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Abstract. We tackle the facial landmark localization problem as an
inference problem over a Markov Random Field. Efficient inference is
implemented using Gibbs sampling with approximated full conditional
distributions in a latent variable model. This approximation allows us to
improve the runtime performance 1000-fold over classical formulations
with no perceptible loss in accuracy. The exceptional robustness of our
method is realized by utilizing a L;-loss function and via our new robust
shape model based on pairwise topological constraints. Compared with
competing methods, our algorithm does not require any prior knowledge
or initial guess about the location, scale or pose of the face.

1 Introduction

Accurate facial landmark localization algorithms play a vital role for many ap-
plications, such as biometric authentication [1] or human-machine-interfaces [2].
The goal of these algorithms is to estimate the pixel-coordinates of a configura-
tion of predefined facial landmarks in an input image. Research has been mostly
focused on three different approaches. First are methods based on a global ap-
pearance model [3]. Next are the part-based methods [4,5]. There, the individual
landmarks are detected separately, while a shape model, typically based on a
point-distribution-model (PDM), acts as a prior that constrains the space of valid
configurations. The third class of methods are based on shape regression [6-9].
Regressors are trained to predict improved location estimates of all landmarks
based on a previous guess. The relationship between landmarks is typically not
explicitly modelled, but either learned from training data or enforced via regu-
larization.

Past works usually focused on fast and accurate localization, while robust-
ness was more of an afterthought. For example, methods that utilize an Active
Shape Model (asM) [10] require the approximate position and scale of the face
to be known a-priori, as the landmark coordinates need to be aligned with a
mean shape. Methods based on shape regression also require an initial guess.
Arashloo et. al. [11] proposed a method to perform global optimization in a
Markov Random Field (MRF) formulation of the landmark localization problem.



2 Karsten Vogt, Oliver Miiller and J6rn Ostermann

This approach is promising, but its implementation has two issues. First, the use
of an ASM still retains the aforementioned shape alignment issues. Secondly, for
each landmark only a small number of heuristically selected locations are ever
considered. We wish to present a new landmark localization framework which is
based on Bayesian principles that will solve the aforementioned problems and
prioritizes robustness, while also achieving competitive performance and near
real-time speed.

In this work, we tackle the facial landmark localization problem as an in-
ference problem over an MRF. Efficient inference is implemented in the Markov
Chain Monte Carlo MCMC framework, namely using Gibbs sampling. Our ap-
proach does not require a favorable initial estimate of the landmark locations.
In fact, a completely random initialization will suffice. Our Gibbs sampler has
the capability to rapidly cover the entire configuration space. We achieve large
speed-ups over classical Gibbs sampling formulations by decomposing the full
conditional distributions into sets of discrete latent variables. To solve the re-
sulting sampling problem, we propose to approximate their probability distribu-
tions by exploiting the factorization of the posterior. We also propose a new PDM
based shape model that is, in contrast to ASM and its variants, translation and
scale invariant. This shape model consists of two components. The first compo-
nent models the topology of the landmark configuration by imposing a set of
simple pairwise relationship rules. The second one is inspired by Shape-Indezed-
Features [12] and models the exact landmark locations in relation to nearby
landmarks. Its main task is to fine-tune the results after the optimization has
already mostly converged.

Our main contributions can be briefly stated as follows:

1. We present an approximation of the full conditional distributions that allow
for speed-ups by a factor > 1000 over classical Gibbs sampling.

2. This approximation works in conjunction with a new translation and scale
invariant shape model.

3. We always optimize over the full configuration space without requiring sub-
sampling while also being extremely robust to bad initializations.

Section 2 introduces factor graphs. After formulating the landmark localiza-
tion problem as an MRF inference problem, we present our new Gibbs sampling
algorithm in Section 3 and our face model in Section 4. Section 5 ties everything
together into a complete landmark localization framework. We evaluate our work
in Section 6 and finish with conclusions in Section 7.

2 Graphical Models

The posterior probability of a facial landmark configuration ¢ = (x1,y1,...,25,yr)
with L landmarks can be modeled as a factor graph G = (V, F, E), where the
set of vertices V' = {wy,--- ,ur} represent the individual landmarks. The factors
F = {f1,..., fip} define the relationships between vertices and are connected
to them via undirected edges £ = {e1,..., ez }. A set of vertices Ny connected
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to the same factor f € F is called a cligue and we will denote F,, as the set
of factors that are connected to vertex v. We also define the probability of a
configuration ¢ conditioned on the observed image data I as

plell(a,y)) o T o3 (eNp) 1), (1)

fEF

where ¢(v) are the coordinates for a subset of landmarks v C V, py(e(Ny)|I) is
the clique potential for a factor f € F' and oy is a tuning parameter that adjusts
the influence of said factor.

