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Abstract— In this paper, we present a new statistical model
for human faces. Our approach is built upon a tensor fac-
torisation model that allows controlled estimation, morphing
and transfer of new facial shapes and expressions. We propose
a direct parametrisation and regularisation for person and
expression related terms so that the training database is well
utilised. In contrast to existing works we are the first to reveal
that the expression subspace is star shaped. This stems from the
fact that increasing the strength of an expression approximately
forms a linear trajectory in the expression subspace, and
all these linear trajectories intersect in a single point which
corresponds to the point of no expression or the point of
apathy. After centring our analysis to this point, we then
demonstrate how the dimensionality of the expression subspace
can be further reduced by projection pursuit with the help of
the fourth-order moment tensor. The results show that our
method is able to achieve convincing separation of the person
specific and expression subspaces as well as flexible, natural
modelling of facial expressions for wide variety of human faces.
By the proposed approach, one can morph between different
persons and different expressions even if they do not exist in
the database. In contrast to the state-of-the-art, the morphing
works without causing strong deformations. In the application
of expression classification, the results are also better.

I. INTRODUCTION
The focus of this work lies in the analysis of human

faces represented by annotated, discrete 3D point feature sets,
where the annotated people possess predefined expressions
with varying strength. The variation of these point feature
sets is represented and characterised by a multiway array that
naturally divides the data into shape, person, and expression
modes that can be further decomposed by using conventional
tensor decomposition techniques.

A. Related Work

3D shape modelling based on factorisation is not new. The
first approach was introduced for rigid 3D-reconstruction in
[1] and later generalised to non-rigid shapes in [2]. So-called
morphable models were introduced in [3]. These models use
principle component analysis (PCA) to describe variations
in the data. In [3], for instance, PCA was applied to capture
both the 3D-shape variation, and the texture variation. In
[4] the authors use PCA to compute shape and expression
bases of dense 3D face shapes without texture, whereas an
independent component analysis (ICA) based factorisation
was proposed in [5].

A morphable model, which is able to infer both the
3D-structure and the point-light sources given 2D-images,
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Fig. 1: Illustration of the first 3 dimensions of the expression
space spanned by the rows of U(3). Each face represents one
of the 25 expressions (neutral and 6 emotions in 4 levels of
strength); each colour represents one of the 7 emotions of the
database: neutral (gray), anger (dark blue), disgust (orange),
fear (yellow), happiness (violet), sadness (green), surprise
(light blue). Apparently, the expression space is an affine
subspace and and it has a special point indicated by the red
face – the point of apathy. Note that there was no expression
corresponding to the point of apathy in the training data and
the neutral expression is not the origin of the expressions.
Each coloured line represents a regression line through the
4 instances of the same expression with varying level of
strength.

was introduced in [6]. Since altering the parameters of a
PCA-based model usually changes multiple shape aspects
simultaneously, in [7], the PCA-directions of a bodyshape
model were remapped to semantically meaningful variations,
which relate to single shape attributes, for instance weight.

A statistical model of a full human body was introduced in
[8], where the kinematic chain of the skeleton was estimated,
given the assignments of vertices to body segments. The
parameters associated with the body shape were separately
learned in a subsequent step. Models which do not require
the assignments of vertices to body segments were proposed
in [9], [10].

Tensor factorisation, to learn sets of person and
expression-related parameters from images, was proposed in978-1-5090-4023-0/17/$31.00 c©2017 IEEE



[11]. It was also used in [12], to learn person, expression
and viseme parameters from dense 3D-scans. In [13], tensor
factorisation was used on wavelet coefficients of dense 3D-
shape patches from which the model parameters were iden-
tified. The tensor model [13] was regularised with several
priors such as surface smoothness.

In [14], a morphable model was used to learn bases
of expression and texture similarly to [3]. To allow for
expression transfer between people, [14] also included a prior
to penalise the deviation of the estimated surface from the
known target surface. The latter was estimated in advance
by a separate algorithm.

B. Contributions

We propose a statistical shape model for human faces,
described as sets of 3D-points, in different facial expressions.
Similarly to the factorisation proposed in [12] and [13], the
statistical shape model is based on representing the data in
a multiway array and its factorisation by the higher-order
singular value decomposition (HOSVD).

