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Abstract

Multiple people tracking is a key problem for many applications such as surveillance,

animation or car navigation, and a key input for tasks such as activity recognition.

In crowded environments occlusions and false detections are common, and although

there have been substantial advances in recent years, tracking is still a challenging task.

Tracking is typically divided into two steps: detection, i.e.locating the pedestrians in

the image, and data association, i.e.linking detections across frames to form complete

trajectories. For the data association task, approaches typically aim at developing new,

more complex formulations, which in turn put the focus on the optimization techniques

required to solve them. However, they still utilize very basic information such as distance

between detections. In this thesis, I focus on the data association task and argue that

there is contextual information that has not been fully exploited yet in the tracking

community, mainly social context and spatial context coming from different views.

As tracking framework I use a global optimization method that finds the best solution

for all pedestrian trajectories and all frames using Linear Programming. This is the

perfect setup to include contextual information that can be used to improve all tra-

jectories. Firstly, I present an efficient way to include social and grouping behavior to

improve monocular tracking. Incorporating this source of information leads to much

more accurate tracking results, especially in crowded scenarios. Secondly, I present a

formulation to perform 2D-3D assignments (reconstruction) and temporal assignments

(tracking) in a single global optimization. I show that linking the reconstruction and

tracking processes in a tight formulation leads to a significant boost in tracking accuracy.

Overall, I show that context is an extremely rich source of information that can be

exploited to obtain more accurate tracking results.



Zusammenfassung

Die kamerabasierte Verfolgung (Tracking) von Personen ist von wesentlicher Bedeutung

für viele Anwendungen aus den Bereichen der Sicherheitstechnik, der Fahrerassistenzsys-

teme oder der Animation, und eine wichtige Grundlage für die Aktivitätserkennung. In

komplexen Umgebungen mit großen Menschenmengen treten regelmäßig Verdeckungen

und Falscherkennungen auf, und obwohl in den letzten Jahren erhebliche Fortschritte

erzielt wurden, ist das Tracking nach wie vor eine anspruchsvolle Aufgabe. Üblicher-

weise wird das Tracking in zwei Schritte unterteilt: Erstens die Erkennung, d.h. die

Lokalisierung der Fußgänger im Bild, und zweitens die Datenassoziation, d.h. die Verk-

nüpfung der Detektionen über alle Einzelbilder, um Trajektorien zu bilden. Ansätze

zur Lösung des Problems der Datenassoziation sind oftmals bestrebt neue, komplexere

Formulierungen zu entwickeln, um vollständigere Trajektorien zu erhalten. Diese lenken

wiederum den Fokus auf Optimierungsmethoden, die notwendig sind um sie zu lösen.

Dabei werden üblicherweise nur grundlegende Informationen wie der Abstand zwis-

chen Detektionen genutzt. In dieser Schrift liegt der Fokus auf der Datenassoziation.

Ich argumentiere, dass kontextabhängige Informationen verfügbar sind und effizient in

Trackingalgorithmen eingebaut werden können, in Form von sozialem und räumlichem

Kontext.

Als Werkzeug zum Tracking benutze ich die Lineare Programmierung als globale Op-

timierungsmethode, die eine eindeutige Lösung für alle Fußgängertrajektorien und alle

Einzelbilder findet. Das ist der perfekte Aufbau, um kontextabhängige Informationen zu

integrieren. Zuerst präsentiere ich ein effizientes Verfahren zum Erfassen von Sozial- und

Gruppenverhalten, um das monokulare Tracking zu verbessern. Die Berücksichtigung

dieser Informationsquelle führt zu einem viel genaueren Tracking-Ergebnis, besonders in

Szenarien mit Menschenmengen. Zweitens präsentiere ich eine Formulierung, um 2D-3D

Zuordnungen (Rekonstruktion) und temporale Zuordnungen (Tracking) in einer einzigen,

globalen Optimierung durchzuführen. Ich zeige, dass das Verknüpfen von Rekonstruk-

tion und Tracking in einer gemeinsamen Formulierung zu einem erheblichen Anstieg der

Genauigkeit führt.

Insgesamt zeige ich, dass der Kontext eine reiche Informationsquelle ist, die genutzt

werden kann um genauere Ergebnisse beim Tracking zu erzielen.
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Chapter 1

Introduction

1.1 Motivation

Video cameras are increasingly present in our daily lives: webcams, surveillance cameras

and other imaging devices are being used for multiple purposes. As the number of

data streams increases, it becomes more and more important to develop methods to

automatically analyze this type of data. People are usually the central characters of

most videos, therefore, it is particularly interesting to develop techniques to analyze

their behavior. Either for surveillance, animation or activity recognition, multiple people

tracking is a key problem to be addressed. In crowded environments occlusions and

false detections are common, and although there have been substantial advances in the

last years, tracking is still a challenging task. The task is typically divided into two

steps: detection and data association. Detectors are nowadays very robust and provide

extremely good detection rates for normal scenes, but still struggle with partial and

full occlusions common in crowded scenes. Data association or tracking, on the other

hand, is also extremely difficult in crowded scenarios, especially due to the high rate

of missing data and common false alarms. In this thesis, we argue that there are two

main sources of pedestrian context that have not been fully exploited in the tracking

community, namely social context and spatial context coming from different views.

Typically, matching is solely based on appearance and distance information, i.e., the

closest detection in the following frame is matched to the detection in the current frame.

But this can be completely wrong: let us imagine a queue of people waiting at a coffee

shop and a low frame rate camera, as is typical for surveillance scenarios. In one frame

we might have 4 persons waiting, while in the next the first person is already out of

the queue and a new person entered the queue. In this case, if we only use distance

information, the 4 persons of the first frame might be matched to the 4 persons of the

1
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second frame, although they are completely different pedestrians. Though this is an

extreme case, it represents an error that is common while tracking in crowded scenarios,

and this is only caused by the assumption that people do not move from one frame to

the next, which is clearly inaccurate.

It is therefore more natural to take into account the context of the pedestrian, which

can be the activity they are performing (e.g., queueing) or the interactions that take

place in a crowded scenario. It is clear that if a person is walking alone, he/she will

follow a straight path towards his/her destination. But what if the environment becomes

more crowded, and suddenly the straight path is no longer an option? The pedestrian

will then try to find a rather short path to get to the same destination by avoiding

other pedestrians and obstacles. All these pedestrian movements and reactions to the

environment are ruled by what is called the Social Force Model.

Another source of information that has not been fully exploited in the literature is the

spatial context coming from different camera views. It is typical for many applications

to observe the same scenario from different viewpoints. In this case, object locations

in the images are temporally correlated by the system dynamics and are geometrically

constrained by the spatial configuration of the cameras. These two sources of structure

have been typically exploited separately, but splitting the problem in two steps has

obviously several disadvantages, because the available evidence is not fully exploited. For

example, if one object is temporarily occluded in one camera, both data association for

reconstruction and tracking become ambiguous and underconstrained when considered

separately. If, on the other hand, evidence is considered jointly, temporal correlation

can potentially resolve reconstruction ambiguities and vice versa.

In this thesis, we will show that pedestrian context is an incredibly rich source of infor-

mation that should be included in the tracking procedure.

1.2 Contributions and Organization

As we motivated in the previous section, tracking methods still fail to capture and fully

exploit much of the context of a pedestrian and his/her environment. In this thesis we

mainly focus on two sources of context, social and spatial, and provide solutions which

are globally optimal. We now detail the organization of the rest of the thesis, shown as

a diagram in Figure 1.1, as well as the main contributions.

Chapter 2. We start by introducing the problem at hand, namely pedestrian tracking

or data association, and the basic paradigm we follow, i.e., tracking-by-detection. Since

the rest of the thesis is focused on the tracking part, we briefly introduce here a few
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state-of-the-art detectors we use throughout the thesis. Finally, we discuss some of the

major problems of those detectors and how they are handled during the tracking phase.

Chapter 3. In this chapter, we give an introduction to the basics of Linear Program-

ming, which is the optimization technique we will use throughout the entire thesis. We

describe the main solver, namely the Simplex algorithm, and its geometric intuition.

We then move towards the graphical model representation of a Linear Program, so we

can make use of the efficient solvers (e.g., k-shortest paths) present in the network flow

community.

Chapter 4. Once we have the necessary notions of Linear Programming and graphical

models, we formulate the multi-object tracking problem as a Linear Program. Unlike

previous methods, this solves the tracking problem for all pedestrian trajectories and

all frames at the same time, obtaining a unique and guaranteed global optimum. Fur-

thermore, the problem can be solved in polynomial time. Our first contribution is to

propose a small change in the graph structure which allows us to drop two parameters

which have to be typically learned in an Expectation-Maximization fashion. Our graph

performs tracking just depending on the actual scene information. Here we present

an overview of the literature ranging from frame-by-frame matching to global methods

similar to Linear Programming.

Chapter 5. Given the Linear Programming framework presented in the previous chap-

ter, we propose here to enhance tracking by including the social context. Interaction

between pedestrians is modeled by using the well-known physical Social Force Model,

used extensively in the crowd simulation community. The key insight is that people plan

their trajectories in advance in order to avoid collisions, therefore, a graph model which

takes into account future and past frames is the perfect framework to include social

and grouping behavior. Instead of including social information by creating a complex

graph structure, which then cannot be solved using classic LP solvers, we propose an

iterative solution relying on Expectation-Maximization. Results on several challenging

public datasets are presented to show the improvement of the tracking results in crowded

environments. An extensive parameter study as well as experiments with missing data,

noise and outliers are also shown to test the robustness of the approach. In this chapter,

we present an overview of state-of-the-art tracking methods that use social context.

Chapter 6. In this chapter, we describe a method to include yet another source of

context, in this case spatial context. As discussed in the previous section, spatial infor-

mation between cameras and temporal information are still regarded in the literature as

two separate problems, namely reconstruction and tracking. In this chapter, we argue

that it is not necessary to separate the problem in two parts, and we present a novel

formulation to perform 2D-3D assignments (reconstruction) and temporal assignments
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(tracking) in a single global optimization. When evidence is considered jointly, temporal

correlation can potentially resolve reconstruction ambiguities and vice versa. The pro-

posed graph structure contains a huge number of constraints, therefore, it can not be

solved with typical Linear Programming solvers such as Simplex. In order to solve this

problem, we rely on multi-commodity flow theory. We propose to exploit the specific

structure of our problem and use Dantzig-Wolfe decomposition and branching to find

the guaranteed global optimum. Here we present an overview of relevant literature of

multiple view multiple target tracking.

Chapter 7. Our final chapter includes the conclusions of the thesis, as well as a

discussion for possible future research directions.

Appendix A. In the Appendix A of this thesis, we present a case study where Com-

puter Vision is proven to be useful for the field of marine biology and chemical physics.

An automatic method is presented for the tracking and motion analysis of swimming

microorganisms. This includes early work done by the author at the beginning of the

PhD. A new method for improved tracking, named multi-level Hungarian, is presented

and compared with the Linear Programming formulation. Since microorganisms do not

act according to the same social forces as humans, a method based on Hidden Markov

Models is developed in order to analyze the motion of the microorganisms. The final

software for tracking and motion analysis has proven to be a helpful tool for biologists

and physicists as it provides a vast amount on analyzed data in an easy fast way.

1.3 Papers of the author

In this section, the publications of the author are detailed by topic and chronological

order. The core parts of the thesis are based on four main publications of the author:

[Leal-Taixé et al., 2014a] L. Leal-Taixé, M. Fenzi, A, Kuznetsova, Bodo Rosenhahn,

Silvio Savarese. Learning an image-based motion context for multiple people track-

ing. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June

2014.

