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Pose and class prediction
In this section, we give a detailed description for the pose
and class prediction, followed by visual examples.

Joint pose and class model (J-VC)
In case of joint pose and class model, characterized by a
single metric Q and described by Eq. (4)-(6) of the main
paper, the pose and class prediction is done as following.
Given a test sample x∗, pose prediction is done according to
J-VC pose prediction algorithm:

1. Select k nearest neighbours (NNs) according to the
learned metric dQ(x

∗,x) : N (x∗) = {xi}i∈Ik(x∗).
2. Each of the selected NNs has a class label yi and a pose

label pi: N (x∗) = {(xi, yi,pi)}i∈Ik(x∗); we compute
the weight of each sample as wi = d−1i = d−1Q (x∗,xi).

3. For each class label c we find weighted modes {plc, rp
lc}

in pose space of the samples from N c(x∗) =
{(xi,pi), yi = c}i∈Ic

k(x
∗) ⊂ N (x∗), that have the

class label c. We denote the indices of these samples by
Ick(x

∗) ⊂ Ik(x
∗). Each mode has the weight rp

lc

, com-
puted as:

rp
lc

=
∑

i∈I(plc,x∗)

d−1i (1)

where I(pl,x∗) ⊂ Ick(x
∗) denotes the subset of indices of

Ick(x
∗) that contribute to the mode plc in the pose space.

In case the pose labels are discrete, finding the modes is
straightforward — the mode is defined as a discrete label
having the highest weight, as defined by Eq. (1). In case
of continuous pose labels, we use weighted mean shift al-
gorithm (Fukunaga and Hostetler 1975) to find the modes.

4. The mode with the highest weight pl∗c∗ where:

l∗, c∗ = argmax
l,c

rp
lc

(2)

is selected as the final pose prediction for the sample x∗.
Class prediction for the sample x∗ is done independently as
following:
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1. Select k nearest neighbours (NNs) according to the
learned metric dQ(x

∗,x) : N (x∗) = {xi}i∈Ik(x∗).

2. For each class c, compute the weight as rc =∑
i∈Ik(x∗),yi=c d

−1
i

3. The class prediction for the sample x∗. is determined as
c∗ = argmaxc r

c.

There are two reasons for the separate class and pose pre-
diction:

• As mentioned in the main paper, a side view of a motor-
cycle resembles a side view of a bicycle more closely than
a frontal view of a motorcycle, and therefore, taking the
pose-related mode for the class prediction might cause the
incorrect classification result.

• In case of zero-shot pose estimation, it is desirable to use
the same algorithm for pose and class prediction, as in
fully supervised case.

Multi-metric pose and class model (MMJ-VC)
In case of multi-task multi-metric formulation (Eq. (7)-(9) of
the main paper), the pose prediction algorithm is essentially
the same as for the J-CV model, with a small modification
to include Qc metric into the prediction for each class:

1. Select k nearest neighbours (NNs) according to the
learned metricN (x∗) = {xi}i∈Ik(x∗); however, here dis-
tance to a sample i with the class label yi = c is computed
as dQ0+Qc

(x∗,xi) = dQ0+Qyi
(x∗,xi).

2. Each of the selected NNs has a class label yi and a pose la-
bel pi: N (x∗) = {(xi, yi,pi)}i∈Ik(x∗); we compute the
weight of each sample as wi = d−1i = d−1Q0+Qyi

(x∗,xi).

3. see Step 3 for the J-VC pose prediction algorithm.

4. see Step 4 for the J-VC pose prediction algorithm.

Further, class prediction for multi-metric model is done
in the same way as for J-VC model, using Q0 only to obtain
the k nearest neighbours for the class prediction.

Zero-shot pose prediction
In case of zero-shot pose prediction, the training set consists
of the samples, that have pose labels and the samples, that



aero bicycle boat bus car chair table mbike sofa train tv mean
VDPM 40.0/34.6 45.2/41.7 3.0/1.5 49.3/26.1 37.2/20.2 11.1/6.8 7.2/3.1 33.0/30.4 6.8/5.1 26.4/10.7 35.9/34.7 26.8/19.5
3DDPM 41.5/37.4 46.9/43.9 0.5/0.3 51.5/48.6 45.6/36.9 8.7/6.1 5.7/2.1 34.3/31.8 13.3/11.8 16.4/11.1 32.4/32.2 27.0/23.8
ours 71.1/53.1 50.7/37.3 32.3/12.2 55.7/41.7 47.8/31.5 15.1/11.3 22.6/17.6 57.0/41.0 33.9/31.0 60.0/45.6 46.0/45.5 44.7/33.4
VDPM 39.8/23.4 47.3/36.5 5.8/1.0 50.2/35.5 37.3/23.5 11.4/5.8 10.2/3.6 36.6/25.1 16.0/12.5 28.7/10.9 36.3/27.4 29.9/18.7
3DDPM 40.5/28.6 48.1/40.3 0.5/0.2 51.9/38.0 47.6/36.6 11.3/9.4 5.3/2.6 38.3/32.0 13.5/11.0 21.3/9.8 33.1/28.6 28.3/21.5
ours 71.1/32.8 50.7/26.0 32.3/6.3 55.7/36.7 47.8/22.2 15.1/7.8 22.6/7.5 57.0/28.7 33.9/21.5 60.0/39.1 46.0/40.4 44.7/24.7

Table 1: PASCAL3D+: detection and pose estimation performance of our model (MMJ-VC + RCNN), compared against VDPM (Xiang,
Mottaghi, and Savarese 2014) and 3DDPM (Pepik et al. 2012) using (AP/AVP) with 4 views (upper Table), 8 views (lower Table). We do not
provide results with and without rescoring, since the detector is already trained on the PASCAL dataset.

don’t have class labels; therefore, for zero-shot pose predic-
tion only the samples with pose labels are used, while for
class prediction all training samples are used.

Furthermore, instead of selecting a single mode using
Eq. (2), we select a mode for each class c, thus obtaining the
set p̃ = {p̃c}c∈C , where p̃c = pl∗c, l∗ = argmaxl r

plc

.
Here by C we denote the set of classes among nearest neigh-
bours found.

Experiments
In this section, we provide additional quantitative and qual-
itative results, complementary to the result, provided in the
main paper.

Zero-shot pose prediction
For zero-shot pose prediction, we firstly obtain prediction as

In the main paper, we define the notion of the relative pose
for the case of zero-shot prediction as distance in pose space
between two samples:

d(p̃i, p̃j) =
1

|Cact|
∑

c∈Cact

dp(p̃c
i , p̃

c
j), (3)

In Figure 2, we provide the examples of the samples, for
which d(p̃i, p̃j) = 0, together with the samples with pose an-
notation among the nearest neighbours, that formed the pre-
diction. The samples are taken from the 3DObject dataset.

Full detection results on PASCAL3D+
Detailed per-class results for pose prediction on the PAS-
CAL3D+ (Xiang, Mottaghi, and Savarese 2014) dataset
are provided in Table 1 and compared with two base-
lines, VDPM (Xiang, Mottaghi, and Savarese 2014) and
3DDPM (Pepik et al. 2012). Note, that the bottle class is
left out of the evaluation, since it does not have high enough
viewpoint variability due to axial symmetry.
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Figure 1: Zero-shot pose estimation examples: the first and the 4-
th column shows the input image (denoted by the red boundary)
and the remaining columns show samples selected for pose predic-
tion.



Figure 2: Zero-shot pose estimation examples: the first column
shows the input image (denoted by the red boundary) and the re-
maining columns show the first 4 neighbours selected for pose pre-
diction.