Without regularisation, person or expression transfer is
either limited to small changes or it fails. Thus, prior works
have required strong constraints to enable expression transfer
between persons. In [14], a separate 3D reconstruction of the
target surface was computed in advance, and deviations from
this template were penalised during the expression transfer.
The related energy functional is nonlinear and non-convex,
i.e., hard to optimise. In [12] and [13], no such penaliser was
used, thus the transfer of expressions was limited to small
changes.

In this work, we show that these priors necessitate from
substructure the original data exhibits. We propose to first
learn these structures, and then to directly penalise deviations
from these substructures in parameter space. The imposed
constraints are linear and thus easy to include into the
optimisation, whereas the previous methods require nonlinear
constraints on the 3D model instead of regularising in the
parameter space. The proposed method can morph between
persons and expressions even if they do not exist in the
training data and no information about the target surface is
available. A quantitative evaluation of person and expression
transfer demonstrates the importance of the substructure
consideration.

The origin is the centre of the construction for models
based on principle component analysis or tensor factori-
sation. A commonly used approach ([7], [9]) to generate
new expressions is to parametrise them by the principal
components, for instance, the point corresponding to a smile,
and then to generate new shapes by varying parameters in
this direction. The first contribution made in this work is to
point out that the data in expression space spans an affine
subspace, i.e. it does not intersect the origin. Hence, the
procedure for shape extrapolation quickly produces parame-
ter configurations which are outliers w.r.t. the training data.
Corresponding 3D shapes are often deformed.

All the previous works have the inherent assumption that
the neutral shape is the centre of the expressions. Expression

trajectories, obtained by varying the strength of individual
mood such as happy and sad, originate from that. In contrast,
we show that trajectories are approximately linear in the
expression subspace and meet at a different point. This
singular point has no apparent expression, i.e. it is the point
of apathy. The expression seems ”closed” opposed to the
neutral expression which is more ”present”.

The point of apathy is not located in the origin of the
expression space. We thus tailor the expression analysis to
be centred to the point of apathy. Since the apathy vertex
is the origin of all expression trajectories, it can be used
to synthesise new expression trajectories not included in the
training data. Moreover, each of these trajectories represents
a single emotion with increasing strength. They are robust
in the sense that even points with large distances from the
point of apathy will make natural 3D shapes.

The expression data is further analysed by projection pur-
suit with the help of fourth-order moments. The projection
pursuit, centred at the point of apathy in the dimensionality
reduction, reveals semantically meaningful basis vectors and
allows for shape analysis and shape classification: novel,
unseen shapes can be expressed as a mixture of basis vectors
and be further classified. Experimental evaluation confirms
that the proposed model is better than the classical approach
based on PCA.

The summary of our contributions is as follows:

• The data in expression space spans an affine subspace.
• An emotionless, apathetic facial expression is discov-

ered as the root of all expressions though there was no
explicit example of it in the database.

• Semantically meaningful expression trajectories.
• Novel unseen faces can be expressed as a mixture-

of-semantic-bases enabling shape analysis and shape
classification.

• The model requires only a few parameters if com-
pared to the state-of-the-art. It is implemented in about
50 lines of Matlab-code. The sources are available
at https://github.com/sgrasshof/tensor_
facemodel

The paper is organised as follows: the tensor factorisation
model used in this paper is introduced in Section II. The
special star shaped structure of the expression subspace is
introduced in Sec. III-A, and in Section IV it is proposed
how it can be utilised in dimensionality reduction. Experi-
mental evaluations are presented in Sections V, VI and VII,
respectively. The conclusions are drawn in Sec. VIII.

II. HOSVD-BASED MODEL

A. Basic model

Let the measurements be collected in the 3-way data
array Worig ∈ R3N×P×E , where N is the number of 3D
points, P is the number of persons, and E is the number
of expressions. Before further processing, we subtract the
mean shape over all the persons and expressions and denote
the mean-corrected data array Worig −W0 as W.



In analogy to the conventional SVD approximation for
matrices, the HOSVD approximation of the mean corrected
data array is

Ŵ = S×1 U
(1) ×2 U

(2) ×3 U
(3), (1)

where S ∈ RL1×L2×L3 is the core array, and U(1) ∈
R3N×L1 , U(2) ∈ RP×L2 , U(3) ∈ RE×L3 are the n-mode
singular vectors, that is, the orthogonal matrices containing
the high-order singular vectors as column vectors, with L1 ≤
3N , L2 ≤ P , L3 ≤ E.