In this work, we present a method for multiple people tracking that leverages a

generalized model for capturing interactions among individuals. At the core of our

model lies a learned dictionary of interaction feature strings which capture relation-

ships between the motions of targets. These feature strings, created from low-level

image features, lead to a much richer representation of the physical interactions be-

tween targets compared to hand-specified social force models that previous works

have introduced for tracking. One disadvantage of using social forces is that all
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pedestrians must be detected in order for the forces to be applied, while our method

is able to encode the effect of undetected targets, making the tracker more robust

to partial occlusions. The interaction feature strings are used in a Random Forest

framework to track targets according to the features surrounding them.

[Leal-Taixé et al., 2014b] L. Leal-Taixé, M. Fenzi, A, Kuznetsova, Bodo Rosenhahn,

Silvio Savarese. Multi-target tracking with context from interaction feature strings.

IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR).

SUNw: Scene Understanding Workshop, June 2014.

This is the 2 page abstract version of [Leal-Taixé et al., 2014a], presented at the

same conference as invited paper in the Scene Understanding workshop.

[Leal-Taixé and Rosenhahn, 2013] L. Leal-Taixé, Bodo Rosenhahn. Pedestrian inter-

action in tracking: the social force model and global optimization methods. Mod-

eling, Simulation and Visual Analysis of Crowds: A multidisciplinary perspective.

Springer, 2012.

In this work, we present an approach for multiple people tracking in semi-crowded

environments including interactions between pedestrians in two ways: first, consid-

ering social and grouping behavior, and second, using a global optimization scheme

to solve the data association problem. This is an extended text of the conference

paper [Leal-Taixé et al., 2011a] in book chapter format. It is intended to be an

exhaustive introduction to Linear Programming for multiple people tracking, pro-

viding the necessary background on both graphical models and optimization to

allow students to start programming such a tracking system.

[Leal-Taixé et al., 2012a] L. Leal-Taixé, G. Pons-Moll, B. Rosenhahn. Exploiting

pedestrian interaction via global optimization and social behaviors. Theoretic Foun-

dations of Computer Vision: Outdoor and Large-Scale Real-World Scene Analysis.

Springer, 2012.

In this work, we present an approach for multiple people tracking in semi-crowded

environments including interactions between pedestrians in two ways: first, consid-

ering social and grouping behavior, and second, using a global optimization scheme

to solve the data association problem. This is an extended text of the conference

paper [Leal-Taixé et al., 2011a], which includes more experiments, detailed evalua-

tion of the effect of the method’s parameters, detailed implementation details and

extended theoretical background on graphical models.
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[Leal-Taixé et al., 2012b] L. Leal-Taixé, G. Pons-Moll, B. Rosenhahn. Branch-and-

price global optimization for multi-view multi-object tracking. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2012.

In this work, we present a new algorithm to jointly track multiple objects in multi-

view images. While this has been typically addressed separately in the past, we

tackle the problem as a single global optimization. We formulate this assignment

problem as a min-cost problem by defining a graph structure that captures both

temporal correlations between objects as well as spatial correlations enforced by the

configuration of the cameras. This leads to a complex combinatorial optimization

problem that we solve using Dantzig-Wolfe decomposition and branching. Our

formulation allows us to solve the problem of reconstruction and tracking in a

single step by taking all available evidence into account. In several experiments on

multiple people tracking and 3D human pose tracking, we show that our method

outperforms state-of-the-art approaches.

[Leal-Taixé et al., 2011a] L. Leal-Taixé, G. Pons-Moll, B. Rosenhahn. Everybody

needs somebody: modeling social and grouping behavior on a linear programming

multiple people tracker. IEEE International Conference on Computer Vision Work-

shops (ICCV). 1st Workshop on Modeling, Simulation and Visual Analysis of Large

Crowds, November 2011.

In this work, we present an approach for multiple people tracking in semi-crowded

environments. Most tracking methods make the assumption that each pedestrian’s

motion is independent, thereby ignoring the complex and important interaction

between subjects. On the contrary, our method includes the interactions between

pedestrians in two ways: first, considering social and grouping behavior, and second,

using a global optimization scheme to solve the data association problem. Results

are presented on three challenging, publicly available datasets to show that our

method outperforms several state-of-the-art tracking systems.

The five publications related to the appendix section of the thesis are detailed below.

This work was partially funded by the German Research Foundation, DFG projects RO

2497/7-1 and RO 2524/2-1 and the EU project AMBIO, and done in collaboration with

the Institute of Functional Interfaces of the Karlsruhe Institute of Technology. Digital

in-line holography is a microscopy technique which has gotten an increasing amount of

attention over the last few years in the fields of microbiology, medicine and physics, as it

provides an efficient way of measuring 3D microscopic data over time. In the following

works, we explore detection, tracking and motion analysis on this challenging data, as

well as ways for extending the method to a multiple camera system.
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[Maleschlijski et al., 2012] S. Maleschlijski, G. H. Sendra, A. Di Fino, L. Leal-Taixé,

I. Thome, A. Terfort, N. Aldred, M. Grunze, A.S. Clare, B. Rosenhahn, A. Rosen-

hahn. Three dimensional tracking of exploratory behavior of barnacle cyprids using

stereoscopy. Biointerphases. Journal for the Quantitative Biological Interface Data.

Springer, 2012.

In this work, we present a low-cost transportable stereoscopic system consisting of

two consumer camcorders. We apply this novel apparatus to behavioral analysis

of barnacle larvae during surface exploration and extract and analyze the three-

dimensional patterns of movement. The resolution of the system and the accuracy

of position determination are characterized. In order to demonstrate the biological

applicability of the system, three-dimensional swimming trajectories of the cypris

larva of the barnacle Semibalanus balanoides are recorded in the vicinity of a glass

surface. Parameters such as swimming direction, swimming velocity and swimming

angle are analyzed.

[Maleschlijski et al., 2011] S. Maleschlijski, L. Leal-Taixé, S. Weisse, A. Di Fino, N.

Aldred, A.S. Clare, G.H. Sendra, B. Rosenhahn, A. Rosenhahn. A stereoscopic

approach for three dimensional tracking of marine biofouling microorganisms. Mi-

croscopic Image Analysis with Applications in Biology (MIAAB), September 2011.

In this work, we describe a stereoscopic system to track barnacle cyprids and an

algorithm to extract 3D swimming patterns for a common marine biofouling organ-

ism - Semibalanus balanoides. The details of the hardware setup and the calibration

object are presented and discussed. In addition we describe the algorithm for the

camera calibration, object matching and stereo triangulation. Several trajectories

of living cyprids are presented and analyzed with respect to statistical swimming

parameters.

[Leal-Taixé et al., 2011b] L. Leal-Taixé, M. Heydt, A. Rosenhahn, B. Rosenhahn. Un-

derstanding what we cannot see: automatic analysis of 4D digital in-line holography

data. Video Processing and Computational Video. Springer, July 2011.

In this work, we present a complete system for the automatic analysis of digital

in-line holographic data; we detect the 3D positions of the microorganisms, com-

pute their trajectories over time and finally classify these trajectories according to

their motion patterns. This work includes the contributions presented in [Leal-

Taixé et al., 2009a] and [Leal-Taixé et al., 2010], extended experiments, theoretical

background and implementation details.

[Leal-Taixé et al., 2010] L. Leal-Taixé, M. Heydt, S. Weisse, A. Rosenhahn, B. Rosen-

hahn. Classification of swimming microorganisms motion patterns in 4D digital
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in-line holography data. 32nd Annual Symposium of the German Association for

Pattern Recognition (DAGM), September 2010.

In this work, we present an approach for automatically classifying complex microor-

ganism motions observed with digital in-line holography. Our main contribution is

the use of Hidden Markov Models (HMMs) to classify four different motion patterns

of a microorganism and to separate multiple patterns occurring within a trajectory.

We perform leave-one-out experiments with the training data to prove the accuracy

of our method and to analyze the importance of each trajectory feature for classi-

fication. We further present results obtained on four full sequences, a total of 2500

frames. The obtained classification rates range between 83.5% and 100%.

[Leal-Taixé et al., 2009a] L. Leal-Taixé, M. Heydt, A. Rosenhahn, B. Rosenhahn.

Automatic tracking of swimming microorganisms in 4D digital in-line holography

data. IEEE Workshop on Motion and Video Computing (WMVC), December 2009.

In this work, we approach the challenges of a high throughput analysis of holographic

microscopy data and present a system for detecting particles in 3D reconstructed

holograms and their 3D trajectory estimation over time. Our main contribution

is a robust method, which evolves from the Hungarian bipartite weighted graph

matching algorithm and allows us to deal with newly entering and leaving particles

and compensate for missing data and outliers. In the experiments we compare our

fully automatic system with manually labeled ground truth data and we can report

an accuracy between 76% and 91%.

Aside from the previous publications related to multiple object tracking and motion

analysis, the author was also involved in other projects, mainly related to pose estima-

tion:

[Kuznetsova et al., 2013] A. Kuznetsova, L. Leal-Taixé, B. Rosenhahn. Real-time sign

language recognition using a consumer depth camera. IEEE International Confer-

ence on Computer Vision Workshops (ICCV). 3rd IEEE Workshop on Consumer

Depth Cameras for Computer Vision (CDC4CV), December 2013.

In this work, we propose a precise method to recognize hand static gestures from

a depth data provided from a depth sensor. Hand sign recognition is performed

using a multi-layered random forest (MLRF), which requires less the training time

and memory when compared to a simple random forest with equivalent precision.

We evaluate our algorithm on synthetic data, on a publicly available Kinect dataset

containing 24 signs from American Sign Language (ASL) and on a new dataset,

collected using the Intel Creative Gesture Camera.
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[Fenzi et al., 2013] M. Fenzi, L. Leal-Taixé, B. Rosenhahn, J. Ostermann. Class gen-

erative models based on feature regression for pose estimation of object categories.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013.

In this work, we propose a method for learning a class representation that can

return a continuous value for the pose of an unknown class instance, using only

2D data and weak 3D labelling information. Our method is based on generative

feature models, i.e., regression functions learnt from local descriptors of the same

patch collected under different viewpoints. We evaluate our approach on two state-

of-the-art datasets showing that our method outperforms other methods by 9-10%.

[Fenzi et al., 2012] M. Fenzi, R. Dragon, L. Leal-Taixé, B. Rosenhahn, J. Oster-

mann. 3D Object Recognition and Pose Estimation for Multiple Objects using

Multi-Prioritized RANSAC and Model Updating. 34th Annual Symposium of the

German Association for Pattern Recognition, DAGM. August 2012.

In this work, we present a feature-based framework that combines spatial feature

clustering, guided sampling for pose generation and model updating for 3D object

recognition and pose estimation. We propose to spatially separate the features be-

fore matching to create smaller clusters containing the object. Then, hypothesis

generation is guided by exploiting cues collected off- and on-line, such as feature

repeatability, 3D geometric constraints and feature occurrence frequency. The eval-

uation of our algorithm on challenging video sequences shows the improvement

provided by our contribution.

[Pons-Moll et al., 2012] G. Pons-Moll, L. Leal-Taixé, B. Rosenhahn. Data-driven

manifold for outdoor motion capture. Theoretic Foundations of Computer Vision:

Outdoor and Large-Scale Real-World Scene Analysis. Springer, 2012.

In this work, we present a human motion capturing system that combines video

input with sparse inertial sensor input under a particle filter optimization scheme.

It is an extension of the work presented in [Pons-Moll et al., 2011a] which includes

a thorough theoretical introduction, extended experimental section and implemen-

tation details.

[Pons-Moll et al., 2011a] G. Pons-Moll, A. Baak, J. Gall, L. Leal-Taixé, M. Mueller, H.-

P. Seidel and B. Rosenhahn. Outdoor human motion capture using inverse kinemat-

ics and von Mises-Fisher sampling. IEEE International Conference on Computer

Vision (ICCV), November 2011.

In this paper, we introduce a novel hybrid human motion capturing system that

combines video input with sparse inertial sensor input. Employing an annealing
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particle-based optimization scheme, our idea is to use orientation cues derived from

the inertial input to sample particles from the manifold of valid poses. Then, visual

cues derived from the video input are used to weigh these particles and to iteratively

derive the final pose. Our method can be used to sample poses that fulfill arbitrary

orientation or positional kinematic constraints. In the experiments, we show that

our system can track even highly dynamic motions in an outdoor environment with

changing illumination, background clutter and shadows.

