ous vector, yielding a smoothed representation of the current
phoneme context. We explicitly blur the fixed temporal in-
formation that is encoded in sequential phoneme features and
aim for a representation that describes current phoneme prob-
abilities.

To obtain our feature vector we assume that every
phoneme has a temporal center, lying at the center between
the beginning and end time of the phoneme. Every phoneme
has a symmetrical context window around this center, with
the length of the phoneme plus an additional fixed length J .
The additional length J enables to model the coarticulation
and the temporal uncertainty of phonemic labeling (see [21]
for research on labeling errors). To encode temporal infor-
mation, we use a Gaussian window with standard deviation
σ = 0.4. The smoothed phoneme vector (SPV) can then be
generated for any point in time by sampling the values of the
windows for every phoneme. In effect, the SPV, named S,
has the dimension of the size of phonemes in the dictionary.
If multiple windows of the same phoneme overlap, the max-
imum value is used to keep the information for the phoneme
with highest influence. The smoothed phoneme signal and
exemplary sampling of SPVs is illustrated in Figure 1, lanes
(f) and (g). To summarize, the SPV provides a snapshot of the
local phonemic context and provides temporal information in
the magnitudes.

Further benefits of the continuous representation are that
techniques, such as neural networks do not work with cate-
gorical input and require an encoding of categorical variables.
As it is desirable to keep the feature dimension low, SPV only
has the dimension of the phoneme dictionary, whereas a full
one-hot encoding would be dictionary size times the number
of samples per context.

Concatenating and flattening features C and S produces a
speech feature vector X for every frame in the database.

3.5. Regression

The problem of facial animation is now reduced to a regres-
sion problem, namely finding Y for a given X , and more pre-
cisely to find a function h(X) := Y . In practice, the goal is to
find a predictor h that minimizes some loss l(h(X), Y ) over
a training set. In our case we wish to learn a predictor that
maps an input speech feature X to a visual parameter vec-
tor Y . Because Y is multidimensional, we use the squared
Frobenius norm and define our loss function as

l(h(X), Y ) = ‖h(X)− Y ‖2Fro (2)

The regression task is to find an h which minimizes the loss
over our training database {(Xi, Yi)}Mi=1.

At this point we can use generic off-the-shelf regression
techniques, including general linear models, neural networks
and random forests. As proposed in [5] we choose random
forests to solve the regression task. Using random forests
has the added benefits that it can handle categorical and con-
tinuous covariates, supports multi-output regression and that
training of the trees can be done in parallel.

3.6. Synthesis and post-processing

Using the trained predictor, we are now able to synthesize
the face model parameters for any given sequence of speech
features. The results are already good, but further post-
processing can improve the perceived quality. We use our
bilabial constraint technique again in post-processing, to en-
sure full mouth closure in the animation at the appropriate
phonemes. In visual speech synthesis filtering or blending is
usually performed after the synthesis step, to counteract jit-
tery animation (e.g. [17] [12]). We stick to a parameter-wise
filtering as proposed by Cao et al. [17]. A low-pass filter is
applied parameter-wise with cut-off frequencies learned from
the training data.

As a final step, the face model parameters are projected
back to vertex space for rendering.

4. EVALUATION

Methods: The most widely used methods to measure the ob-
jective quality of visual speech is to compare synthesized an-
imation parameters or the geometric model to the recorded
ground truth data. However, it is still an open issue how the
objective measures can be used to to give a reliable indication
of subjectively perceived quality [4]. As subjective evaluation
is still the most significant measure, we conduct a subjective
user study to evaluate the quality of our animations.

Data: To test our method we use the Biwi 3D Audiovisual
Corpus of Affective Communication [1]. It includes speech
of 14 different subjects, citing 40 sentences once emotional
and once neutral. Registered 3D mesh sequences at 25 fps
and phonemic labels of the audio sequences are provided with



Fig. 2. Comparison of synthesized mouth closure for Xpost
(proposed), Ppost and GT. Notice the improved temporal
alignment to GT obtained with Xpost at frames 34 and 113.

the database. As we are not interested in emotional speech
nor multi-person models, we only use the neutral sentences
of male one for our test.