From (1), the approximation of the mean-corrected shape
w ∈ R3N with a fixed person and expression is

ŵ = S×1 U
(1) ×2 u

T
2 ×3 u

T
3 , u2 ∈ RL2 ,u3 ∈ RL3 .

(2)

To synthesise shapes for new people, which are not used in
training the model defined by Eq. (1), one needs to estimate
the person, and expression related parameters u2 and u3

from an example shape data of the person.
In [12], [13] shapes were approximated successfully, how-

ever, a naı̈ve linear least-squares fit without regularisation is
not adequate, since the solution for u3 can be located outside
of the training data. In other words, the solution of u3 does
not lie on the plane spanned by the training data (cf. Fig. 1).
While the reconstructed 3D shape might look well, any small
change to u3 then causes severe distortions to the 3D shape.
Thus, expression transfer is not feasible.

III. SUB-STRUCTURE AWARE MODEL

A. Structure of Expression Space

The model was evaluated with Binghamton [15] BU3D-
FE face dataset containing the F = 83 3D facial feature
points of P = 100 persons. The people made E = 25
different expressions: one neutral together with four different
levels of anger, disgust, fear, happy, sad, and surprise. The
HOSVD model of Eq. (1) was trained on two different data
tensors: one containing the face landmark points only W ∈
R3F×P×E and another one containing the set of registered
face scans in full correspondence with N = 7308 points each
resulting in a data tensor W ∈ R3N×P×E . The dense face
shapes were calculated by the ECPD (Extended Coherent
Point Drift algorithm) [16] using the face landmarks provided
by the database.

Since the expression feature space, the column space of
U(3), is low-dimensional, we illustrate it by plotting all
the 25 feature vectors in Figure 1. It can be seen that
all the points approximately lie on a plane in the feature
space.1 A surprising finding is that, even though the neutral
shape seems to be somewhat in the centre of the expression
features, there is another expression from which all the
expressions seem to originate: the four different realisations
of each expression lie in a corresponding one-dimensional
affine subspace (a line) which all meet in a vertex outsize the

1The proximity between, for instance, fear and disgust might be caused
by the rank-3 approximation while in higher dimensions these emotions are
more distant.

Fig. 2: Left: Illustration of synthesised apathetic expression
(red), right: neutral expression (gray) of the same person.

training expressions. A higher strength level of the expression
also implies a larger distance from the vertex.

We estimate the common vertex by fitting the pencil of
six lines with a common vertex to the expression feature
points by the least squares sense. By visual inspection, it
can be concluded that the common factor in the expressions
corresponding to the vertex is apathy though there is no
direct example of this expression in the database. In Figure 2,
there is a synthesised example of the apathetic expression in
comparison to the neutral expression of the same person.
The BU3DFE database consists of posed expressions which
were performed individually. Some persons perform the
neutral expression with an open mouth, whereas the apathetic
expression has a closed mouth and seems to correspond to
an expression, where all face muscles are relaxed.

Mathematically the structure of the expression feature
space is star shaped: all the levels of a single facial emotion
expression are obtained by finding the line in the expression
feature space that joins the point of apathy with an example
of the single expression, as shown in Fig. 1, where each of
the 25 expressions is represented by one face. We assume that
the expressions are pure in the sense that a single emotion
is a one-parameter family of expressions, parametrised by
the strength. In this model the facial movements across
the different parts of the face are synchronous but this
assumption could be relaxed to additionally apply partial face
movements.

B. Improved Model

The drawback of the model defined in Eq. (2) is the fact
that it does not utilise the learnt n mode singular vectors in
U(n), n = 2, 3. They contain information of the structure of
the feature space for people and expressions, that we would
like to utilise when regressing the parameters of a new person
or expression.

We therefore rewrite the model as

ŵ = S×1 U
(1) ×2 p

T
2 U

(2) ×3 p
T
3 U

(3), (3)

where the parameters p2 ∈ RP and p3 ∈ RE are the coor-
dinate vectors of the row-space of the person and expression
mode singular vectors. For instance, the person i used in the
training has the coordinates pn = e

(n)
i , where e

(n)
i , n = 2, 3,

is the standard basis vector.