[Pons-Moll et al., 2011b] G. Pons-Moll, L. Leal-Taixé, T. Truong, B. Rosenhahn. Ef-

ficient and robust shape matching for model based human motion capture. 33rd

Annual Symposium of the German Association for Pattern Recognition (DAGM),

September 2011.

In this work, we present an approach for Markerless Motion Capture using string

matching. We find correspondences between the model predictions and image fea-

tures using global bipartite graph matching on a pruned cost matrix. Extracted

features such as contour, gradient orientations and the turning function of the shape

are embedded in a string comparison algorithm. The information is used to prune

the association cost matrix discarding unlikely correspondences. This results in sig-

nificant gains in robustness and stability and reduction of computational cost. We

show that our approach can stably track fast human motions where standard ar-

ticulated Iterative Closest Point algorithms fail. This work was done by a Master’s

student whom the author co-supervised.

The following publication was presented out of the author’s Master’s Thesis completed

at Northeastern University in Boston, USA:

[Leal-Taixé et al., 2009b] L. Leal-Taixé, A.U. Coskun, B. Rosenhahn, D. Brooks. Au-

tomatic segmentation of arteries in multi-stain histology images. World Congress

on Medical Physics and Biomedical Engineering, September 2009.

Atherosclerosis is a very common disease that affects millions of people around the

world. Currently most of the studies conducted on this disease use Ultrasound

Imaging (IVUS) to observe plaque formation, but these images cannot provide any

detailed information of the specific morphological features of the plaque. Micro-

scopic imaging using a variety of stains can provide much more information al-

though, in order to obtain proper results, millions of images must be analyzed.

In this work, we present an automatic way to find the Region of Interest (ROI)

of these images, where the atherosclerotic plaque is formed. Once the image is

well-segmented, the amount of fat and other measurements of interest can also be

determined automatically.
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Aside from the aforementioned publications, the author edited a post-proceedings book

of the Dagstuhl Seminar organized in 2012:

[Dellaert et al., 2012] F. Dellaert, J.-M. Frahm, M. Pollefeys, B. Rosenhahn, L. Leal-

Taixé. Theoretic Foundations of Computer Vision: Outdoor and Large-Scale Real-

World Scene Analysis. Springer, April 2012.

The topic of the meeting was Large-Scale Outdoor Scene Analysis, which covers

all aspects, applications and open problems regarding the performance or design

of computer vision algorithms capable of working in outdoor setups and/or large-

scale environments. Developing these methods is important for driver assistance,

city modeling and reconstruction, virtual tourism, telepresence and outdoor mo-

tion capture. After the meeting, this post-proceedings book was edited with the

collaboration of all participants who sent a paper that was peer-reviewed by three

reviewers.



Chapter 2

Tracking-by-Detection

Tracking is commonly divided into two steps: object detection and data association.

First, objects are detected in each frame of the sequence and second, the detections

are matched to form complete trajectories. This is called the tracking-by-detection

paradigm, and is the framework that will be used throughout the thesis. In this chapter

we introduce the paradigm and give a brief overview of some of the most popular state-

of-the-art detectors, while the main content of the thesis lies on the data association part.

Here we also discuss the type of scenarios we are working with and give an overview of

the literature that deals with high-density scenarios where people cannot be individually

detected.

2.1 The scale of tracking

Videos of walking pedestrians can vary in an infinite number of ways. Camera position,

camera distance and type of environment are a few of the characteristics that define the

type of video that will be created. Before introducing the problem that we are dealing

with in this thesis, we first need to introduce the types of scenarios and the types of

videos we will be working with.

In Figure 2.1, we can see four examples of different scenarios with varying crowdness

levels. The first example in Figure 2.1(a), from the well-known PETS2009 dataset [Fer-

ryman, 2009], shows a scene with few pedestrians. The small size of the pedestrians,

similar clothing and occlusions behind the pole or within themselves make this a chal-

lenging scenario. Nonetheless, recent methods have shown excellent results on this video,

which is why more difficult datasets have been introduced.

13
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One example from the Town Center dataset Benfold and Reid [2011] is shown in Figure

2.1(b). This semi-crowded environment is challenging for the high amount of occlusions,

but it is well-suited for the study of social behaviors as we will see in Chapter 5. Pedes-

trian detection is very challenging in these scenarios, since pedestrians are almost never

fully visible and tracking is difficult due to the high amount of crossing trajectories.

Even more crowded scenarios, like the one shown in Figure 2.1(c), can still be analyzed

with special methods which take into account the high density of the crowd [Rodriguez

et al., 2011a]. For this category of videos, either the target to follow is manually initial-

ized [Rodriguez et al., 2009] or only head positions are tracked, since other parts of the

body are rarely visible for a detector to work. Other approaches rely on feature tracking

and motion factorization [Brostow and Cipolla, 2006], conveying the idea that if two

points move in a similar way they belong to the same object. In this last case, there is

no need for a detection step.

Finally, we have extremely crowded scenarios like marathons, demonstrations, etc. which

are filmed from an elevated point of view, as in Figure 2.1(d). In these cases, individuals

cannot be detected and identified, and therefore the task changes from individual person

tracking towards analysis of the overall flow of the crowd [Ali and Shah, 2008, Rodriguez

et al., 2011b].

Therefore, depending on the amount of people present in the scene, we can perform two

types of tasks for video analysis:

• Microscopic tracking focuses on the detection and tracking of individuals. Behavior

analysis is centered around each individual and possibly their interactions. It uses

individual motion and appearance features and is not too concerned with the

overall motion in the scene.

• Macroscopic tracking, on the other hand, focuses on capturing the “flow” of the

crowd, the global behavior and motion tendencies. It is not focused on observ-

ing individual behavior but rather network behavior. Individual tracking can be

performed if a target is manually initialized, since detection is not possible in this

type of videos.

Throughout this thesis, we work on sparse and semi-crowded scenarios as shown in

Figures 2.1(a) and 2.1(b). We use the tracking-by-detection paradigm, which we detail

in the following section.
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Frame: 1210

65

82

63

80

79

51

78
77

53

76 64

81

7466

75

62

57

(b) Semi-crowded

(c) Crowded (d) Macroscopic

Figure 2.1: Scenarios with different crowdness levels. (a) Sparse: individuals are
detected and tracked throughout the scene. (b) Semi-crowded: it is still possible to
detect individuals, but occlusions and missed detections are very common, making
tracking challenging. (c) Crowded: tracking full-body pedestrians is no longer possible,
but detection and tracking of heads is still performed. Person counting is a common
task for videos of this crowdness level. Image from [Rodriguez et al., 2011a]. (d)
Macroscopic scenario: individuals cannot be properly detected, therefore the goal in
these scenarios is typically to find the overall flow of the crowd. Image from [Ali and

Shah, 2008].

2.2 Tracking-by-detection paradigm

As mentioned in the previous section, there are several approaches for pedestrian video

analysis. We focus on microscopic tracking, which means we are interested in detecting

and tracking individuals. For this task, the tracking-by-detection paradigm has become

increasingly popular in recent years, driven by the progress in object detection. Such

methods involve two independent steps: (i) object detection on all individual frames

and (ii) tracking or association of those detections across frames.

We can see a diagram of the tracking-by-detection paradigm in Figure 2.2. There are two

main components: the detector and the tracker. State-of-the-art detectors are discussed

in Section 2.3, while the tracker is the main focus of the thesis. As we will see later on in

this chapter, detectors are not perfect and often return false alarms or miss pedestrians.

This makes tracking or data association a challenging task. Some of the most important

challenges include:
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Figure 2.2: Tracking-by-detection paradigm. Firstly, an independent detector is ap-
plied to all image frames to obtain likely pedestrian detections. Secondly, a tracker
is run on the set of detections to perform data association, i.e., link the detections to

obtain full trajectories.

• Missed detections: long-term occlusions are usually present in semi-crowded sce-

narios, where a detector might lose a pedestrian for 1-2 seconds. In this case, it is

very hard for the tracker to re-identify the pedestrian without distinctive appear-

ance information, and therefore, the track is usually lost. That is why in recent

literature, researchers are opting for global optimization methods [Leal-Taixé et al.,

2011a, Zhang et al., 2008, Berclaz et al., 2011], which are very good at dealing with

long-term occlusions.

• False alarms: the detector can be triggered by regions in the image that actually

do not contain any pedestrian, creating false positive. A tracker might follow the

false alarms and create what is called a ghost trajectory.

• Similar appearance: one source of information commonly used for pedestrian iden-

tification is appearance. However, in some videos similar clothing can lead to

virtually identical appearance models for two different pedestrians. Many meth-

ods in recent literature focus on the motion of the pedestrian rather than his/her

appearance [Leal-Taixé et al., 2011a, Pellegrini et al., 2009].

• Groups and other special behaviors: when dealing with semi-crowded scenarios, it

is very common to observe social behaviors like grouping or waiting at a bus stop

or stopping to talk to a person. All these behaviors do not fit classic tracking

models like Kalman Filter [Kalman, 1960], which consider pedestrians motion to

be rather constant.

These are a few of the challenges that tracking has to address. In this thesis, we make the

observation that there is a lot of context that is not being used for tracking, especially
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social context or pedestrian interaction and spatial context coming from multiple views

of the same scene. The proper use of these two sources of context in a global optimization

scheme will be the center of the thesis.

2.3 Detectors

There are many pedestrian detectors in literature. Even though this thesis is focused on

the data association part of multiple object tracking, we want to give a brief overview of

three of the most used methods for pedestrian detection. Such methods can be classified

in many ways; we detail one possible classification scheme:

Model-based detectors. A model of the background is created, and then a pixel-wise

or block-wise comparison of a new image against the background model is performed

to detect regions that do not fit the model [Bouwmans et al., 2008]. This method

is commonly used for video surveillance, since the camera is static and therefore the

background model can be learned accurately. The drawback of these techniques is that

they are very sensitive to changes in illumination and occlusions.

Template-based detectors. These detectors use a pre-learned set of templates, based

for example on image features such as edges [Dalal and Triggs, 2005]. The detector

is triggered if the image features inside the local search window meet certain criteria.

The drawback of this approach is that its performance can be significantly affected by

background clutter and occlusions; if a person is partly occluded, the overall detection

score will be very low because part of the image will be completely different from the

learned examples.

Part-based detectors. One downside of holistic detectors like the one presented in

[Dalal and Triggs, 2005] is that they are easily affected by occlusions and local deforma-

tions. We would need a lot of training data to cover all the deformations that a body

can undergo. In order to reduce the amount of data needed, recent works [Felzenszwalb

et al., 2008, 2010a] have proposed to use part-based methods, in which a template for

each body part is learned separately. This way, deformations can be learned locally

for each part and later combined. Another advantage of this method is that it is more

robust to occlusions, since if one part is occluded, all the others can still be detected and

combined for an overall high detection score. Other detectors based on parts have also

been presented and created specifically to address occlusions [Shu et al., 2012, Wojek

et al., 2011].

Similar to these are block-based detectors, either based on HoG features [Gall et al.,

2011] or SIFT features [Leibe et al., 2008]. The objective is to learn the appearance of
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blocks inside the bounding box of a detection. At testing time, each block votes for the

position of the center of the object to be detected.

There is a different family of detectors, namely online detectors, that formulate the

problem of tracking as that of re-detection. The combination of both types of detectors

can be very beneficial as shown in [Shu et al., 2013], specially to account for appearance

variations which might not be captured by the learned templates.

We refer the reader to the following survey [Enzweiler and Gavrila, 2008] regarding

Adaboost and HOG-based pedestrian detectors for monocular videos; [Bouwmans et al.,

2008] for background subtraction techniques based on a mixture of gaussian background

modeling and [Felzenszwalb et al., 2010b] for a detailed description of part-based models

for object detection.