Parameter tuning: Even though we strive for a full auto-
matic system, one needs to set certain parameters, such as the
size of the sliding windows. While the best settings are gen-
erally unknown, we use optimal parameters with respect to
the loss function (2) as objective quality measure. We found
a sliding window L=320 ms to extract the acoustic feature C,
similar to the 334 ms context window found by [6]. SPV fea-
tures S are generated with a window J=280 ms. Our windows
are symmetric around the center frame.

MFCCs are calculated with a window size of 40 ms in
steps of 20 ms. Our PCA space has D=17. We upsampled
the 25 fps sequences to 50 fps using the bilabial constraint
technique.

User study: In our subjective user study we let 20 hu-
man subjects rate the synthesized animations of 10 test sen-
tences. The sentences are generated by training 10 predictors
in a leave-one-out fashion for every method under compar-
ison. Furthermore, we add the ground truth sequence. We
present the animations in random order for every sentence
and subjects could repeat animations. For the rating we stick
to the common realism scale approach [3, 19]. Subjects had
to rate the perceived naturalness of the speech animation on
a 1-5 scale. Where 5 corresponds to ”very realistic”, natural
speech motion and 1 to ”completely unreal”. As we do not
provide any appearance for inner mouth or eyes, the subjects
were instructed to rate the face and lip movements, instead of
complete facial appearance.

We perform our evaluation for different setups of our syn-
thesis system switching between different features and post-
processing. Approach ”GT” just uses the ground truth record-
ings. In a preliminary study subjects where disturbed by jit-
tery motions in the original data. For the final study we pro-
jected the ground truth meshes to our truncated PCA space
to smooth jittery capture results. ”Xpost” uses our combined
featureX with post-processing. ”Conly” is driven byCs only,
without post-processing. We omit post-processing, to include
one setup that does not use any phoneme based features nor

Fig. 3. Boxplot of the subjective results.

processing steps during synthesis. ”Ppost” uses categorical
P s obtained as in [5].

Results: The boxplot in Figure 3 shows that our ap-
proach Xpost was rated with second highest median realism
(3.45) after the ground truth sequences (4.05). The Conly
approach was rated with low realism (1.85), which we think
is partly because it did not benefit from the forced closure
post-processing. Furthermore, Ppost (2.9) did not perform as
well as Xpost (3.45). In our experience, this is caused by
the imprecise phoneme labeling of the test sequences. With
Xpost, the regression can utilize the precise temporal infor-
mation from the MFCC features and additional phoneme con-
text from the SPV features. The improved temporal align-
ment can be seen in Figure 2. Furthermore, the animation
is more expressive, as acoustic information such as pitch and
loudness through MFCCs are available to the predictor. How-
ever, the Ppost and Xpost boxes overlap and as indicated by a
wide range of ratings the level of agreement between subjects
seems to be low. Nonetheless, 75% of subjects rated Xpost
higher than the Ppost, suggesting a higher realism with Xpost
compared to Ppost.

An example video clip showing synthesized results used
in the evaluation is provided in the supplemental material1.
The example clip shows the weaknesses of Ppost and Conly
approaches compared to Xpost.

We admit that in our case realism scores can only be seen
as approximative, as we did not animate a full face. On the
other hand, eyes and teeth are rigid objects that can be added
to the face in an additional step. A tongue model could be
animated with a similar system as proposed here.

5. CONCLUSION

We have demonstrated a framework to build a visual speech
synthesis system from 3D performance capture data using
a publicly available 3D database. We suggested refinement
methods to pre- and post-process visual data including phone-
mic constraints. We introduced a novel phonemic feature,
a smoothed continuous description of the phonemic context.
Furthermore, we proposed to combine phonemic and acous-

1http://www.tnt.uni-hannover.de/projects/facialanimation/icme2017



tic speech features to drive facial speech animation. A user
study confirmed that our novel combination outperformed tra-
ditional features using a regression-based system to create fa-
cial speech animation. The proposed method is a step towards
fulfilling our vision to automatically create versatile talking
avatars from a small set of recordings of a person.
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