To regress the parameters of a new shape w we construct
the energy functional

Etotal(p2,p3) = Eshape(p2,p3)

+ Eperson(p2) + Eexpression(p3), (4)

where we insert Eq. (3) into the least squares functional
Eshape = ‖ŵ−w‖22 for the shape term. The vector p2 rep-
resents how the weights of the corresponding rows in U(2)

in the training database should be combined to synthesise a
new one. To control the norm of the regressed estimate, the
standard way is to use the diagonal Tikhonov regulariser. In
addition, we want to guide the solution towards a solution
that is bounded by the samples in the person space. This can
be achieved by setting an additional constraint pT1 = 1,
where 1 is a vectors of ones. For the expression term we
only use the standard Tikhonov regulariser as the truncated
dimension of the row space of U(3) can be kept small.

The minimisation of the energy Eq. (4) thus yields a
regularised least squares problem of the form

min
p2,p3

‖ŵ −w‖22 + λ1‖p2‖22 + λ2‖pT
2 1− 1‖22

+λ3‖p3‖22 + λ4‖pT
3 1− 1‖22 (5)

which we minimise using alternating least squares by using
the fact that the energy minimisation is separately linear in
both arguments. Suitable regularisation parameter values λk
are found by leave-one-out cross-validation.

IV. PROJECTION PURSUIT

As seen in the previous subsection, the point of apathy is
the natural origin for expressions. Though HOSVD directly
yields a basis to the truncated expression subspace, we will
construct an affine basis centred at the point of apathy
such that the basis vectors form projection pursuit directions
to the expression space. This is achieved by constructing
the fourth-order moments tensor centred at the point of
apathy, and solving for the most appealing directions from
the eigenmatrices of the moment tensor. This construction
is similar the use of fourth order cumulants and quadri-
covariance in Independent Component Analysis (ICA) [17]
with the crucial difference that the centring of data is not
based on the mean but the point of apathy.

In particular, let vi represent a point-of-apathy-centred
and orthonormalised expression parameter vector in tensor
notation, where i = 1, 2, . . . , L3. We construct the fourth
order moment tensor, centred at the point of apathy and
corrected by the lower order moments in analogy to the
definition of the quadricovariance tensor, that yields

Mijkl = E{vivjvkvl} − E{vivj}E{vkvl}−
E{vivk}E{vjvl} − E{vivl}E{vjvk},

(6)

where the expected value is computed as the sample mean.
We then select the most significant eigenmatrices of Mijkl

on the basis of their eigenvalues. The eigenmatrices are
rank-one orthogonal projectors in the case of independent
signals hence we pick up the most dominant eigenvectors

from the dominant eigenmatrices and associate them with
the projection pursuit directions, see Fig. 3.

We create a new expression basis matrix Ũ(3) consist-
ing of the ICA directions centred on the apathy vertex.
Replacing U(3) by Ũ(3) in Eq. (3) therefore results in an
additional model, forcing the expression parameters to lie
in a meaningful subspace, which is spanned by the basis
shapes lying in the revealed expression plane, illustrated in
Fig. 3. The figure confirms that the shapes of the same
expression lie on a straight line intersecting the point of
apathy. It also demonstrates the conjugate expression on the
same line but on the opposite side of the apathy point, where
the distance from the centre corresponds to the strength of the
expression. The bases appear semantically meaningful but
their meaning and interpretation, as always in independent
component analysis, is given by a human.

V. PERSON AND EXPRESSION TRANSFER

In this section, we investigate how robust person and
expression transfer can be done. To this end, either a person
or an expression is completely removed from the database,
and the tensor factorisation is performed on the reduced data.
Then, all the shapes of the unknown person are used to
compute the parameter estimates p̂2 and p̂3,e for each of
the expressions e ∈ {1, . . . , 25}. Likewise, for an expression
removed from the data, we obtain the estimates p̂2,p for each
person p ∈ {1, . . . , 100} and p̂3.

We can now evaluate the robustness of the estimated
parameters as follows: Instead of the estimated person pa-
rameters p̂2 the ground truth values p2 are used, and 3D
shapes are created by the estimates p̂3,e, e ∈ {1, . . . , 25}.
Similarly, instead of the estimated expression parameters p̂3,
the true values p3 are used to create 3D shapes.

The distance of an estimated shape w(û2, û3), w(û2,u3),
or w(u2, û3) to the true, known shape wtrue can be defined
by

ε =
‖ŵ −wtrue‖2
‖wtrue‖2

. (7)

The idea behind this procedure is to evaluate how well the
algorithms use the data. If the estimated parameters differ
much from the ground truth values, the shapes ŵ(u2, û3)
and ŵ(û2,u3) deviate much from the ground truth shapes.