2.3.1 Background modeling using Mixture-of-Gaussians

While the most basic background subtraction methods are based on a frame-by-frame

image difference, we detail here the model-based method presented in [KadewTraKuPong

and Bowden, 2001] and used in the OpenCV implementation [http://opencv.org/]. The

basic idea is to model each pixel’s intensity by using a Gaussian Mixture Model (GMM).

A simple heuristic determines which intensities most probably belong to the background,

and pixels which do not match these are called foreground pixels. Foreground pixels are

grouped using 2D connected component analysis.

(a) (b) (c)

Figure 2.3: (a) Original input image. (b) Background subtraction using the pre-
learned model. White pixels are classified as foreground, black pixels as background.

(c) Final detected bounding boxes.

An example of this process is shown in Figure 2.3. As we can see, the background

model is not perfect, which often leads to spurious foreground pixels around the scene

as in Figure 2.3(b). Of course this method detects all kinds of moving objects, and

therefore it is a method prone to false detections. In the experiments for this thesis,

we use the homography provided by the camera calibration in order to determine the

approximate size of a pedestrian on each pixel position. This allows us to determine a
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rough bounding box size and to discard groups of foreground pixels which are too small

to be a pedestrian.

2.3.2 Histogram of Oriented Gradients (HOG)

The essential thought behind the Histogram of Oriented Gradients (HOG) descriptor

is that local object appearance and shape within an image can be described by the

distribution of intensity gradients or edge directions. An overview of the pedestrian

detection process as described in [Dalal and Triggs, 2005] is shown in Figure 2.4.

Weighted vote
into spatial and
orientation cells

Contrast
normalization
over blocks

Collect HOG’s
over detection
windows

Linear
SVM

Compute
gradients

Input
image

Person/
non-person
classifier

Figure 2.4: Overview of the feature extraction and object detection chain.

The first step is to compute the gradients, then divide the image into small spatial

windows or cells. For each cell we accumulate a local 1-D histogram of gradient directions

or edge orientations over the pixels of the cell. The histograms can also be contrast-

normalized for better invariance to changes in illumination or shadowing. Normalization

is done over larger spatial regions called blocks. The detection window is covered with

an overlapping grid of HOG descriptors, and the resulting feature vector is used in a

conventional SVM classifier [Cortes and Vapnik, 1995, Bishop, 2007] that learns the

appearance of a pedestrian vs. non-pedestrian.

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.
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the person is actually increased.
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By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.
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the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.
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Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
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owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-
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at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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Figure 2.5: The HOG detector is based mainly on silhouette contours. As we can see,
the most active blocks are centered on the image background just outside the contour.
(a) Average gradient image over the training samples. (b) Each “pixel” shows the
maximum positive SVM weight in the block centered in the pixel. (c) Likewise for
the negative SVM weights. (d) Test image. (e) HOG descriptor. (f) HOG descriptor
weighted by positive SVM weights. (g) Likewise for negative weights. Images from

[Dalal and Triggs, 2005].

The HOG descriptor is particularly suited for human detection in images. This is be-

cause coarse spatial sampling, fine orientation sampling, and strong local photometric

normalization allow the individual body movement of pedestrians to be ignored so long

as they maintain a roughly upright position.
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2.3.3 Part-based model

Recent works have proved that modeling objects as a deformable configuration of parts

[Felzenszwalb et al., 2010a, Felzenszwalb and Huttenlocher, 2005] leads to increased

detection performance compared to rigid templates [Dalal and Triggs, 2005]. In the case

of human detection, this is specially useful as the body can assume a large number of

different poses. This model can also be used to estimate the 2D human pose of humans

[Yang and Ramanan, 2011].
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction
We consider the problem of detecting and localizing ob-

jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty
object categories. Figure 1 shows an example detection ob-
tained with our person model.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6, 10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a
bounding box for each positive example of an object. We
treat the position of each object part as a latent variable. We
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representing object categories [1–3, 6, 10, 12, 13,15, 16, 22].
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of view, it has been difficult to establish their value in prac-
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performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.
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ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
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The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
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is a significant issue in machine learning for computer vi-
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Figure 2.6: Deformable part-based model detector. (a) Example of a detection of a
person. Green box represents the root filter detection while the yellow boxes represent
the part detections. (b) Coarse template or root filter. (c) Templates of the parts. (d)
Spatial model for the location of each part. Images from [Felzenszwalb et al., 2008].

The basic idea is to have a model based on several HOG feature filters. The model for

each object consists of one global root filter (see Figure 2.6(b)), which is equivalent to

the rigid template as presented before, and several part models. The features of the part

filters are computed at twice the spatial resolution of the root filter in order to capture

smaller details. Each part model specifies a spatial model (see Figure 2.6(d)) and a part

filter (see Figure 2.6(c)). The spatial model defines a set of allowed placements for a

part relative to the detection window and a deformation cost for each placement.

Detection is done using a sliding window approach. The score is computed by adding

the score of the root filter and the sum over all parts, taking into account the placement

of each part, the filter score and the deformation cost. Usually both part-based and

rigid template-based approaches are prone to double detections, therefore a non-maxima

suppression step is necessary to avoid too many false detections around one pedestrian.

We will show examples of this phenomenon in Section 2.4.

Training is done by using a set of images with an annotated bounding box around each

instance of an object (a pedestrian in our case). Learning is done in a similar way as in

[Dalal and Triggs, 2005], only now, apart from learning the model parameters, the part

placements also need to be learned. These are considered as latent values and therefore

Latent SVM is used to learn the model.
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2.4 Detection results

In this section, we discuss some detection results, show common failure cases and present

some further methods proposed in recent literature. In Figure 2.7, we plot some results

of the three methods referenced in the previous section on the publicly available dataset

PETS2009 [Ferryman, 2009].

In Figure 2.7(a), we show a common failure case of background subtraction methods. As

we can see, the three pedestrians in the center of the image are very close to each other,

which means the background subtraction method obtains a single blob in that region.

In some cases it is possible to determine the presence of more than one pedestrian based

on blob size and a knowledge of the approximate size of the pedestrian in pixels. In this

case, though, the partial occlusion of one of the pedestrians makes it hard to determine

exactly how many pedestrians belong to the foreground blob. The resulting detection

is therefore placed in the middle of the group of pedestrians, which means we do not

only have missed detections but also an incorrect position of the detection, which in fact

will be considered as a false alarm. A similar situation is shown for the two pedestrians

on the right side of the image. The final detection is positioned in the middle between

them.

(a) Background subtraction (b) HOG detector (c) Part-based detector

Figure 2.7: Example of detection results on one frame of the PETS2009 sequence.
(a) Using background subtraction (Section 2.3.1). (b) Using HOG features and SVM
learning (Section 2.3.2). (c) Using part-based model, HOG features and Latent SVM

learning (Section 2.3.3).

In Figure 2.7(b), we show results of a HOG detector with SVM learning. Here, the

major problems are double detections and the threshold of the score that determines

what is a detection and what is not. As we can see in Figure 2.7(b), if the threshold

is too low we can get a lot of false detections. The advantage is that we can detect

half-occluded pedestrians like the orange pedestrian behind the pole.

A part-based detector returns the result shown in Figure 2.7(c). As we can see, it is

successful in finding partially occluded people or people who are close together. It only

fails to detect the pedestrian occluded by the pole; this is mainly because one of the
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most distinctive parts for detections is the one of the head and shoulders, forming an

omega shape.

(a) HOG detector (b) Part-based detector

(c) HOG detector (d) Part-based detector

Figure 2.8: Example of detection results on the Town Center sequence. (a,c) Using
HOG features and SVM learning (Section 2.3.2). (b,d) Using part-based model, HOG

features and Latent SVM learning (Section 2.3.3).

We show results on the Town Center dataset [Benfold and Reid, 2011] in Figure 2.8.

This is a high resolution dataset of a busy town center, where partial occlusions and false

alarms are very common. As we can see, double detections are specially problematic,

for both the simple HOG detector and the part-based detector. It is common that two

pedestrians trigger a single detection with a bigger bounding box, which means the non-

maxima suppression is a key step in this case. Nonetheless, these methods still present

two key advantages for this dataset: (i) most false detections can be easily removed

using camera calibration and an approximate size of a pedestrian; (ii) there are few

missed pedestrians. As we will see in Chapter 5, the Linear Programming algorithms

for tracking are capable of handling false alarms better than missing data.

It is common to see pedestrians walking with objects, either pushing a bicycle, carrying

a bag or pushing a trolley or a stroller, as we can see in Figure 2.9. The close proximity

to those objects often leads to double detections or can even lead to the complete misde-

tection of the pedestrian. In recent works researchers proposed to include those objects

in the tracking system. In [Mitzel and Leibe, 2012] a tracker for unknown shapes was

proposed in order to deal not only with pedestrians but also with carried objects. 3D in-

formation was used to create a model of unknown shapes which was then tracked through
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(a) (b) (c) (d)

Figure 2.9: Example of pedestrians walking with objects. This often leads to dou-
ble detections or missed detections, but pedestrian-object interactions can be a useful

source of information to improve tracking.

time. Furthermore, in [Baumgartner et al., 2013] pedestrians interaction with objects

was included to support tracking hypotheses. This confirms the argument presented in

this thesis, that context from a pedestrian’s environment (in this case pedestrian-object

interaction) can be extremely useful to improve tracking. Finally, tracking systems for

complete scene understanding are becoming more and more important in the literature

[Wojek et al., 2013].



Chapter 3

Introduction to Linear

Programming

In this chapter, we give an introduction to the theory of Linear Programming (LP),

defining all the basic concepts used in further chapters. We start by formally defining

a Linear Program and its geometry. We then put special focus on the Simplex method,

the most common LP solver and finally we introduce the concept of duality and the

relation between LP and graphical models. We refer the interested reader to two books

on Linear Programming [Bertsimas and Tsitsiklis, 1997, Matousek and Gaertner, 2007]

and one on Network Flows [Ahuja et al., 1993] to delve deeper into the subject.

3.1 What is Linear Programming?

A linear program consists of a linear objective function

c1x1 + c2x2 + . . .+ cnxn (3.1)

subject to linear constraints

a11x1 + a12x2 + . . .+ a1nxn ≤ b1 (3.2)

a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...

...
...

am1x1 + am2x2 + . . .+ amnxn ≤ bm.

24
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Solving the program means finding the x1, . . . , xn ∈ R that maximize (or minimize) the

objective function while satisfying the linear constraints. The linear program can be

expressed as

max {cᵀx : x ∈ Rn,Ax ≤ b} (3.3)

where A ∈ Rm×n is the matrix of coefficients and b ∈ Rm the vector that defines the

constraints of the LP. The problem constraints can be written as equalities or inequalities

(≤,≥), as these can always be converted to a standard form without changing the

semantics of the problem.

A point x ∈ Rn is called feasible if it satisfies all linear constraints, see Figure 3.1(a). If

there are feasible solutions to a linear program, then it is called a feasible program. A

problem can be infeasible if its constraints are contradictory, e.g., x1 > 1 and x1 < −1.

A feasible x ∈ Rn is an optimal solution to a linear program if cᵀx ≥ cᵀy for all feasible

y ∈ Rn, see Figure 3.1(b).

A linear program is bounded if there exists a constant M ∈ R such that cᵀx ≤M for all

feasible x ∈ Rn. An example of an unbounded problem can be seen in Figure 3.1(c).

x1

x2

Space of

feasible solutions

(a)

x1

x2

Optimal solution

max x2

(b)

x1

x2 max x1

(c)

Figure 3.1: Representations of Linear Programs with constraints represented by col-
ored lines and half-spaces represented by colored regions. (a) Representation of a Linear
Program with three constraints represented in blue, green and red, and its space of pos-
sible solutions (in yellow). (b) Optimal solution for the Linear Program of maximizing
x2 (yellow dot). (c) An unbounded Linear Program, when trying to maximize x1 the
solution space is infinite, as indicated by the arrows pointing towards the unbounded

direction.

