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Abstract—Region of Interest (ROI) coding is a common method
for data reduction in scenarios where bandwidth is crucial like in
aerial video surveillance from Unmanned Aerial Vehicles (UAVs).
In order to save bits, non-ROI areas are typically reduced in
quality or not transmitted at all and thus, an accurate ROI classifi-
cation is mandatory. Moving objects (MOs) are often considered
as ROIs and consequently have to be accurately detected on-
board. However, common detection approaches either rely on
computationally demanding processing which is not available at
small UAVs with only limited energy, are model based or cannot
provide a sufficient detection precision. While not detected MOs
lead to a degraded representation at the decoder, erroneously
detected MOs lead to an unnecessary high bit rate. We tackle all
these issues utilizing an efficient object proposal computation.

Based on a dual-threshold strategy applied to image differ-
ences, we propose a linear prediction-supported block matcher.
Compared to a simple thresholding approach, it shows superior
performance and is robust to threshold tuning. By integrating
superpixels into the framework, we further recover the complete
shape of the MOs. Finally, an efficient tracking-by-detection
system is employed to produce accurate detections from the
proposals, thereby recovering missed MOs and denying wrong
proposals, making the coding more efficient.

We achieve an improved detection precision of up to 76 %
compared to a simple difference image-based approach. By using
a general ROI coding framework we reduce the bit rate of our
test set by 70 % compared to common HEVC.

I. INTRODUCTION

The high resolution Pulse Code Modulation (PCM) video
data rate of 622 Mbit/s for a color video sequence with full
High Definition Television (HDTV) resolution (1920×1080) can
be typically compressed to 4–13 Mbit/s at a reasonable image
quality [1], [2] using standardized hybrid video coding like
High Efficiency Video Coding (HEVC) [3]. Since bandwidth is
of crucial importance for some scenarios like aerial surveil-
lance from Unmanned Aerial Vehicles (UAVs) and taking
into account even higher camera resolutions or multi-camera
setups, the bit rate often has to be much further reduced, e. g.
by using Region of Interest (ROI) coding. It typically relies on
quality reduction of non-ROI areas, resulting in a reduced bit
rate for non-ROI areas and thus for the entire video. For aerial
surveillance systems, moving objects (MOs) are typically of
high interest and thus are considered as ROI. In order to achieve
the optimal coding performance and to provide a high quality
for all MOs, the latter have to be accurately detected on-board.
Therefore, we propose to employ a model-less, three-stages
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Figure 1. Block diagram of the entire 3-stages moving object detection system

moving object detector (Fig. 1). We use a dual-threshold, block
matching supported (pel-wise) difference image first (stage
1) to select corresponding superpixels from an independent
superpixel segmentation [4] (stage 2). To cope with non-
perfect detections from the simple detectors, e. g. introduced
by noise or motion parallax, a tracking-by-detection [5], [6]
approach is used to eliminate outliers and also link single
detections (stage 3). The resulting coding mask is used for
the control of a highly efficient ROI-based coding framework
for aerial videos [7].

A. Related Work

Most ROI coding systems provide the highest image quality
only for predefined regions whereas non-ROI areas are de-
graded in quality. For instance, blurring or a coarse quanti-
zation of a frame either as preprocessing prior to actual video
encoding or within the video encoder itself can be applied
[8]–[10], resulting in reduced bit rates. In contrast to that
a video coding system relying on reconstruction of non-ROI
areas by means of Global Motion Compensation (GMC) was
proposed in [7], [11], [12]. By using GMC, a subjectively
high image quality could be provided over the entire frame
at very low bit rates of 0.8–2.5 Mbit/s for full HDTV resolution
aerial video sequences [2]. The ROI coding systems defines
two different ROIs: the first one contains only newly emerging
areas for each frame (ROI-NA) which were not contained in the
previous frame. These ROI-NAs are stitched together by means
of GMC into a background panorama image at the decoder,
using a projective transform homography Hn estimated on-
board the UAV and transmitted as side-information. From the
panorama image, the video frames are reconstructed [13]. In
order to also reconstruct objects with a local motion (moving
objects), moving objects are detected by a moving object
detector which calculates the pel-wise luminance difference
(difference image) between the motion compensated frame
n̂ and the current frame n. Spots of high energy in this
difference image are additionally defined as ROI (ROI-MO). Like
other simple approaches, this difference image-based moving
object detector is highly computational efficient and provide