In the following, the model defined by (2) is referred to
as the baseline, the model defined by (5) as prop-1, and the
one introduced in Section IV by prop-2.

In the experiments, we used the BU-3DFE Binghamton
database [15] consisting of shapes from 100 people with 25
predefined and annotated expressions, and each 3D shape
has 83 3D landmark points. The errors between estimated
ŵ(û2, û3) and true shapes are shown in Figure 5(a). It can
be seen that all the models perform about equally well.
Figure 5(b) shows the results if the person parameters are
set to ground truth and the estimated expression vectors û3

are used. Here, the average error is slightly larger for the
baseline model than the proposed models prop-1 and prop-
2. Figure 5(c) shows the results if the ground truths of the
expression parameters and the estimated person parameters
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Fig. 3: Semantic basis vectors in the expression space Ũ(3) corresponding to the projection pursuit directions centred on
the apathy vertex (cf. Sec. IV). Each row corresponds to one basis direction. Shapes were created by selecting points along
this line with distance from the apathy vertex as indicated by the value at the bottom of each column. Please note that the
shapes in the left columns correspond to an extrapolation of the points in the expression space (shown in Fig.1), where the
reconstructed expression parameters do not lie in the convex hull of the training expressions.

Fig. 4: Example of a linear, synthetic trajectory shown as 3D shapes corresponding to sampling p3 on a line. Shapes created
from points on one side of the apathy vertex display one emotion, those on the other side the conjugate emotion.

û2 are used. Apparently, the baseline model which does not
exploit the particular structure within the expression space
performs much worse than either of the proposed algorithms.
Figure 5(d) shows the comparison for both the proposed
models; it can be seen that they performed equally.

In summary, the accuracy of the estimated 3D shapes
ŵ(û2, û3) is comparable among the models. Changing the
person parameters to their ground truth values does not
increase the errors very much. This is probably due to the dis-
tribution of the data: since it can be assumed that differences
between persons satisfy a normal distribution, using principle
component analysis as statistical model is reasonable. In
contrast to that, the proposed models achieve much lower
errors if the parameters of expression are modified since
the data exhibits a particular structure in the expression
space (cf. Fig. 1) for which principal component analysis
is too general. Modifying the expression parameters thus
easily results in points that are outlying with respect to the
distribution of the data. This causes deformed 3D shapes
because the estimated combinations of person and expression

parameters û2 and û3 produce reasonable 3D shapes only in
a small neighbourhood.

VI. EXPRESSIONS OF MR. BEAN

In this experiment, we used a dense registration of the
Binghampton database, each of the 2500 shapes consisted
of 7308 3D points. From 85 labeled 2D feature points
in an image of the TV-character Mr. Bean, known for
his expressive miens, we estimate person and expression
parameters. Please note that the quality of the reconstructed
shapes strongly depends on the training data. As the miens
of the actor are very outlying with respect to the training set
they are especially hard to approximate.

The 3D reconstruction is shown in the middle (with
texture) and right (without texture) images in Figure 6.
Since we restricted the expression parameters to adhere to
the distribution of the expression parameters of the training
shapes, it is possible to interpolate between the reconstructed
shape and the training shapes by simply modifying the
expression parameters p3. A sequence of interpolated shapes



(a) approximation (b) person transfer

(c) expression transfer (d) expression transfer

Fig. 5: Quantitative evaluations of the robustness of the
proposed algorithms. (a) Result of comparing the approxi-
mated shape ŵ(û2, û3) with the true shape wtrue. (b) Person
transfer error when keeping the expression parameters û3

fixed while setting the person parameters to the ground truth
u2. (c) Expression transfer error when keeping the person
parameters û2 fixed while setting the expression parameters
to the ground truth u3. (d) Expression transfer errors of the
proposed models prop-1 and prop-2.
baseline: model defined by Eq. (2). prop-1: the model pro-
posed in Eq. (5), prop-2: the proposed model with projection
pursuit extension.

between the reconstructed 3D shape and those corresponding
to shapes created with ground truth expression parameter
values angry-4, disgust-4, fear-4 and sad-4 is shown in
Fig. 7.