3.1.1 Linear Programming forms

A Linear Program can be expressed in different forms, namely, Standard Form 1, In-

equality Form, Standard Form 2 and General Form. In order to solve a problem with the
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Simplex method, for example, we need to have the problem in Standard Form 1, there-

fore, it is useful to know how to easily go from one form to another. All forms share the

same objective function, which is a minimization, but change the way in which the con-

straints are expressed. Remember that we have n variables, x ∈ Rn, and m constraints,

A ∈ Rm×n, b ∈ Rm.

Standard Form 1. The constraints are expressed as equalities and it is implied that

the variables are nonnegative.

min cᵀx (3.4)

s.t. Ax = b

x ≥ 0.

Inequality Form. The constraints are expressed as inequalities and we need to explic-

itly define the non-negativity constraints (if any).

min cᵀx (3.5)

s.t. Ax ≤ b

Standard Form 2. The constraints are expressed as inequalities and it is implied that

the variables are nonnegative.

min cᵀx (3.6)

s.t. Ax ≤ b

x ≥ 0.

General Form. The constraints are expressed both as equalities and inequalities. We

need to explicitly define the non-negativity constraints (if any).

min cᵀx (3.7)

s.t. Ax ≤ b

Gx = f

Once we have all the forms defined, we are interested in knowing how to go from one form

to the other. We are specially interested in converting a problem to the Standard Form

1, which is the one we need to use the Simplex algorithm. Any LP can be converted into

the Standard Form 1 by performing a series of operations. Let us consider the following
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example of an LP problem:

max x1 + x2 + 2x3 (3.8)

s.t. 2x1 + 3x2 ≤ 12

x2 + x3 ≥ 5

x1 ≥ 4

x2 ≥ 0

In order to express this problem in Standard Form 1, we can follow a set of simple

transformations:

• To convert a maximization problem into a minimization one, we simply negate the

objective function:

max x1 + x2 + 2x3 → min −x1 − x2 − 2x3 (3.9)

• To convert inequalities into equalities, we introduce a set of slack variables which

represent the difference between the two sides of the inequality and are assumed

to be nonnegative. The cost on the objective function for these variables is zero:

2x1 + 3x2 ≤ 12 → 2x1 + 3x2 + s1 = 12 , s1 ≥ 0 (3.10)

x2 + x3 ≥ 5 → x2 + x3 − s2 = 5 , s2 ≥ 0

• If the lower bound of a variable is not zero, we introduce another variable and

perform substitution:

x1 ≥ 4 → y1 = x1 − 4 , y1 ≥ 0 (3.11)

• We can replace unrestricted variables by the difference of two restricted variables:

x3 → x3 = x4 − x5 , x4 ≥ 0 , x5 ≥ 0 (3.12)
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After all the transformations, we obtain the following LP in standard form:

min − y1 − 4− x2 − 2x4 + 2x5 (3.13)

s.t. 2y1 + 8 + 3x2 + s1 = 12

x2 + x4 − x5 − s2 = 5

y1, x2, x4, x5, s1, s2 ≥ 0

3.2 Geometry of a Linear Program

The geometry of a Linear Program (LP) is important since most solvers exploit this

geometry in order to obtain the optimal solution of an LP efficiently. A region defined

by the LP, like the yellow striped region in Figure 3.1(a), has a set of corners, also called

vertices. If an LP is feasible and bounded, then the optimal solution lies on a vertex.

More formally, a set P of vectors in Rn is a polyhedron if P = {x ∈ Rn : Ax ≤ b} for

some matrix A and some vector b. P defines the set of feasible solutions, as shown in

Figure 3.1(a).

An inequality aᵀx ≤ β is valid for a polyhedron P if each x∗ ∈ P satisfies aᵀx∗ ≤ β.

The inequality is active at x∗ ∈ Rn if aᵀx∗ = β. For example, in Figure 3.1(b) we can

see that the optimal solution, depicted as a yellow dot, is active for the green and red

constraints.

a

a�x � �

(a)

a

a�x = �

(b)

Figure 3.2: (a) Half-space defined by the inequality constraint. (b) Hyperplane de-
fined by the equality constraint.

Considering x ∈ Rn, a ∈ Rn \ {0} and β ∈ R, we can see the representation of the

inequality constraint in Figure 3.2(a) as a half-space and the equality constraint in

Figure 3.2(b) as a hyperplane.

Let us now consider the notion of a vertex. Looking at Figure 3.1(b), we can see that

the optimal solution in yellow is a point inside P where the green and red constraints

are active. In this 2D space, we need two constraints to define a vertex. More formally,

a point x∗ ∈ P is a vertex of P if there exist n or more inequalities aᵀx ≤ β that are

valid for P and active at x∗ and not all active at any other point in P .
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Another interpretation of the definition of vertices is that the point x∗ ∈ Rn is a basic

solution if rank(AI) = n, where AIx = bI is a sub-system of active inequations at x∗.

If x∗ ∈ P , then it is a basic feasible solution. In this case, x∗ is a vertex of P iff it is a

basic feasible solution.

Theorem 3.1. If a linear program max{cᵀx : x ∈ Rn,Ax ≤ b} is feasible and

bounded and if rank(A) = n, the LP has an optimal solution that is a vertex.

Recall from linear algebra that a system of equations with m constraints and n variables

can either be directly solvable if m = n and A is full-rank, which means it is invertible.

If m < n, we have an underdetermined system which leads to more than one optimal

solution. For example, we can have several solutions that lie on an edge instead of only

one solution on a vertex. Finally, if m > n, we have an overdetermined system, in which

case it is possible that there exists no solution. Usually these problems are solved by

using least-squares (see [Bishop, 2007]).

We can draw an important consequence from Theorem 3.1, which is that an LP can be

solved by enumerating all vertices and picking the best one. As the dimensionality of

our search space and number of constraints increase, enumerating all solutions quickly

becomes unmanageable. In the following Section, we present the Simplex algorithm

developed by George B. Danzig in 1947, which drastically reduces the number of possible

optimal solutions that must be checked.

3.3 The Simplex method

If we know that the optimal solution lies on a vertex, we could simply evaluate the

objective function on each of the vertices and just pick the optimum one. Nonetheless,

the number of vertices of an LP is typically too large, therefore we need to find a clever

way to move towards the optimum vertex.

The Simplex method is an iterative method to efficiently solve an LP. The basic intuition

behind the algorithm is depicted in Figure 3.3. Starting from a vertex in the feasible

region, the idea is to move along the edges of the polyhedron until the optimum solution

is reached. Each move from one vertex to another shall increase the objective function

(in case we have a maximization problem), so that convergence is guaranteed. In other

words, the Simplex algorithm maintains a basic feasible solution at every step. Given

a basic feasible solution, the method first applies an optimality criterion to test its
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optimality. If the current solution does not fulfill this condition, the algorithm obtains

another solution with a higher value of the objective function (which is closer to the

optimum in the case of a maximization problem). Let us now define some more useful

concepts.

Optimal
solution

Starting
vertex

Figure 3.3: Idea of the Simplex algorithm. Starting from a vertex of the polyhedron,
we move along the edges until we reach the optimum solution.

Two distinct vertices x1 and x2 of P = {x ∈ Rn : Ax ≤ b} are adjacent, if there exist

n− 1 linearly independent inequalities of Ax ≤ b active at both x1 and x2.

Theorem 3.2. x1 6= x2 ∈ P are adjacent iff there exists c ∈ Rn such that a set of

solutions of max{cᵀx : x ∈ P} is the line segment spanned by x1 and x2.

Let us assume we start with a solution vertex x∗. While x∗ is not optimal, the algorithm

finds another vertex x′ adjacent to x∗ with cᵀx′ > cᵀx∗, and update x∗ := x′. If no

vertex can be found, we can assert that the LP is unbounded. This is summarized in

Algorithm 1.

Algorithm 1 Basic idea of the Simplex algorithm

Start with vertex x∗

while x∗ is not optimal do

if We find a vertex x′ adjacent to x∗ with cᵀx′ > cᵀx∗ then

x∗ := x′

else

Assert that LP is unbounded.

end if

end while

As we can see, there are two key aspects to be defined: firstly, how to assert that a

vertex is optimal, and secondly, how to find an adjacent vertex with a better cost. Both

will be detailed in the next subsections.
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3.3.1 Optimality criteria

Again, let us start by defining some concepts, namely bases and degeneracy.

A subset B ⊆ {1, . . . ,m} of the rows-indices of A, with |B| = n and AB invertible, is

called a basis of the LP. If in addition the point A−1
B bB is feasible, then B is called a

feasible basis.

If a vertex x∗ ∈ P is represented by a basis B, then x∗ = A−1
B bB. But a vertex

can be represented by many bases. Let us consider the LP problem max cᵀx depicted

in Figure 3.4, where x ∈ R2. There are 4 constraints in this LP, identified by their

coefficients {a1,a2,a3,a4} and depicted by green lines. Since we are in a 2D space, each

pair of constraints forms a basis for x∗. A possible set of feasible solutions created by

constraints a3 and a4 is painted in light green. In total, we have 6 bases that represent

x∗, namely, {{a1,a2}, {a2,a3}, {a1,a3}, {a3,a4}, {a1,a4}, {a2,a4}}.

x�a1

a2

a3
a4

Figure 3.4: LP with 4 constraints identified by their coefficients {a1,a2,a3,a4}
and depicted by green lines. There are 6 bases that represent x∗, namely,
{{a1,a2}, {a2,a3}, {a1,a3}, {a3,a4}, {a1,a4}, {a2,a4}}. The half-space of constraints

{a3,a4} is the area depicted in light green.

An LP max{cᵀx : x ∈ Rn,Ax ≤ b} is degenerate if there exists an x∗ ∈ Rn such that

there are more than n constraints of Ax ≤ b active at x∗. The LP depicted in Figure 3.4

is degenerate, since n = 2 and there are 4 active constraints at x∗.

A basis B is optimal if it is feasible and the unique λ ∈ Rm with λᵀA = cᵀ and

λi = 0,∀i /∈ B satisfies λ ≥ 0.

If all components of λ outside of B are zero, then we can write the following equality

λᵀ
BAB = cᵀ, since all rows of A with indices outside of B will not contribute to the

dot product. Since AB is invertible, we can then write λᵀ
B = cᵀA−1

B . From this, two

theorems emerge.
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x�

x� + d

(a)

x�

x� + �kd

a�
kx � bk

(b)

Figure 3.5: (a) Move in the direction d as shown in the proof of Theorem 3.4. (b)
Reaching constraint k by moving εk in the direction d.

Theorem 3.3. If B is an optimal basis, then x∗ = A−1
B bB is an optimal solution of the

LP.

Theorem 3.4. Suppose the LP is non-degenerate and B is a feasible but not optimal

basis, then x∗ = A−1
B bB is not an optimal solution.

Basically, for every vertex x∗, we can quickly check if it is an optimal solution by checking

if the basis B that represents this vertex is optimal or not. The proof of the theorem

will help us see how to move closer to the optimal solution.

Proof. Let us assume that B is a feasible but not optimal basis. We can split the

constraints of the LP into active and inactive ones with respect to B.

max cᵀx, s.t. Ax ≤ b





ABx ≤ bB, active at x∗

AB̄x ≤ bB̄, inactive
(3.14)

For a unique λ ∈ Rm with λᵀA = cᵀ, we have that λj = 0,∀j /∈ B. Since B is feasible

but not optimal, we know that there will be some λi < 0 for some i ∈ B.

We now compute a d ∈ Rn such that AB\{i}d = 0 and aᵀ
id = −1. That means d is

orthogonal to all rows of AB except the one that represents constraint i.

Now we want to move from x∗ in the direction given by d, as depicted in Figure 3.5(a).