satisfactory detection results in several applications [14]–[17].
However, since the detection performance typically depends on
single thresholds, e. g. for noise filtering, these approaches tend
to be non-robust for different scenarios. As a consequence,
they often lack accuracy for small objects with only very
small amplitudes in the difference image as well as for
objects with low contrast compared to the background. Thus,
these detectors cannot fulfill high detection precision demands.
More efficient detectors were proposed, which exploit parallax
effects [18] or use block matching motion vectors [19] or an
optical flow analysis in order to detect moving objects [20],
[21]. [22] finally tracks clustered image features over several
frames in order to improve the detection accuracy.
All these approaches have in common that the actual moving
object detection is performed only based on features but do
not consider the image content after the feature derivation
anymore. In contrast to those approaches, specialized detectors
may be utilized for the detection of certain objects, e. g. cars,
by sophisticated classification or machine learning algorithms
(SVM, HOG, SIFT, CNNs etc.). However, since in a surveillance
system it is more important to detect any local motion instead
of only predefinded objects, these methods cannot be used.

Thus we propose to combine a model-less dual-threshold
difference image-based moving object detector combined with
a (modified) block matcher (mask matcher) in order to find and
track moving objects also in subsequent frames. The result of
the difference image-based analysis is used as seed for a mask
matcher. By this approach we find corresponding areas to any
detection in subsequent frames and thereby can highly improve
the precision of the detector. Since small and highly optimized,
low energy block matchers are available from common video
coding (e. g. in mobile phones), no additional efforts must be
undertaken for the energy-efficient usage on-board of UAVs.
For accurate shape retrieval especially for homogeneous, un-
structured areas of moving objects, a superpixel segmentation
is employed before a tracking-by-detection framework is used
to link moving objects over long temporal distances. Using
the enhanced moving object detections, a ROI-based coding is
performed.

The remainder is organized as follows: In Section II our pro-
posed block matching-assisted difference image-based moving
object detector is described in detail. We present experimental
results in Section III before Section IV concludes the paper.

II. BLOCK MATCHING SUPPORTED MOVING OBJECT
TRACKING

We use the ROI detection and coding system from [7] as a
basis, since it provides a subjectively high image quality over
the entire frame by encoding only newly emerging areas for
each frame (ROI-NA) and locally moving objects (ROI-MO) es
explained at the beginning of Section I-A. To overcome the
weaknesses of its difference image-based detector, we propose
to combine this simple method with block matching to exploit
similarities of the shape of moving objects over neighboring
frames. Basically, we apply a block matching between two
video frames n− 1 and n for every spot of high energy in the
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Figure 2. Flowchart of proposed moving object detector.
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difference image between both frames. If a proposal trajectory
can be built up for one object over several frames, we assume
it to be a moving object, otherwise the proposal is discarded.
The proposals of the remaining trajectories are extended to the
MOs full shape using superpixels as proposed in [23] in order
to obtain accurate shape information. At the same time, this
circumvents splitting of an object into multiple proposals.

Finally an efficient tracking-by-detection framework [6] is
employed to reliably link detections and to overcome the limits
of the difference image-based tracker, e. g. missing detections
as well as partial and long term occlusions (Fig. 1).

