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Abstract

Nonrigid Structure-From-Motion is a well-known
approach to estimate time-varying 3D structures from
2D input image sequences. For challenging problems
such as the reconstruction of human faces, state-of-the-
art approaches estimate statistical shape spaces from
training data. It is common practice to use ortho-
graphic or weak-perspective camera models to map 3D
to 2D points. We propose to use a projective camera
model combined with a multilinear tensor-based face
model, enabling approximation of a dense 3D face sur-
face by sparse 2D landmarks. Using a projective cam-
era is beneficial, as it is able to handle perspective pro-
jections and particular camera motions which are criti-
cal for affine models. We show how the nonlinearity of
the projective model can be linearized so that its param-
eters can be estimated by an alternating-least-squares
approach. This enables simple and fast estimation of
the model parameters. The effectiveness of the pro-
posed algorithm is demonstrated using challenging real
image data.

1 Introduction

Factorization for rigid 3D reconstruction was first
introduced in [1] using a low rank constraint on the
orthographic camera matrix. It was later extended to
nonrigid shapes in [2]. Principal Component Analy-
sis (PCA) was used on high-resolution 3D face scans
to build a so-called morphable model [3]. This model
captured variations in person and texture inside the
dataset, enabling 3D reconstructions of persons in neu-
tral expression. In [4], the authors presented an ex-
tended morphable model with variations for person
and expression.

Tensor factorization models are an extension of
matrix-based approaches. In [5], the authors applied a
tensor-based version of the conventional SVD (Singular
Value Decomposition) on 3D face meshes to represent
variation in person, expression and viseme parameters.

Instead of using the actual 3D face scans, a multi-
linear tensor model was computed on the wavelet coef-
ficients of patches of dense 3D shapes in [6]. In [7] the
authors transferred expressions from one person to an-
other in videos, by using the morphable model [3] with
an additional expressive blend shape model extension.

The presented works have two major drawbacks:
The target surface has to be known or estimated to pe-
nalize orthogonal deviations to it [6], [7]. In contrast to
that we have proposed to use penalties directly on the
model parameters, to take an advantage of the struc-
ture in model space [8]. Furthermore orthographic and
weak-perspective camera models are typically used for
facial 3D-reconstruction [5], [6]. We propose to use a
projective camera model. In [7], a projective camera
model is used but the intrinsic camera parameters are

Figure 1. (first row) Input images with detected
2D landmarks, (second row) corresponding dense
3D reconstructed shapes by our model with pro-
jective camera, (third row) with weak-perspective
camera. The first shape of the weak-perspective
model is heavily distorted.

assumed to be known.
To summarize our contributions are:

• A projective camera motion model for nonrigid
dense 3D face shapes.

• The non-linearity of projective camera model can
be linearized and included into the model param-
eter estimation procedure.

• Simple and fast estimation procedure for parame-
ters of a multilinear 3D face model by alternating
least squares. The model parameters can be esti-
mated by a linear equation system in each step.

• Estimation of sensible projective camera parame-
ters.

• Dense nonrigid 3D face reconstruction from sparse
2D landmarks.

2 3D Multilinear Face Tensor Model

Given a set of 3D face scans, the data is ordered in
a data tensor T0 ∈ R3N×P×E where N is the number
of corresponding 3D points, P the number of persons
and E the number of expressions per person. First
all shapes are globally aligned in 3D space, we then
define T as the data tensor with subtracted mean
shape. T can be approximated by the Higher-Order-
SVD (HOSVD) as

T̂ = S ×1 U
(1) ×2 U

(2) ×3 U
(3), (1)

where S ∈ RL1×L2×L3 is the cropped core tensor, and
U(1) ∈ R3N×L1 , U(2) ∈ RP×L2 , U(3) ∈ RE×L3 are



orthogonal matrices containing the singular vectors of
the nth mode of the nth mode unfolded data tensor,
with L1 ≤ 3N , L2 ≤ P , L3 ≤ E.

Let v ∈ R3N be a mean-corrected face shape, then
the approximation v̂ using HOSVD by Eq. (1) is cal-
culated as

v̂ = S ×1 U
(1) ×2 w

T
2 ×3 w

T
3 , (2)

where w2 ∈ RL2 ,w3 ∈ RL3 .
To reconstruct shapes v of persons or expressions

which are not part of the training data T , the corre-
sponding model parameters for person w2 and expres-
sion w3 could be estimated by minimizing ‖v̂ − v‖22.
However the model parameters defined in Eq. (2) do
not contain any information of the parameter space
structure. In other words w2, w3 can define arbi-
trary points, without taking any advantage of the sub-
structures present in U(k), k = 2, 3.

We therefore rewrite the model from Eq. (2), such
that the new parameter vectors correspond to weights
of the rows of U(k), k = 2, 3, which each correspond to
one specific person or expression:

v̂ = S ×1 U
(1) ×2 p

T
2 U

(2) ×3 p
T
3 U

(3), (3)

with parameters p2 ∈ RP and p3 ∈ RE . This represen-
tation is more stable compared to Eq. (2), because only
linear combinations of the training shapes are used,
thereby approximating the distribution of the training
data.