Our objective is to find a landmark configuration which maximizes the pos-
terior in Eq. (1) via inference on the graphical model G. Efficient inference
on general graphical models is a notably complex problem. In the past, sev-
eral different approaches have been proposed. The most successful ones have
been Gibbs sampling [13], belief propagation [14] and dual decomposition [15].
While Gibbs sampling has been mostly succeeded by competing approaches in
convergence speed, it still allows for a more natural handling of large clique sizes
than either belief propagation or dual decomposition. Furthermore, all these
methods struggle to perform well as the configuration space becomes larger. As-
suming a full-HD image, each landmark can be situated in one of 1920 x 1080 dif-
ferent locations. The full configuration space is therefore comprised of 2.073.600"
different configurations. Efficient solutions can still be achieved either by sub-
sampling the configuration space [11] or via particle-sampling [16]. Conceptually,
both approaches achieve their runtime gains by considering only part of the full
configuration space. This can be problematic, since the global optimum may not
even be among the candidate configurations.

In this paper, we propose to solve the inference problem via Gibbs sampling.
In contrast to competing methods, we will always consider the full configura-
tion space. Our landmark detector will therefore be significantly more robust
with regards to its initialization. Large speed-ups will be gained by introducing
appropriate latent variables into the Gibbs sampling formulation.

3 Approximative Gibbs Sampling

Sampling based detectors first draw a representative random sample of configu-
rations {co,...,cn} from the posterior p(c|I'). Different types of estimates can
then be derived from this sample to find the solution that is best supported
by the observed data. Gibbs sampling generates such a sample by sequentially
generating new configurations ¢;41 from ¢; by sampling from each variable ¢(v;)
in turn, while keeping all other variables fixed. By exploiting the factorization of
the posterior, we can simplify the full conditionals by discarding clique factors
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that are conditionally independent from the target variable:

efv1) ~ ple(vr) le(V\vr), 1) o [ 95 (W) I1)

I

c(vr) ~ ple(vr) [e(V \vr), I H Py’ (eNp)IT) - (2)

At each Gibbs sampling step, we have to draw a variate from one of these
discrete distributions. Even though there are well known algorithms to sample
from arbitrary discrete distributions in constant time [17], these still require a
linear time preprocessing step. As the configuration space becomes very large,
the computational requirements of exact sampling can become prohibitive.

We solve this problem with a sampling strategy that can be best described
as divide-and-conquer sampling. As shown in Fig. 1, we recursively subdivide
the configuration space until we end up with elementary events. At each split,
we have to sample from a latent variable ¢, ; with M possible outcomes. Instead
of sampling from one variable with K outcomes, we sample from [log,,(K)]
variables, each with only M outcomes.

Next, we have to define the probability distributions of the latent variables.
Since the landmark locations are inherently two-dimensional, sampling is ac-
tually performed with a quad-tree structure (M = 4). The probabilities for
landmark v to be in one of the four quadrants Q; ; (j € {TL, TR, BL, BR}) can
be directly stated as:

P, () o > ] P} eWpII). (3)

(Ly)eQi,J feEF,

This formulation requires us to evaluate the sum by computing the landmark
location probability for each valid coordinate, which has a runtime complexity
linear to the number of pixels in quadrant @); ;. If possible, we want to transform
the problem such that the summation can be computed in constant time. Here
is where our approximation comes into play. By upper-bounding the quadrant
probabilities in Eq. (3) using the generalized Hélder inequality and renormaliz-
ing, we get the following approximated quadrant probabilities:

Y1Fv]
1

po. =7 1| X o7 ewpin) . (4)

feFy (Ivy)eQi,j

where Z is a normalizing constant. This greatly simplifies the complexity of each
sum and allows us to directly compute their result in constant time, for some well
chosen families of factor distributions, independent of the size of the quadrant.
Next, we will present clique potentials which are suitable for facial landmark
detection and which also fulfill the required constant time complexity.
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Fig. 1. Sampling in the latent variables formulation on a discrete variable v with states
S1,...,598. The red path shows an exemplary sampling path resulting in state Ss.