A. Proposed Moving Object Detector

The block diagram of the proposed moving object detector
is shown in Fig. 2. We use a dual-threshold strategy (also
known as hysteresis thresholding) to filter as many false
positive detections (static objects falsely detected as moving)
on the one hand, and to retrieve the rough shape from the
difference image on the other hand: Firstly, we calculate the
pel-wise luminance differences between the global motion
compensated (block “GMC” in Fig. 2) frame n̂ and the camera-
captured frame n (diffImage output of block “Calc. pel-wise
abs. difference” in Fig. 2). Secondly, we generate two different
binarized versions (diff2image and diff2LNFimage) out of the
same difference image (diffImage) with different noise filter
settings, one with a high (thigh) and the other with a very low
(tlow) noise filter threshold, respectively. For each pixel in the



diffImage we summarize the luminance values (“energy” in the
difference image) in a 3×3 sliding window. If the summarized
energy is above a threshold thigh, the current pixel is marked as
moving object candidate in diff2image. Similarly, we generate
the second binarized image diff2LNFimage using another
threshold tlow. Diff2image (with thigh) basically controls, where
a moving object is considered, whereas diff2LNFimage is used
to improve the shape information which is passed to the mask
matcher. Due to the combination of two different thresholds we
become invariant against manual threshold tweaking in a wide
range. By applying a region growing algorithm to both images,
a set of object candidates (Objects) and object candidates with
improved shapes (improvedObjects) are created. In the low-
noise difference image, small and slow moving objects become
more visible (see Fig. 4(b) in the next section) but also the false
positive detection rate is increased, e. g. caused by noise or
non-planar structures like houses or trees violating the implicit
planarity assumption of the homography-based global motion
compensation.

Starting with the known mask of all already tracked objects
from the last frame, we firstly project the old mask into
the current frame n by applying the homography Hn (“GMC
of object mask”). Next, a modified block matcher (“Mask
matcher”) is used to estimate the motion of the tracked object
in the input video frames. For the search process, only pixels
according to the mask of the object are considered instead of
rectangular blocks, hence we call our matching module mask
matcher (Fig. 3). As seed position for the mask matcher, the
motion of the object from the last m frames (we used m =
3) is linearly extrapolated into the current frame n, which is
justified by the relatively high frame rates of typical video
sequences of e. g. 25 or 30 fps. The resulting motion is applied
to the objects mask.

In order to find new objects which are not tracked yet,
the tracked objects are compared with the set of objects
found in the difference image. A new Object is added for
each untracked object. As the results of the mask matcher
may not be the true motion of the object, a tracked object
may be moved to a wrong position leading to non-ROI parts
erroneously being marked as ROI. Therefore an overlaycheck
is performed that compares all already tracked and all newly
added Objects with the improvedObjects list. Every tracked
object that does not match with a improvedObject will be
marked as an virtual object. Based on the assumption that real
moving objects (true positive detections) reappear at similar
positions in subsequent frames, we can distinguish them from
false detections: if a virtual Object is not recovered for x
frames, it is deleted. Otherwise, in the case of a successful
overlaycheck, the estimated motion is confirmed and the mask
of the Object is refined by merging its mask with the mask
of the corresponding improvedObject. All pixels from a mask
of a Object have a corresponding weight between 0 and 1,
indicating the probability that it belongs to the Object. The
weight of points in the mask of the Object that do not appear
in the mask of the corresponding improvedObject mask is
reduced in order to further refine the mask of the objects in

subsequent frames and may further be used for detection and
tracking confidence. The final ROI-MO activation mask (Fig. 2)
is used for further processing.

B. Accurate shape retrieval by Superpixel Segmentation

In order to retrieve accurate shape information of moving
object proposals with unstructured texture, we employ the
independently calculated superpixel segmentation of the input
video frames [4]. Using the activation mask, a tracking mask
(Fig. 2) is generated by inserting the areas of each superpixel
which is covered by at least one marked pixel of the activation
mask. By combining multiple detections of parts of the same
moving object proposal to one proposal in the tracking mask, a
correct processing of entire MOs including homogeneous parts
is realized. The tracking mask finally is passed to the object
tracker for a temporal linking of the single detections.

C. Tracking-by-Detection

Using the proposed block matcher we obtain good initial
objects proposals. Thereby superpixel help to improve the
segmentation quality and to reduce the false positive rate
by merging proposals belonging to the same object. How-
ever, the proposals are still prone to miss objects in cases
of (partial) occlusion or deformation as they are based on
image information. To recover objects also in cases where
the appearance assumptions fail, we employ the robust and
efficient multi object tracker [6] (MCA-Tracker), using only
position information.