Additionally, we use the standard Tikhonov regu-
larizer to penalize large parameter values. Consider-
ing that we constructed a canonical parameter vector
space, we restrict pk, k = 2, 3 to a sum of one. We
thus formulate the total minimization problem as

min
p2,p3

‖v̂ − v‖22 + λ1‖p2‖22 + λ2‖pT
2 1− 1‖22

+λ3‖p3‖22 + λ4‖pT
3 1− 1‖22. (4)

We use leave-one-out cross validation is used to deter-
mine the weights λk.

An alternating least squares scheme can be used to
minimize Eq. (4), as the introduced function is sepa-
rately linear in p2 or p3. In more detail, let m ∈ R3N×1

be the mean shape, which was subtracted from the in-
put data tensor T0. Reordering the elements of the
tensor for all persons S ×1 U

(1) ×2 U
(2) ×3 p

T
3 U

(3) ∈
R3N×P×1 in the matrix M2 ∈ R3N×P , we rewrite a
model generated 3D shape s3D = v̂ +m as s3D −m =
v̂ = M2p2 that shows the linear relationship to p2.
The linear relationship to the the expression parame-
ter vector p3 can be shown similarly.

Until now 3D representations of faces were consid-
ered, while the desired input are 2D landmarks of faces
to reconstruct a 3D face. In the following Section, we
show two common camera models to project 3D points
to the 2D image plane.

3 Camera Models

3.1 Weak-Perspective Camera

The weak-perspective camera model [9], [10] is the
standard model for 3D reconstructions and other appli-
cations. It maps a 3D point x ∈ R3 to 2D image coor-

dinates u ∈ R2 as u = ( ux uy )
>

= c Ka (Rx + t),

where Ka :=

(
1 0 0
0 1 0

)
∈ R2×3, where c ∈ R+ is a

scaling factor, R is a 3D rotation matrix and t is a 3D
translation vector.

3.2 Projective Camera Model

In contrast to the related work using the weak-
perspective camera model [11], [12], we take an ad-
vantage of the projective camera model, which maps a
3D point x ∈ R3 to 2D image coordinates u ∈ R2 as

ũ =

(
ũx
ũy
ũz

)
= K (Rx + t) ,

u =

(
ux
uy

)
=

(
ũx/ũz
ũy/ũz

)
,

(5)

whereas K := diag(f, f, 1), f ∈ R+ is the focal length,
R is a 3D rotation matrix and t is a 3D translation
vector. We assume that pixels on the image sensor
are square. This property is satisfied for many recent
consumer cameras. Due to the non-linearity, 3D recon-
structions using this model are difficult to estimate.

4 3D Face Tensor Model with Motion

In the following, the multilinear face model of Eq. (3)
is combined with a nonlinear projective camera model.
Given fixed camera parameters, the 2D mapping of the
3D model coordinates is rewritten, so that it is linear in
the model parameter vector for person or expression.

Let [·]x be the x-component of the vector argument,
with analogous notation for the y- and z-component.
Given a 3D face shape s3D = v̂ + m consisting of
3D points s3Di = v̂i + mi and camera parameters
K := diag(f, f, 1), f ∈ R+, R and t, the corresponding
projected 2D points s2Di are calculated with the equa-
tion of motion Eq. (5), then the components of s2Di are
reformulated separately, as

ũi,zs
2D
i,x = ũi,x ⇔ (6)[

K
(
Rs3Di + t

)]
z
s2Di,x =

[
K
(
Rs3Di + t

)]
x
⇔

[K (R(v̂i + mi) + t)]z s
2D
i,x = [K (R(v̂i + mi) + t)]x .

Taking advantage of the linear representation in sec-
tion 2 for v̂i yields to

[KRM2,ip2 + KRmi + Kt]z s
2D
i,x =

[KRM2,ip2 + KRmi + Kt]x . (7)

For each 3D point we then obtain the two equations(
[KRM2,i]x − s

2D
i,x [KRM2,i]z

[KRM2,i]y − s
2D
i,y [KRM2,i]z

)
p2 =(

[KRm + Kt]z s
2D
i,x − [KRm + Kt]x

[KRm + Kt]z s
2D
i,y − [KRm + Kt]y

)
. (8)

Stacking all N points and in both dimensions, one
person parameter can be estimated for multiple shapes.
An equation system for p3 can be derived similarly.
Finally given person and expression parameters, a 3D
shape can be calculated by Eq. (3), while the corre-
sponding 2D projected shape is defined by Eq. (5).



4.1 Parameter Estimation

Given N images with corresponding 2D landmarks
of the same person, the camera and model parameters
are estimated in an alternating scheme, by minimizing
the euclidean distance between input landmarks s2Dk
and the estimated and projected 3D model shapes ŝ2Dk .
The estimation procedure is described in Algorithm 1.