4 Face Model

4.1 Appearance Model — Unary Potentials

Unary potentials are only conditioned on the image data and describe the lo-
cation probabilities for individual landmarks. Recent publications propose very
diverse strategies to define such distributions. This broad range of approaches
include template matching [18], MOSSE filters [4], geometric blur features [19] and
HOG features [20]. In this paper, we chose to implement dense HOG features as
described in [21]. They are invariant to changes in brightness, robust to changes
in contrast, and robust to affine transformations by their very design. Location
probabilities can be derived from these HOG features using any supervised clas-
sifier with soft outputs. We chose to use a multi-class linear SvM with calibrated
outputs [22], as it is fairly robust to outliers and noise while also having a low
amount of hyperparameters that need to be hand-tuned.

The summation over location probabilities in Eq. (4) can be efficiently com-
puted in constant time by transforming it into a simple look-up operation.
Since the unary potentials provide a single location probability for each land-
mark/pixel, independent of the location of neighboring landmarks, we can trans-
fer the work to a preprocessing step, e.g., via summed-area-tables.

4.2 Shape Model — Higher Order Local Gaussian Potentials

The higher order potentials (> 2) in our factor-graph model should describe
the spatial relationship between different landmarks. We only draw new coordi-
nates for one landmark at a time during each Gibbs sampling step, as all other
landmarks remain fixed. Thus, we can directly model these relationships with
bivariate probability distributions that are conditioned on the fixed coordinates.
Due to the way our approximate sampling scheme is set up, and based on our
own observations, these distributions should have the following properties:

1. To increase the expressiveness of the shape model, local shape components
should be independently deformable.

2. If possible, we want to achieve invariance to translation and scale.

3. The sums in Eq. (4) must be evaluable in constant time.
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Property 1 leads us to consider a local model that obeys the Markov prop-
erty, i.e., each landmark v; is only dependent on the positions of its direct spatial
neighbors. Property 2 strongly favors models that operate in an appropriately
chosen local coordinate system, which is constructed from these neighbors. Of
course, the local coordinates would not be very informative if the neighborhood
system is allowed to change during the course of the simulation. Therefore, the
neighborhood system will first be extracted from a mean face shape S, which
is estimated from a training set via Generalized Procrustes Analysis. After con-
structing the Delaunay triangulation of all landmarks V \ v; on S, the three
neighbors nq(v;), na(v;) and ng(v;) are simply the vertices of the encompassing
triangle of v;. We can now construct a non-orthogonal local basis for v; from any
landmark configuration as shown in Fig. 2(a). We first select o = ¢(nq(v;)) as
the origin of this coordinate system and & = ¢(ns(v;)) — 0,y = ¢(ns(v;)) — 0 as
its basis vectors. Transforming a coordinate vector ¢(v;) from the global basis to
the local basis can be achieved as follows: ¢joeqi(vi) = A-(e(v;) — 0), where A =

T
[ﬁ ﬁ] . The bivariate location distribution for each landmark can now be

defined as a Gaussian distribution parametrized in the local coordinate system.

pr(eWNy) [T) o< p(e(vi) [e(na(vi)), e(na(vi)), e(ns(vs)) ) (5)
Clocal (Uz) ~ N(Mlocaly Z]local) (6)
= C(’Ui) ~ N(Ail,uflocal + o, AilZlocalAiT) . (7)

The local distribution parameters e and Xjoeq; can be estimated from the
training set. Since the transformation between the local and global bases is
simply a linear relationship, we can also reproject the local distribution back
into the global space (Eq. (7)). For landmarks situated on the convex hull of S,
we will have to employ a different procedure to select an appropriate local basis.
It turned out that the robustness of the location estimate is more important
than its accuracy. For these landmarks we will therefore select K uniformly
distributed bases at random, each inducing an independent estimate of their
location. The final distribution for ¢(v;) represents the consent between all K
estimates and can than be derived by multiplying their normal distributions in
the global space, which again produces a single bivariate normal distribution.

The product of Gaussians is itself proportional to a Gaussian distribution
[23]. As required for Property 3, the sum in Eq. (4) can therefore be evalu-
ated using the bivariate cumulative distribution function (CDF) of the Gaussian
distribution in Eq. (7), e.g. using the algorithm described in [24].