Let us first take a look at what happens to the objective function if we move along d:

cᵀd = λᵀ
BABd = λi︸︷︷︸

<0

aᵀ
id︸︷︷︸
−1

(3.15)
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Given λi < 0 and the conditions in which we defined d, for which aᵀ
id = −1, we can

see that cᵀd > 0. This means that if we move in the direction d, we will improve our

objective function value.

Let us now consider a given quantity ε > 0, which represents how much we move along

direction d. Now we are interested in knowing if the new point x∗+ εd is feasible, i.e.if

it satisfies Equation (3.14). We can see that the inequations are certainly satisfied:

AB(x∗ + εd) ≤ bB, (3.16)

since the product εABd < 0 because of the previous definition aᵀ
id = −1. This means

that there exists an ε∗ such that x∗ + ε∗d is feasible because it satisfies all inequalities

expressed in Equation (3.14). But the value of the objective function at this new point

will be

cᵀ(x∗ + εd) = cᵀx∗ + ε cᵀd︸︷︷︸
>0︸ ︷︷ ︸
>0

, (3.17)

which is greater than the objective value of x∗, proving this is not an optimal solution.

3.3.2 Moving to a better neighbor

Now we have an ε > 0 with which we can move from x∗ in the direction d to a vertex

close to the optimum, namely, to a better neighbor. The question now is how large can

ε be. We need to find out how far we can go before we hit a constraint for the first time,

because past a constraint, the feasible region ends. This is depicted in Figure 3.5 where

the constraint is represented in orange.

Remember we had m constraints in Ax ≤ b. We denote K as the set of indices that

represent the constraints that might be hit by x∗ + εd, and it is formally defined as

K = {k : 1 ≤ k ≤ m,aᵀ
kd > 0}. (3.18)

aᵀ
kd needs to be larger than zero, otherwise we would never hit the constraint aᵀ

kx ≤ bk.

The set of constraints K will contain constraints not in basis B, since all Aᵀ
Bd ≤ 0.

There are now two cases:

1. K = ∅, which means we can move indefinitely in direction d, and therefore the LP

is unbounded.
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2. K 6= ∅, which means there is a constraint with index k which we will hit while

moving x∗ in the direction d, as depicted in Figure 3.5(b). Let us now compute

the value of εk for which we hit constraint k:

aᵀ
k (x∗ + εkd) = bk ⇐⇒ εk =

bk − aᵀ
kx
∗

aᵀ
kd

(3.19)

We know this division can be done because the denominator is greater than zero.

The optimal ε∗ will be the smallest of all the εk:

ε∗ = min
k∈K

εk, (3.20)

where k∗ ∈ K is the index for which we find ε∗. The optimal ε∗ must be the

minimum, because all greater εk violate at least the constraint k∗, and therefore go

out of the feasible region. To know that there is, in fact, a new vertex x′ = x∗+ε∗d,

which is adjacent to x∗ and with higher objective value, we have to prove that B′

defined as

B′ = B \ {i} ∪ {k∗} (3.21)

is a basis. Note that we are incorporating the new constraint k∗ and taking out

the i that did not make our basis B optimal (recall that λi < 0). Remember

that d ⊥ aB\{i}, but not d ⊥ ak∗ since aᵀ
k∗d > 0. This means that ak∗ is not a

linear combination of aB\{i}, proving B is a basis. Furthermore, the inequalities

Aᵀ
B′x ≤ bB′ are active at x′, which means x′ is a vertex and in fact adjacent to

x∗.

We have seen so far that the concepts of basic feasible solution and feasible basis are

interchangeable, therefore we can rewrite the Simplex algorithm in basis notation, as

shown in Algorithm 2.

Theorem 3.5. If the Linear Program is non-degenerate, then the Simplex algorithm

terminates.

The idea of the Simplex algorithm is to jump from one base to another (equivalently

from vertex to vertex), making sure no base is revisited. We have proven before

that when we move in direction d from point x∗ to x′, we obtain cᵀx′ > cᵀx∗,

which means that we are making progress at each iteration of the Simplex, proving

it will eventually terminate.
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Algorithm 2 The Simplex algorithm

Start with a feasible basis B

while B is not optimal do

Let i ∈ B be the index with λi < 0 (remember λᵀA = cᵀ and λj = 0,∀j /∈ B)

Compute d ∈ Rn with Aᵀ
B\{i}d = 0 and aᵀ

id = −1

Determine K = {k : 1 ≤ k ≤ m,aᵀ
kd > 0}

if K = ∅ then

Assert that LP is unbounded.

else

Let k∗ ∈ K be the index where min
k∈K

bk−aᵀkx
∗

aᵀkd
is attained

Update B := B \ {i} ∪ {k∗}
end if

end while

3.3.3 The degenerate case: Bland’s pivot rule

The Simplex algorithm as described in Algorithm 2 can be applied to degenerate Linear

Programs, but we can encounter the problem of cycling, which is when we move from one

basis to another without progress and end up returning to one of the bases we already

visited. This means that the algorithm would never terminate. In order to avoid this,

we need to carefully choose the indices that are leaving and entering the basis at each

iteration, an operation that is called pivoting. In Algorithm 3, we highlight in orange the

changes to the Simplex algorithm according to Bland’s pivot rule [Bland, 1977], which

allows Simplex to solve degenerate LP.

Theorem 3.6. If Bland’s rule is applied, the Simplex algorithm terminates.

For the interested reader, the proof of the theorem can be found in [Schrijver, 1998].

3.3.4 Finding an initial vertex

In all descriptions of Simplex in Algorithms 1, 2 and 3, it always starts by choosing

a feasible initial vertex or basis. But how do we find this initial vertex? Finding a

feasible solution of a Linear Program is almost as difficult as finding an optimal solution.

Fortunately, by using a simple technique, we can find a feasible solution of a related

auxiliary LP and use it to initialize the Simplex method on our LP. Let us consider our
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Algorithm 3 The Simplex algorithm with Bland’s pivot rule

Start with a feasible basis B

while B is not optimal do

Let i ∈ B be the smallest index with λi < 0 (λᵀA = cᵀ and λj = 0,∀j /∈ B)

Compute d ∈ Rn with Aᵀ
B\{i}d = 0 and aᵀ

id = −1

Determine K = {k : 1 ≤ k ≤ m,aᵀ
kd > 0}

if K = ∅ then

Assert that LP is unbounded.

else

Let k∗ ∈ K be the smallest index where min
k∈K

bk−aᵀkx
∗

aᵀkd
is attained

Update B := B \ {i} ∪ {k∗}
end if

end while

initial LP to be in the standard form 2:

max cᵀx (3.22)

s.t. Ax ≤ b

x ≥ 0.

We can split the conditions according to whether bi has a positive or negative value:

Ax ≤ b





A1x ≤ b1,b1 ≥ 0,b1 ∈ Rm1

A2x ≤ b2,b2 < 0,b2 ∈ Rm2

(3.23)

and define a new artificial variable y. We now create an auxiliary LP where we minimize

the sum of the new artificial variables:

min

m2∑

i=1

yi (3.24)

s.t. A1x ≤ b1

A2x ≤ b2 + y

x,y ≥ 0.

y ≤ |b2|.

We can show that this auxiliary problem is always feasible, since we can always find an

initial feasible solution like x∗ = 0,y∗ = |b2|, i.e.each yi is bounded by the absolute
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value of the corresponding component of b2. It fulfills all conditions of the auxiliary LP

of Equation (3.24), therefore it is a feasible initial vertex. From here, we can apply the

Simplex as described in Algorithm 3 to find the optimal solution. If we find an optimal

solution with variables x∗,y∗ which yields the optimal value of the objective function

of Equation (3.24) to be zero, we can assert that the vertex x∗ is a feasible solution

of the original LP problem in Equation (3.22). We will then use this initial vertex to

start the Simplex algorithm to solve the original LP. On the other hand, if we find that

the minimum value of the auxiliary problem is larger than zero, we can assert that the

original LP is infeasible.

The final complete description of the Simplex algorithm is found in Algorithm 4. Find-

ing the initial vertex is commonly called Phase I of the Simplex algorithm, while the

optimization towards the final solution through pivoting is commonly referred to as

Phase II. A hands-on example on how to solve a problem practically with Simplex will

be presented in Section 3.5.

Algorithm 4 The complete Simplex algorithm with Bland’s pivot rule

Create the auxiliary problem of the LP and find the optimal solution with basis B
and objective function value z.

if z = 0 then

B is a feasible basis of the initial LP. Start with the feasible basis B.

while B is not optimal do

Let i ∈ B be the smallest index with λi < 0 (λᵀA = cᵀ and λj = 0,∀j /∈ B)

Compute d ∈ Rn with Aᵀ
B\{i}d = 0 and aᵀ

id = −1

Determine K = {k : 1 ≤ k ≤ m,aᵀ
kd > 0}

if K = ∅ then

Assert that LP is unbounded.

else

Let k∗ ∈ K be the smallest index where min
k∈K

bk−aᵀkx
∗

aᵀkd
is attained

Update B := B \ {i} ∪ {k∗}
end if

end while

else

Assert that the LP is infeasible.
end if
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3.3.5 Complexity

The Simplex method is remarkably efficient, specially compared to earlier methods such

as Fourier-Motzkin elimination. However, in 1972 it was proven that the Simplex method

has exponential worst-case complexity [Klee and Minty, 1972]. Nonetheless, following

the observation that the Simplex algorithm is efficient in practice, it has been found that

it has polynomial-time average-case complexity under various probability distributions.

In order for the Simplex to perform in polynomial time, we have to use certain pivoting

rules that allow us to go from one vertex of the polyhedron to another in a small number

of steps. We will better understand this concept when we introduce the graphical model

representation of a polyhedron in Section 3.6.

3.4 The dual Linear Program

In this section, we introduce a very important property of Linear Programs: duality.

Given any general optimization problem, or primal problem, we can always convert it

to a dual problem. For LPs the dual problem is also an LP. The motivation to use

dualization, depicted in Figure 3.6, is that the dual problem gives us an upper bound

on the objective function of the primal problem.

z�

zd

zp

Dual objective values

Primal objective values

Figure 3.6: The motivation to find the dual of a problem is to find an upper bound
on the objective function of the primal.

As we saw in Section 3.3, the Simplex algorithm starts from a suboptimal solution and

performs gradient ascent to iteratively find solutions with increasing objective value,

until the optimum is reached. In the case of dual linear programs, we can find an

upper bound and iteratively make it more stringent until it reaches the optimum. It

is guaranteed for LPs that the smallest upper bound will correspond to the optimum

solution z∗ of the primal problem.
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Let us consider the following LP:

max x1 + 2x2

s.t. − 2x1 + x2 ≤ −2

x2 ≤ 4

x1 − 2x2 ≤ −2

x1 ≤ 4

x1, x2 ≤ 0

We can try to find an upper bound on the value of the objective function. One way to

do this, is by linearly combining the constraints of the problem, to obtain an expression

of the form cᵀx ≤ yᵀb, where y are the coefficients of this linear combination. Let us

multiply the first constraint by 2, the fourth by 5 and sum them up:

−2x1 + x2 ≤ −2 =⇒ ×2 =⇒ −4x1 + 2x2 ≤ −4

x1 ≤ 4 =⇒ ×5 =⇒ 5x1 ≤ 20

x1 + 2x2 ≤ 16

Note how we obtained our objective function after the sum, and therefore we can say

that 16 is an upper bound. We can also try another combination, summing the fourth

constraint and the second multiplied by 2:

x1 ≤ 4 =⇒ ×1 =⇒ x1 ≤ 4

x2 ≤ 4 =⇒ ×2 =⇒ 2x2 ≤ 8

x1 + 2x2 ≤ 12

In this case, we obtain an upper bound of 12, which turns out to be the smallest upper

bound and therefore corresponds to the optimum of the objective function.
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The general principle to find the dual problem is to multiply each of the constraints by

a new positive variable, namely the dual variable and sum the constraints up:

max c1x1+ c2x2+· · ·+ cnxn

s.t. a11x1+ a12x2+· · ·+ a1nxn ≤ b1 −→ e1 ≤ b1 −→ y1

a21x1+ a22x2+· · ·+ a2nxn ≤ b2 −→ e2 ≤ b2 −→ y2

...

am1x1+am2x2+· · ·+amnxn ≤ bm −→ em ≤ bm −→ ym

−x1 ≤ 0 −→ ym+1

−x2 ≤ 0 −→ ym+2

. . .