Algorithm 1 3D reconstruction from 2D landmarks

Input: 2D face landmarks s2Dk , k = 1, . . . , N

• Initialization:

– Initialize N camera parameter vectors

– Initialize p̂3,k with mean expression ∀k
• Repeat until convergence:

– Model Parameter Estimation

Repeat until convergence:

∗ Given p̂3,k and camera parameters, es-
timate person parameter vector p̂2, us-
ing Eq. (8)

∗ Given p̂2 and camera parameters, esti-
mate expression parameter vectors p̂3,k

– Camera Parameter Estimation

∗ Given p̂2, p̂3,k, estimate the camera
parameters by second order gradient
descent algorithm

Output: p̂2, p̂3,k, camera parameters, ŝ2Dk , ŝ3Dk

5 Experiments

We used the BU-3DFE Database [13] consisting of
100 persons with 6 emotions (Anger, Disgust, Fear,
Happiness, Sadness and Surprise) in 4 different ex-
pression levels and a neutral expression. For each 3D
face scan, 83 manually labelled landmark points were
provided, which we extended to 85.Based on these we
computed the HOSVD of Eq. (1). We then computed
the full correspondence among the 3D face scans by
the Extended Coherent Point Drift Algorithm (ECPD)
[14] and estimated the second model with the result-
ing 7308 points. As the landmark points were a subset
of the dense face scans, sparse correspondences among
the models were provided. The number of camera and
model parameters was not altered between the models.

5.1 Evaluation on Synthetic Shapes

We evaluated the performance of our model with the
weak-perspective camera and projective camera model
by synthetic data with known ground truth. We as-
sumed that the person parameter and focal lengths
were the same for all input frames, while expression
parameters and all other camera parameters were es-
timated for each frame individually. For a weak-
perspective camera, it was not possible to estimate
both the focal length and the z-components of the
translation vectors [15], so we let the z-components
be undetermined.

The results of the evaluation are shown in Figure 2–
4. Figure 2 compares, the ground truth shape to their
reconstructed counterparts by illustrating the point-
wise approximation error. It can be seen that withthe

(a) (b) (c)

Figure 2. Color-coded point-wise approximation
error for the two camera models. (a) Ground
truth shape, (b) reconstruction by projective
camera model, and (c) weak-perspective camera
model. Using the projective model facilitates a
better shape reconstruction as indicated by the
mouth which is wider open in (b) than in (c).

(a) (b) (c)

Figure 3. Comparison of the two camera models.
(a) Ground truth shape; reconstructed 3D shape
with rotation by (b) projective model, (c) weak-
perspective camera model. It can be seen that for
the weak-perspective model, the rotation cannot
be as accurately estimated as for the projective
model.

projective camera model (Fig. 2b) the open mouth ex-
pression can be better recovered than using the weak-
perspective camera (Fig. 2c). In Figure 3, the ground
truth shape is compared to the reconstructed shapes
by weak-perspective and projective camera model. It
can be seen that the projective camera model is able
to estimate the 3D shape and orientation better than
the weak-perspective camera model. Figure 4 com-
pares the ground truth camera positions with the es-
timated ones. It can be concluded that the projective
estimates partly overlap with the ground truth camera
positions while the camera positions estimated by the
weak-perspective model have high distances to the real
camera positions.

In summary, the projective camera model improved
the 3D reconstruction of the shapes. Even for se-
quences with difficult motion along the z-axis, shapes
of high quality could be estimated.

5.2 Reconstruction from Real Images

A DSLR Canon EOS 5D Mark III camera with a
Tamron 90mm F/2.8 Macro 1:1 lens was used to cap-
ture several images of a human face. During the record-
ings the subject changed his expression, while the cam-
era position was changed relative to the object. For
each frame 68 face landmarks were detected by the
dlib C++ implementation of [16]. Of the landmarks,
46 were selected corresponding to the landmark model
vertices and used to estimate the model and camera pa-
rameters as described in Section 4.1. The results are
displayed in Figure 1. It can be seen that the projective



Figure 4. Comparison of ground truth camera po-
sitions (black) with the estimated ones by our
model with weak-perspective (red) and projec-
tive (blue) projection of our synthetic data. The
figure is best viewed in color.

camera model leads higher quality 3D reconstructions,
which are more similar to the person and expression in
the images, than the weak-perspective version.

6 Conclusions

In this paper we have studied the application of
the projective camera model together with tensor-
based face model. We used our 3D multilinear face
model, based on the HOSVD, which utilizes the in-
herent data structure by a canonical parametrization
and constraints. The incorporated constraints do not
require any explicit knowledge about the target 3D sur-
faces and enable an ALS scheme to estimate reasonable
model parameters, and thereby a 3D face reconstruc-
tion of sparse 2D face landmarks. Furthermore, we
showed that the estimation of the perspective cam-
era parameters is possible, while retaining the linear
estimation scheme of the multilinear model. In the ex-
periments, the projective camera model improved the
estimated 3D reconstruction, camera and model pa-
rameters in comparison to the weak-perspective cam-
era model used in previous work. This is a promising
result and opens the way for more accurate estimation
of non-rigid facial structures.
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