The hierarchical MCA-Tracker is a tracking-by-detection
approach that seeks for a minimum cost arborescence in the
detection association graph and obtains the optimal linking
of the current association graph in linear time in the number
of detections. It is thus suitable for the application in UAVs.
Moreover, their proposed tree tracklet trajectory model allows
it to reliably reject wrong detections and recover missing ones.

Finally, the computed detections are added as ROI to the
coding mask.

III. EXPERIMENTS

We used the 350 m sequence from the TNT Aerial Video
Testset (TAVT) [2], [24] as well as the self-recorded aerial HD
video sequence Parking Lot containing lots of moving objects
on a parking lot and its nearby streets (overview frame in
Fig. 4(e)). Whereas fast and large objects (e. g. the big white
car in the 350 m sequence) can be satisfactorily detected for
a subsequent processing by the unmodified difference image-
based moving object detector from [7], small and slow objects
like the pedestrian in the 350 m sequence or the cars in the
Parking Lot sequence are still challenging. Since they may
still be missing after tracking-by-detection was applied on
the simple difference image (Table I), those objects may lead
to erroneous results. Since our ROI coding system relies on
background reconstruction (i. e. GMC), not detected MOs get
lost and are replaced by corresponding background which is
not meaningful for a surveillance system. To this end, a high
detection recall rate in the first stage (Fig. 1) is desirable,
which is achieved by our robust dual-threshold strategy. At



Table I
DETECTION RESULTS AGAINST MANUALLY CREATED GROUND TRUTH (30
FRAMES FOR Parking Lot sequence, 40 FRAMES FOR 350 m sequence). False
positive (FP) DETECTIONS DENOTE NON MOVING OBJECTS ERRONEOUSLY

DETECTED AS MOVING (e. g. HOUSE EDGES), false negative (FN)
DETECTIONS MOVING OBJECTS NOT RECOGNIZED AS MOVING (LNF: LOW

NOISE FILTERING; SP: SUPERPIXEL; TBD: TRACKING-BY-DETECTION).

Seq. Input image RecallPrec. FP FN
Parking diff2Image 76.3 26.8 985 112
Lot diff2Image & SP 93.4 37.0 753 31

diff2Image & SP & TbD 94.7 38.9 704 25
diff2LNFimage 95.3 15.9 2380 22
diff2 images &mask matcher 86.7 65.6 215 63
diff2 images &mask mat.&SP 86.0 90.8 41 66
diff2 imgs. &mask mat.&SP&TbD 89.9 92.6 34 48

350 m diff2Image 100.0 7.8 377 0
diff2Image & SP 96.9 12.7 214 1
diff2Image & SP & TbD 96.9 12.5 217 1
diff2LNFimage 96.9 5.9 492 1
diff2 images &mask matcher 96.9 26.3 87 1
diff2 images &mask mat.&SP 96.9 70.5 13 1
diff2 imgs. &mask mat.&SP&TbD 96.9 83.8 6 1

the same time a high precision rate is required to keep the
required bandwidth low. We accomplish this by the mask
matcher at stage 1 together with the tracking-by-detection
system. To obtain quantitative evidence of the effectiveness of
our approach, we evaluate the system using the object based
true positive (TP) and false positive (FP) rates and, respectively,
and recall as well as precision measure as in [25] against
manually created ground truth data:

Recall =
#TP

#GT
Precision =

#TP

#TP + #FP
. (1)

Table I shows that the precision of simple difference image-
based moving object detectors is low. Whereas the integration
of superpixels into the system improves the recall, the detec-
tion precision still remains low in absolute terms (below 37 %).
By using our proposed mask matcher before the superpixel
enhancement, we increase the precision to more than 70 %.
With the improved detections, we were able to additionally
increase the tracking accuracy of the tracking-by-detection
framework [6] by up to 13 %.