4.3 Shape Model — Rule-Based Binary Potentials

The local Gaussian relationship model is prone to slow convergence and can be
unstable if the initial solution is not chosen well. We tackle this problem by
augmenting our graphical model with additional robust binary factors. While
the local Gaussian factors model the geometry of the shape, these binary factors
should only model its topology. Each binary clique represents a simple relation-
ship rule. These rules may be of the form r(f,v;,v;) € {is-left-of,is-right-of,
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Fig. 2. Higher-order potentials for the nose landmark. (a) Gaussian distribution with
mean p and its local coordinate system and (b) penalty regions for the rule-based prior
with penalty term A.

is-above, is-below}. The clique distribution of a single rule is then defined as

pre(vi), e(vg)) o py(e(vi) [e(vg)) = Al i) vty (®)

where A is a user-adjustable penalty term and 14 is the indicator function.
Multiple rules operating on the same landmark v; are statistically independent
and their conditional distribution may be jointly calculated by counting how
many rules are being violated by the proposed configuration. The higher-order
clique distribution over all landmarks is then defined as

p(c(vi) |C(V \ Uz)) _ )\ngfvi Lrule r(f.v;,v5) is violated) ) (9)

Allowing only the specified types of rules, the probability distribution in
Eq. (9) is always piecewise-constant and axis-aligned. Evaluation of the sum for
the quadrant probabilities in Eq. (4) can therefore be implemented such that
the runtime complexity is invariant to the image size and only depends on the
number of rules. This relationship model has the advantage of being fairly simple
and robust, yet also invariant to translation and scale. Robustness to rotations
can be improved by augmenting the training set with slightly rotated versions of
the input faces. We automatically select rules by including all relationship rules
that hold true for at least 95% of all images in the training dataset.

5 Landmark Localization Algorithm

Our facial landmark localization algorithm uses the Gibbs sampling scheme (Sec-
tion 3) as its core component. Yet, there are a few details that could not be cov-
ered in the previous sections. Algorithm 1 presents our algorithm AGs (Approz-
imative Gibbs Sampling) in pseudo code. We explain the individual components
of our algorithm step-by-step:
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Algorithm 1 aas landmark localization algorithm.

function LOCALIZELANDMARKS(Image Ings)
Parameters:
Sample-Chains C, Burn-In Samples B, Sample-Size N, Loss-Function £
Preprocessing:
Tyyy RGBQYUV(IRGB)
for pose € { ProfileLeft, Frontal, ProfileRight} do
Upose < UNARYPOTENTIALS (Iyuy, pose)
Tpose < CONSTRUCTSUMMEDAREATABLE(Upose )
Sampling:
S < Empty List > Initialize list of samples
for each Sample-Chain € [1...C] do
for pose € {ProfileLeft, Frontal, ProfileRight} do
Cpose,0 < Random Configuration
for i = 1...B/2 do cpose,i  GIBBSSAMPLING(Cpose,i—15 Lpose, pose)

0 <+ arg max, p(cg, /2 |I) > Select pose 6 which maximizes the posterior
for i = B/2... B+ N do
cg,i < GIBBSSAMPLING(cg i—1, To, 0)
if ¢ > B then Append ¢y ; to S
Estimation:
switch £ do
case MAP: return argmax,.c g p(c|l)
case Lj-loss: return MEDIAN(S)
case Ly-loss: return MEAN(S)

Pose is discretized into three possible states: frontal, left looking and right
looking, and for each of these poses a learned shape model is available. Dur-
ing the preprocessing step, we will first precompute the unary potentials. The
HOG-features are computed separately for each color channel in the YUV color
space. We accelerate the computation of the quadrant probabilities in Eq. (4) by
storing the unary potentials in a summed-area-table. The preprocessing step of
the algorithm is actually the most performance critical one, because we have to
evaluate the location probabilities for each landmark and pixel coordinate at the
original image resolution. Therefore it is paramount to use optimized implemen-
tations for the dense HOG-feature extraction and classification. We then create
multiple independent sampling chains, each initialized with a random landmark
configuration. Pose estimation is handled in a very straight-forward manner. For
each chain, we simply try all three pose states and advance the sampling chain
for a few iterations using our approximate Gibbs sampler. The pose that results
in the maximum a-posteriori configuration will then be selected for this chain.
Following this, we draw the remaining samples from the sampling chain.

6 Evaluation

Here, we evaluate our landmark detector with respect to its landmark localiza-
tion error and convergence properties. We compare our results with the DBASM
algorithm [4] and the npBCLM algorithm [25], since both are recent part-based
landmark detector grounded in Bayesian methodology. Unless otherwise noted,
all experiments are performed with 8 independent sampling chains and a sample-
size of 500 per chain, of which the first 100 burn-in samples are discarded. Other
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Table 1. Parameters for the AGS landmark detector.