−xn ≤ 0 −→ ym+n.

Note that we already used this trick in Section 3.3.1, with λ as our new variables. The

variables have to be positive in order not to change the inequality sign. Now we want

to make this sum equal to our objective function:

z = c1x1 + c2x2 + · · ·+ cnxn ≡
m∑

i=1

yiei + . . .+ ymem − ym+1x1 − . . .− ym+nxn

which, by the constraints of the primal problem, is upper bounded by

z ≤ y1b1 + y2b2 + . . .+ ymbm.

Recall that our objective is to find the smallest upper bound. Let us express this

in a matrix notation. To make the notation clearer, we separate the new variables

between the ones associated to the constraints of the primal y = {y1, . . . , ym} and the

ones associated with the implicit positivity constraints, ys = {ym+1, . . . , ym+n}.

min bᵀy

s.t. Aᵀy − ys = c

y ≥ 0

ys ≥ 0

We can eliminate ys by substitution, ys = Aᵀy − c, obtaining the final equations for

the primal and dual problems:
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PRIMAL

max cᵀx

s.t. Ax ≤ b

x ≥ 0

DUAL

min bᵀy

s.t. Aᵀy ≥ c

y ≥ 0

So far, we have seen the relationship between a Linear Program and its dual. This is

summarized in the following theorem:

Theorem 3.7. Weak Duality. Consider a Linear Program max{cᵀx : x ∈ Rn,Ax ≤
b,x ≥ 0} and its dual min{bᵀy : y ∈ Rm,Aᵀy ≥ c,y ≥ 0}. If x∗ ∈ Rn and y∗ ∈ Rm

are primal and dual feasible respectively, then cᵀx∗ ≤ bᵀy∗.

This can be easily seen by the inequalities cᵀx ≤ yᵀAx ≤ yᵀb = bᵀy, the first of which

comes from the constraints of the dual problem, and the second from the constraints of

the primal provided that y ≥ 0.

An even more important theorem is:

Theorem 3.8. Strong Duality. Consider a Linear Program max{cᵀx : x ∈
Rn,Ax ≤ b,x ≥ 0} and its dual min{bᵀy : y ∈ Rm,Aᵀy ≥ c,y ≥ 0}.If the primal

is feasible and bounded, then there exist a primal feasible x∗ and a dual feasible y∗

with cᵀx∗ = bᵀy∗.

This means that with the dual we can find an upper bound that is tight at the optimal

solution of the primal. This can be used to prove optimality of primal solutions and, as

a consequence, optimality of dual solutions.

Proof. The proof of Theorem 3.8 is divided into two cases.

1. A has full column rank.

If this is the case, then we can use the Simplex algorithm to obtain an optimal

basis B ∈ {1, . . . ,m}. By the optimality of B, we know that y ∈ Rm subject to

yᵀ
BAB = cᵀ, and that yi ≥ 0 for all i /∈ B. We then know that the condition y ≥ 0

is fulfilled, and therefore y is dual feasible.

Now consider that x∗ = A−1
B bB is the current primal solution returned by the

Simplex. We can compare the value of the objective function at x∗ with the value

of the dual objective function at y to check if they are, in fact, equal.
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cᵀx∗︸︷︷︸
primal

= yᵀ
BABx∗ = yᵀ

B ABA−1
B︸ ︷︷ ︸

I

bB = yᵀ
BbB = yᵀb︸︷︷︸

dual

2. rank(A) < n.

First, we need to make sure our constraint matrix has full column rank, which is

why we replace the vector of variables x with x1 − x2. Now the Linear Program

looks like:

max cᵀ(x1 − x2)

A(x1 − x2) ≤ b

x1,x2 ≥ 0

Note, that the new LP will be equivalent to the old one in the sense that any

solution will also be a solution of the initial LP with the same objective value.

If we consider the new variable to be x′ =

(
x1

x2

)
The constraint matrix that

also incorporates the positiveness constraints is: A′ =




A −A

−I 0

0 −I


, where I is

an n× n identity matrix, and the objective function vector is c′ᵀ =
(

cᵀ −cᵀ
)

,

while the right-hand side term is b′ =




b

0

0


. The new constraint matrix A′ does

have full column rank, since the column vectors are now all independent thanks to

the placement of the new identity matrices. We can now use the Simplex algorithm

to find a solution. Let us denote the primal solution returned as (x∗1,x
∗
2), while

yᵀ =
(

yᵀ
1 yᵀ

2 yᵀ
3

)
is the dual returned by the Simplex to verify the optimality

of the primal solution. Let us write the conditions that should be verified by the

dual, taking into account that y ≥ 0:

yᵀ
1A− yᵀ

2 = cᵀ ⇒ yᵀ
1A ≥ cᵀ

yᵀ
1(−A)− yᵀ

3 = −cᵀ ⇒ −yᵀ
1A ≥ −cᵀ



⇒ yᵀ

1A = cᵀ.

We have just proven that y1 is dual feasible. Now the Simplex algorithm can check

the condition of optimality for the primal solution by verifying that:

(
cᵀ −cᵀ

)( x∗1

x∗2

)
= yᵀb′ =

(
yᵀ

1 yᵀ
2 yᵀ

3

)



b

0

0


 = yᵀ

1b
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And this proves the theorem, because we have found one possible primal feasible

solution x∗1 − x∗2 and one dual feasible solution y1 whose objective function values

coincide.

3.4.1 Proving optimality and infeasibility

So far we have seen that there is a close relationship between the dual and primal

problems and between the dual and primal optimum solutions. But what happens, for

example, if the dual problem is infeasible? Let us consider the following example:

PRIMAL

max x1 + 2x2 + x3

s.t. x1 + x2 ≤ 1

x1 + x3 ≤ 4

DUAL

min y1 + 4y2

s.t. y1 + y2 = 1

y1 = 2

y2 = 1

y1, y2 ≥ 0

If we check the primal problem carefully, we can identify cᵀ = (1, 2, 1), A =

(
1 1 0

1 0 1

)
,

and b =

(
1

4

)
, and therefore the dual problem is defined as shown. Nonetheless, we

can quickly see that the dual problem is infeasible, since the conditions set y1 = 2 and

y2 = 1 which means y1 + y2 will never be 1. An infeasible dual implies that we cannot

determine a bound for the primal. If we take a closer look at the primal problem we see

that it is, in fact, unbounded. For any α ≥ 0 that we choose, if we assign x = (−α, α, α),

the problem is feasible and the objective value is 2α, which means the objective function

can be maximized to infinity, making the problem unbounded.

We summarize the relationship between primal and dual problems in Table 3.1.

Primal/Dual Optimal Unbounded Infeasible
Optimal X

Unbounded X
Infeasible X X

Table 3.1: Possible combinations of properties of the primal and dual problems.

In the first case, by the strong duality Theorem 3.8, if a primal has an optimal solu-

tion, the dual will also have an optimal solution. The second case is when the primal
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is unbounded. In that case, by the weak duality Theorem 3.7, the dual problem is

infeasible.

We can then ask ourselves what would happen if we dualized the dual. It can be proven

that the dual of the dual is a Linear Program that is equivalent to the primal. This

proves that when the primal is infeasible, then the dual is unbounded. There is also

another possible case, where both primal and dual are infeasible.

Now to recap what the Simplex algorithm does: the algorithm returns a primal solution

x∗ and a dual y∗, and the only thing that needs to be done to prove the optimality of

the solution is to check whether the equality cᵀx∗ = bᵀy∗ is fulfilled. The optimality

proof is clear, and additionally, infeasibility can be proven by Farkas’ lemma.

Lemma 3.9. Farka’s Lemma. A system of inequalities Ax ≤ b is infeasible if and

only if there exists a vector λ with elements λi ≥ 0 such that λᵀA = 0 and λᵀb = −1.

Intuitively, if we consider such a vector λ to exist, then the inequality (λᵀA)x ≤ λᵀb

would be valid, but since λᵀA = 0 and λᵀb = −1, there would be no point x ∈ Rn that

could satisfy the inequality Ax ≤ b, making the problem infeasible.

3.5 Simplex in practice

So far, we have presented the theory behind Linear Programming and the Simplex

algorithm, and a step-by-step explanation of the initialization and optimization phases

that lead to the complete algorithm described in Algorithm 4. But how does Simplex

work in practice? How can we implement a Simplex solver?

If we want to code a Simplex solver, we need, first of all, a convenient data structure

for Linear Programs and their solutions. Such data structure is called a Dictionary of

an LP.

3.5.1 Dictionaries

A dictionary is a simple way to represent an LP. We can obtain it starting from the

Standard Form 2 presented in Section 3.1.1, and performing a series of simple steps. Let

us recall Standard Form 2 of an LP:

max cᵀx

s.t. Ax ≤ b

x ≥ 0.
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The first thing we do it add slack variables on the constraint equations to convert them

to equalities:

max cᵀx

s.t. Ax + xB = b

x ≥ 0.

Now we basically rearrange the equations into the following dictionary form:

xB = b−AxI

z = c0 + cᵀxI

which brings us to the dictionary form we will use throughout this section:

xB1 = b1 + a11xI1 + · · · + a1nxIn

xB2 = b2 + a21xI1 + · · · + a2nxIn
...

xBm = bm + am1xI1 + · · · + amnxIn

z = c0 + c1xI1 + · · · + cnxIn.

The variables xB = xB1, . . . , xBm are called basic variables, while xI = xI1, . . . , xIn are

called non-basic variables. There is a solution associated with each dictionary, which is

obtained by setting all non-basic variables to zero and reading out the values of the basic

variables from the equations in the dictionary. If all variables of the solution have values

which respect the non-negativity constraints, the dictionary is said to be feasible. The

indices of the basic variables form the basis B of our solution, a concept we presented in

previous sections. As we can see, there is already an advantage of representing LPs with

dictionaries: by reading out the resulting values of basic variables, we directly obtain

candidate solutions to the problem.

Once we have a way to structure the data of our problem, we can define how the Simplex

method works with dictionaries. An overview is presented in Figure 3.7.

D0 D1 Dk�1 DkDk+1
pivot���� pivot���� pivot���� pivot���� pivot����D�· · · · · ·

Phase I: initialization Phase II: optimization

Infeasible dictionaries Feasible dictionaries

Figure 3.7: Overview of the Simplex method with dictionaries
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The main operation we perform on dictionaries is pivoting, which is a way to go from

one dictionary to another. As we mentioned before, Simplex is divided into two phases:

• Phase I, or Initialization Phase: we start with an infeasible dictionary and pivot

until we reach a feasible dictionary or determine the problem is infeasible.

• Phase II, or Optimization Phase: we optimize our feasible dictionary and our

solution until we reach the optimum or determine the problem is unbounded.

In the following subsections, we describe both phases and how they work with dictio-

naries.

3.5.2 Phase II: Pivoting

The idea of the pivoting operation is, given a feasible initial dictionary, to obtain a new

dictionary which has a corresponding solution with a higher objective value. Recall that

the solution associated with a dictionary is represented by the basic variables. During

pivoting, we consider whether inserting some of the non-basic variables to the basis

would actually lead to an objective value increase. Of course, if a variable enters the

basis, another variable has to leave it. But how do we choose the entering and leaving

variables?

Let us consider the following example:

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0

which has the following corresponding dictionary:

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3 .