In the Parking Lot sequence (Fig. 4) we observed that the
detection of small and slow moving objects becomes possible
only with our proposed system because they are often not con-
tained in the common difference image (Fig. 4(a)). Using the
low noise filter threshold alone leads to high false detections
at the static background, e. g. due to motion parallax effects
(Fig. 4(b), detected building structures top left). Since the latter
detections do not have a directed movement but behave similar
to noise, we can remove them with our proposed moving
object detector without impairing the TP detections of the real
moving objects (Fig. 4(c)). Accurate shape information can
be retained by utilizing independently calculated superpixels
(Fig. 4(d)). Fig. 4(e) finally shows the decoded image after
reconstruction by means of GMC.

In order to demonstrate the robustness of our system we
show that the detection results are mostly insensitive to the
used threshold thigh. The noise filter threshold thigh basically
defines the number of objects which are processed by our mask
matcher and can be set e. g. to values between 300 and 450

Table II
CODING RESULTS USING THE GENERAL ROI CODING FRAMEWORK FROM

[7] WITH THE X265 VIDEO ENCODER [26] (BR: BIT RATE IN KBIT/S;
ROI-PSNR: PSNR MEASURED IN ROI AREAS ONLY [2], [27]).

Parking Lot sequence 350 m sequence
BR [kbps] ROI-PSNR [dB] BR [kbps] ROI-PSNR [dB]

HEVC 20576 37.1 8575 40.8
ROI HEVC 4899 37.1 2597 41.0

Figure 5. Robustness of the proposed system against parameter fine-tuning:
the detection precission is mainly independent of the noise filter level thigh.

(we used thigh = 350) without impacting recall or precision
much (Fig. 5). Since the low filter threshold (tlow) is only
used to find a rough object shape as initialization for the mask
matcher, the detection results are mainly unaffected as long as
the threshold is set to a small value allowing a lot of energy
in the diff2LNFimage (also including noise), e. g. tlow = 200.

Using the general ROI coding framework from [7] with the
x265 video encoder software (Lavc57.48.101 libx265) [26],
we can reduce the bit rates by 76.2 % and 69.7 % for the
Parking Lot and the 350 m sequence, respectively, compared
to common HEVC encoding at similar quality levels (37 dB and
41 dB ROI-PSNR [2], [27]). We would like to emphasize that
a subjectively high image quality is provided over all entire
frames due to the reconstruction of non-ROI by global motion
compensation of previously transmitted ROI New Area.

IV. CONCLUSION

We present a reliable detection system for small and slow
moving objects in aerial video sequences which can be em-
ployed e. g. in ROI-based detection and coding systems on-
board of (small) UAVs. By utilizing a dual-threshold strategy,
our system becomes robust against parameter tweaking with-
out impairing the detection precision much. After applying
our proposed modified block matcher (mask matcher), we
integrate independently calculated superpixels to cluster pel-
wise detections to compact objects and thus retrieve improved
object shapes. Due to the decreased false positive and false
negative detections, a tracking-by-detection framework can be
utilized to efficiently eliminating remaining false detections,
whereas a reliable tracking is not possible without our pro-
posed preprocessing due to too many false detections.

We showed that the precision of the object-based detection
is highly increased by the integration of the mask matcher
from 12 % to more than 80 % in a fully automatic process.
Employing the improved detections in a ROI coding framework
we reduce the bit rates by about 70 % compared to common
HEVC coding for the encoding of full HDTV resolution se-
quences (@30 fps) with a subjectively high image quality over



(a) Diff2image (b) Diff2LNFimage (c) After mask match. (d) W/ superpixels (e) Decoded & reconstructed

Figure 4. Detection precision improvement for self recorded parking lot sequence (a–d: magnifications); a) Diff2image: Binarized difference image from
[7]: lots of MOs are not or not entirely detected in every frame; b) Diff2LNFimage: all MOs but also lots of false positive detections (e. g. building upper
left) are detected; c) Diff2 images and applied mask matching: all MOs are detected, false positive detections are nearly entirely removed; d) Mask matching
result (from c)) with superpixel enhancement: shapes of MOs are retrieved; e) Decoded and reconstructed entire video frame.

the entire frame. At the same bit rate, we retain more details
with our ROI coding framework than with common HEVC.
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