HOG block_size|36 x 36||HOG normalization |La||unary 1.0
HOG cellsize | 9x9 ||svMm C 1.0|acaussian |0.025
HOG num_bins 8 rule-based penalty A|0.1||crule-based| 0.25

100% T
80% | % <0.1|%<75
Norm. RMS
60% | Error Error
AGS (MAP) 74.1 46.3
40% | AGS (Ly-loss) — | |\Gs (Lo-loss)|  88.5 65.0
AGS (Lz-loss) acs (Lyi-loss)| 91.4 70.4
20% AGS (MAP) o DBASM-KDE 79.5 64.6
o r DBASM-KDE 7 npBCLM 84.9 _
IS4 NPBCLM
0% L.l 1 1

0 0.05 0.1 0.15 0.2 0.25
Normalized Error

Fig. 3. Cross-validation results for the IMM dataset. The graph shows percentile plots
over normalized landmark localization errors. The table compares the performance of
different algorithms and presents the proportion of images in the dataset, for which
the localization error falls below a predefined threshold (higher is better).

parameters were tuned empirically and set as shown in Table 1. Each chain is
always initialized with a random landmark configuration.

IMM Dataset: The MM dataset [26] contains 240 annotated images of 40
different subjects with a resolution of 640 x 480 pixels. The annotations for each
face image include 58 different landmarks and the sex of the subject. All face
images were captured indoors under studio condition but vary in pose, size, facial
expression and lighting.

Localization error: The automatically detected landmark locations should be
as close as possible to a manually created ground-truth. Additionally, the detec-
tor should also generalize well to unseen faces. To this end, we perform a 40-fold
cross-validation by partitioning the dataset by subject. Errors are measured as
the interocular distance normalized error averaged over all images in the dataset.
Fig. 3 shows the results for our AGs algorithm with three different loss functions.
The MAP estimator simply selects the single best landmark configuration that
achieves the highest posterior probability from all sampling chains. The Bayesian
estimator with Ls-loss assumes a normally distributed localization error, while
the Bayesian estimator with L;-loss assumes longer tails for the posterior distri-
bution and is therefore more robust to outliers. As can be clearly seen, a simple
MAP estimate is too noisy to get satisfactory results. In comparison, both Ly and
L1 loss functions will always generate significantly improved location estimates.
Our method also improves on the results of the DBASM algorithm using a kernel
density estimate and the npBCLM algorithm. Fig. 4 shows some typical results
for this dataset.
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Fig. 5. Convergence results for the IMM dataset. (a) Mean normalized error over
sample-size and (b) percent of converged images over sample-size.

Convergence: Convergence can be measured in multiple ways. Our method has
fast convergence in both a theoretical and a practical sense. Fig. 5(a) shows the
average normalized landmark location error as a function of the sample size. We
show that the sampling chains typically show fast mixing behavior by calculating
the multivariate scale reduction factor RP as in [27]. For mixing chains, R? should
start to approach 1.0 with increasing sample sizes. Fig. 5(b) shows the percentage
of input images for which the sampling converged (R” < 1.2) within a specified
sampling size. As can be seen in Fig. 5(a), less than 100 iterations will usually
suffice to get close to optimal results. Frontal faces show slightly lower estimation
errors than profile views, but on average the results are . Mixing behavior is
almost impeccable. For more than 95% of the dataset, less than 300 iterations
are sufficient to demonstrate convergence to the target distribution. Only a few
particularly uncommon facial expressions or poses exhibit slow convergence.

Runtime Performance: We give the runtime for all three phases of our al-
gorithm separately in table 2. The preprocessing step includes the computation
of HOG features, pixelwise evaluation of the appearance model and preparation
of the integral images. Sampling speed is shown for our approximative sampling
scheme and for exact discrete Gibbs sampling. The measurements were averaged
over a large number of draws. Currently, the major bottleneck of our algorithm
is the precomputation of the appearance model. In case a high image throughput
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Table 2. Runtime performance measurements. The experiments were done on a In-
tel(R) Xeon(R) E5-2690 cPU at 3 GHz using 8 cores.

Preprocessing Sampling Estimation
HOG Features|Unary Potentials||Approx. Sampling|Exact Sampling
270 ms 3000 ms 0.4 ms/draw 633 ms/draw < 1ms

is required, we suggest to pipeline the three phases of our localization algorithm.
The preprocessing phase could than be distributed over multiple networked com-
puters. The runtime improvements due to our approximation scheme are usually
on the order of a 1600-fold reduction in sampling time for a 640 x 480 pixel image.
Larger images will of course amplify the gain. Given the long compute time for
exact Gibbs sampling, we do not present cross-validation results for this method.

7 Conclusion

This work presents a facial landmark localization algorithm based on Gibbs
sampling with approximated full conditional distributions. Compared with com-
peting methods, the presented algorithm does not require an initial guess and
improves on their localization errors. A new robust shape model allows for trans-
lation and scale invariant landmark localization while generally achieving fast
convergence for a variety of poses and facial expressions.
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