No further priors were necessary for this transfer which
makes the procedure easy and fast. Conversely, the existing
methods do not consider the special distribution of the train-
ing data in the expression space, hence a linear interpolation
is not possible without additional constraints which prevent
strong deviations from a known template shape.

VII. CLASSIFICATION

As one more application, we show that expression clas-
sification can be performed using the estimated expression
parameters. Since both proposed models defined in Eq. (5)
and described in Sec. IV performed similarly on expres-
sion transfer, the expression classification was trained and
evaluated using the latter. We compared it to the tensor
factorisation model of Eq. (2). This model is equivalent to
the one used in [13] with the difference that [13] used it on
the wavelet coefficients whereas we applied the factorization
to the 3d-points directly.

Leave-one-out experiments were performed as follows:
Firstly, one of the 100 persons was removed from the

(a) (b) (c)

Fig. 6: Dense 3D reconstruction from sparse 2D feature
points. (a) Input image; (b) reconstructed shape with texture;
(c) reconstructed shape.

database. Secondly, the tensor factorisation was estimated
from the remaining data. Thirdly, person and expression
parameters were estimated for the left-out person in all the
25 expressions, independently and one by one. The estimates
were computed by the baseline model and the proposed
one. This led to 25 different estimates of the person and
expression parameter vectors û2 and û3. Finally, a k-Nearest-
Centroid classification was performed which assigned the es-
timated parameter vector û3 the label of the closest centroid
of the 7 emotions (neutral, anger, etc.).

The classification based on the baseline PCA-model of
Eq. (2) achieved a classification rate of 15% which is close
to the random guess of 1/7 ≈ 0.14. Using the proposed
model, the rate improved to ≈ 60%.

The simple kNC-classification model was used to demon-
strate the positive effect the proposed model can have on
expression classification. Using a more sophisticated classi-
fier and more training data might improve the classification
rate in the future.

VIII. CONCLUSIONS

This paper is about learning person and expression pa-
rameters of multiple persons with multiple expressions by
tensor factorisation of 3D point clouds of their faces. A usual
problem in models based on principal component analysis is
that the synthesised expressions may yield strongly deformed
shapes. The main contribution made in this work was to point
out that this problem is caused by ignoring the particular
substructure present in the expression space. In particular,
individual expressions approximately span an affine subspace
of dimension one in which the strength of the expression
defines the location. The direct sum of all these spaces forms
a higher-dimensional affine subspace. The expression with
zero expression strength was discovered and named as the
point of apathy, as the expression has a particular numb,
apathetic appearance which might result from all the facial
muscles being relaxed. It can serve as central vertex in
the expression space where all the one-dimensional affine
subspaces of individual expressions meet.

To reveal the structure of the expression space, we used
projection pursuit to estimate the most appealing directions.



(a) reconstructed shape (b) (c) (d) (e) angry-4

(f) (g) (h) (i) (j) disgust-4

(k) (l) (m) (n) (o) fear-4

(p) (q) (r) (s) (t) sad-4

Fig. 7: A sequence of 3D shapes of the reconstructed shape (a) of Mr. Bean (cf. Fig. 6) and shapes produced by linearly
interpolating the expression parameters p3 between the values estimated for the reconstruction of the shape in (a) and the
ground truth values angry-4 (e), disgust-4 (j), fear-4 (o) and sad-4 (t).

These directions can be interpreted as semantic bases or basis
expressions. Moreover, the knowledge of the substructure
present in the expression space allows for better construction
of synthetic expression trajectories by better control of which
directions are feasible. In this way common pitfalls of syn-
thesising unnatural, deformed faces are avoided. The results
on the substructure in the expression space can be applied to
related works such as those based on tensor factorization [13]

and blend shapes [14].

In the experiments, the proposed model was shown to gen-
eralise better to unobserved expressions of the same person
when compared to the state-of-the-art algorithms. The robust-
ness was further demonstrated by classifying expressions. We
also showed 3D-reconstructions of Mr. Bean, an actor known
for strong facial expressions, and morphed the reconstructed
3D shape gradually through several strong expressions from



the database by interpolating the expression parameters. The
missing high-frequency details in the reconstructed 3D face
shapes are a result of the used database [15] which does not
show such fine details. We plan to add higher level of facial
details in future work by using higher resolution data. The
findings of this paper are promising and open a new angle
on the structure and analysis of facial expressions.
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