Chapter 3. Introduction to Linear Programming 47

We can immediately read the solution associated with this dictionary, which is x1 =

0, x2 = 0, x3 = 0, x4 = 5, x5 = 11, x6 = 8, and the corresponding objective value z = 0.

Let us consider the possible entering variables. Remember that an entering variable

should increase the objective value, therefore, we are looking for non-basic variables with

positive coefficients cj > 0. The variable with the highest coefficient in our example is

x1. Ideally, we want to increase this variable as much as possible so as to increase the

value z as much as possible. In the current dictionary, x1 has value 0. Let us set x1 = 10.

What happens to the basic variables? If we look at the equations of the dictionary, we

see that if x1 = 10, x2 = 0, x3 = 0 then x4 = −15, which violates the non-negativity

constraints. Therefore, we can intuitively see that the basic variables will limit how

much we can increase the entering variable. The basic variable that puts the tightest

restriction will be chosen as leaving variable.

Let us see which variable is limiting the increase of the value of x1. If we increase x1,

then variable x4 will decrease since the coefficient associated with x1 is negative. We

can only increase x1 up to 5
2 , in which case x4 = 0. x5 limits x1 ≤ 11

4 and x6 limits

x1 ≤ 8
3 . In this case, x4 limits x1 to the lowest value, and therefore will be chosen as

leaving variable.

The next step is to modify the dictionary according to the entering and leaving variables.

In order to do that, we first solve the equation of the leaving variable for the entering

variable. In our example:

x4 = 5− 2x1 − 3x2 − x3 −→ x1 =
5

2
− 3

2
x2 −

1

2
x3 −

1

2
x4

Now we substitute x1 by the obtained expression in all the other equations to obtain a

new dictionary:

x1 =
5

2
− 3

2
x2 − 1

2
x3 − 1

2
x4

x5 = 1 + 5x2 + 2x4

x6 =
1

2
+

1

2
x2 − 1

2
x3 +

3

2
x4

z =
25

2
− 7

2
x2 +

1

2
x3 − 5

2
x4 .

We can read the new solution associated with this new dictionary, which is x1 = 5
2 , x2 =

0, x3 = 0, x4 = 0, x5 = 1, x6 = 1
2 , z = 25

2 . As we can see, pivoting has brought us to a

new dictionary with higher objective value that the initial one.
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We can pivot one more time, with entering variable x3 and leaving variable x6. Note

that x5 imposes no constraint on the increase of x3 because they are not related by any

equation. The new dictionary we will obtain after pivoting is:

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2 − 2x2 − 2x4 − x6

x6 = 1 + 5x2 + 2x4

z = 13 − 3x2 − x4 − x6 .

If we look at the last dictionary obtained, we see that all the coefficients cj ≤ 0, which

means we do not have a choice for entering variable. There is no non-basic variable we

can choose that will increase the value of the objective function, which means we have

reached the optimum at z = 13 with x1 = 2, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 0.

In Algorithm 5 we present an overview of Simplex Phase II:

Algorithm 5 Phase II: optimization phase

Input: a feasible dictionary D

while There exists an entering variable with the largest cj ≥ 0 do

Select a corresponding leaving variable with the lowest bi
−aij that limits the value of

the entering variables xIj ≤ bi
−aij

if There exists no leaving variable. then

The problem is unbounded.

else

Perform pivoting to obtain D′.

end if

end while

Return dictionary D′ as final.

In the following subsection, we will discuss the feasibility of dictionaries after pivoting

as well as degenerate dictionaries. Most importantly, we will discuss how to identify

unbounded problems.

3.5.2.1 Proving feasibility

One could ask if by pivoting we will always end up with a feasible dictionary. In other

words, does pivoting maintain feasibility of the dictionaries? Here is a small proof. Let
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us again consider the general dictionary:

xB1 = b1 + a11xI1 + · · · + a1jxIj + · · · + a1nxIn → xIj ≤
b1
−a1j

xB2 = b2 + a21xI1 + · · · + a2jxIj + · · · + a2nxIn → xIj ≤ ∞
...

xBi = bi + ai1xI1 + · · · + aijxIj + · · · + ainxIn → xIj≤
bi
−aij

...

xBm = bm + am1xI1 + · · · + amjxIj + · · · + amnxIn → xIj ≤
bm
−amj

z = c0 + c1xI1 + · · · + cjxIj + · · · + cnxIn

where xIj is the entering variable and xBi the leaving variable. Let us now analyze

what happens with variable xB1, assuming it is not the leaving variable. Given the new

entering variable xIj , it will be assigned a value of xB1 = b1 + a1j

(
bi
−aij

)
. In order for

the new dictionary to be feasible, xB1 ≥ 0. Can we prove that it will never be negative?

Firstly, we can see that b1 ≥ 0, because the current dictionary is feasible, i.e.xB1 = b1

when all non-basic variables are set to zero. Secondly, we know aij < 0, otherwise xBi

would not be the leaving variable related to the entering variable xIj , because it would

not constraint the increase of xIj . The only thing we need to determine now, is the

value of a1j , for which we have two possibilities:

• a1j ≥ 0, we can directly determine that xB1 ≥ 0.

• a1j < 0, we cannot directly determine if xB1 will be nonnegative, but we do know

that bi
−aij ≤

b1
−a1j

, otherwise xB1 would be the leaving variable. From this, we can

derive:

bi
−aij

≤ b1
−a1j

−→ a1j
bi
−aij

≥ −b1 −→ b1 + a1j
bi
−aij

≥ 0.

3.5.2.2 Degeneracy

We have established that the pivoting operation maintains feasibility. The only question

we need to answer now is what happens with the value of the objective function during

pivoting. We know that the entering variable will take value xIj = bi
−aij after pivoting,

while the leaving variables will take value xBi = 0. Given that all other non-basic
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variables will remain zero, the objective value of the new dictionary will be:

z = c0 + cj

(
bi
−aij

)
.

We know cj > 0, otherwise xIj would not be the entering variable. On the other hand,

aij < 0, otherwise xBi would not be the leaving variable. If b1 > 0, it would mean the

objective value z can only increase, but we know that it can be that b1 = 0, in which

case the objective value would remain constant. A dictionary with these characteristics

is called a degenerate dictionary. We can see an example below:

x3 =
1

2
+

1

2
x4

x5 = 0 − 2x1 + 4x2 + 3x4

x6 = 0 + x1 − 3x2 + 2x4

z = 4 + 2x1 − x2 − 4x4 .

In this case, pivoting would bring us from one dictionary to another without ever in-

creasing the objective value, which means the algorithm would cycle and not terminate.

In order to avoid cycling, we can apply Bland’s rule as explained in Section 3.3.3.

3.5.2.3 Unbounded problems

There is only one case that needs to be analyzed by the Phase II algorithm, and that is

the case of unbounded LPs. Let us consider the following dictionary:

x4 = 5 − x1 + x2

x5 = 6 + x1 − x3

x6 = 2 + 2x1 − x3

x7 = 4 + x1 − x2

z = 0 + 2x1 + 3x2 − 5x3 .

At first glance, we cannot say if the problem is unbounded or not, so we just start piv-

oting. We choose x2 as entering variable, which means x7 is the leaving variable. The

new dictionary we obtain is therefore:
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x2 = 4 + x1 − x7

x4 = 9

x5 = 6 + x1 − x3

x6 = 2 + 2x1 − x3

z = 12 + 5x1 − 3x7 − 5x3 .

The new entering variable of this dictionary should be x1, but let us look at what

happens with the leaving variable. Remember that the leaving variable should limit the

increase of x1, but in this case, when we increase x1, x2, x5 and x6 all increase without

limits, and x4 does not depend on x1. This means that we could arbitrarily increase x1

and the non-negativity constraints would still be respected. When we cannot find any

leaving variable, we can conclude that the problem is unbounded. Alternatively, we can

say that the problem is unbounded when all entries of the column corresponding to the

entering variable are nonnegative.

3.5.3 Phase I: Initialization

Up to now we described how to solve an LP given an initial feasible dictionary. Let us

now consider the following LP

max x1 + 2x2

s.t. − 2x1 + x2 ≤ −2

x2 ≤ 4

x1 − 2x2 ≤ −2

x1 ≤ 4

x1, x2 ≥ 0

and corresponding dictionary

x3 = −2 + 2x1 − x2

x4 = 4 − x2

x5 = −2 − x1 + 2x2

x6 = 4 − x1

z = 0 + x1 + 2x2 .
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If we analyze the corresponding solution x1 = 0, x2 = 0, x3 = −2;x4 = 4, x5 = −2, x6 =

4, we see that variables x3 and x5 do not respect the non-negativity constraints, and

therefore the initial solution is infeasible. In Figure 3.8, we plot the feasible region of the

LP in orange. As we can see, the solution associated with the dictionary, x1 = 0, x2 = 0

is outside of the feasible region.

(2,2)

(0,0)

(3,4)

(4,3)

(4,4)

x1

x2

Feasible
region

Infeasible
initial solution

Move to a feasible
initial solution

Figure 3.8: Feasible region of the LP depicted in orange. The solution associated
with the initial dictionary (0,0) is not feasible. During initialization, we move towards

a feasible initial solution, (2,2) in this example.

The question is, what do we do when the initial dictionary is infeasible? The strategy

we follow is to slightly modify the initial LP and create the auxiliary problem. We then

perform a pivoting on the auxiliary problem, and given the solution we find, we can

draw a conclusion about the feasibility of the original LP.

Let us first describe how to construct the auxiliary problem. If we look at the previous

LP, we can see that the reason why the solution was not feasible, was that x3 and x5

had negative values. We could make those values positive by adding a certain quantity

x0, which would have to be at least 2. Let us forget about the objective function for

a moment and focus on the new constraints created by adding the variable x0. They

would look like:

− 2x1 + x2 ≤ −2 + x0

x2 ≤ 4 + x0

x1 − 2x2 ≤ −2 + x0

x1 ≤ 4 + x0

x1, x2, x0 ≥ 0

If we set x0 = 2, the new problem would have solution x1 = 0, x2 = 0, x3 = 0;x4 =

6, x5 = 0, x6 = 6, which is feasible. In fact, one can prove that the auxiliary problem

will always be feasible. Intuitively, we can also see that if the initial problem is feasible,

then x0 = 0, and the solution of the auxiliary problem will correspond to the solution of
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the initial LP. Nonetheless, if the initial problem is infeasible, then x0 > 0. This is the

intuition behind Phase I of the Simplex. We are going to work with the new constraints

and the auxiliary problem’s objective will be to find a minimum for x0. If the final

solution of the auxiliary problem is x0 = 0, we will conclude that the original problem

is feasible. An initial solution to the original problem will be obtained so we can then

start with Phase II of Simplex. Formally, the auxiliary problem has the following form:

max − x0

s.t. Ax + xs − x01 = b

x,xs ≥ 0

x0 ≥ 0,

where xs is the slack variable vector we added to form the dictionary, and x0 is the

new variable we use to create the auxiliary problem. Before, we said that the auxiliary

problem is always feasible, and we can see that by looking at the solution associated

with the initial dictionary of the auxiliary problem:

x = 0, x0 = −min(b, 0),xs = b + x01.

The value of x0 is chosen so as to make the problem feasible, and therefore it must bring

all the variables at least up to zero. In our previous example bmin = −2 and therefore

x0 = 2 in order to make x3 and x5 nonnegative. If we take a look at the slack variables,

we can see that xis = bi − bmin. Since by definition bi ≥ bmin, we know that the slack

variables will also be nonnegative, and therefore the auxiliary problem will always be

feasible.

Coming back to our example, this is the complete auxiliary problem corresponding to

the previous LP:

max − x0

s.t. − 2x1 + x2 ≤ −2 + x0

x2 ≤ 4 + x0

x1 − 2x2 ≤ −2 + x0

x1 ≤ 4 + x0

x1, x2, x0 ≥ 0

Let us now construct the initial dictionary for the auxiliary problem:
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x3 = −2 + x0 + 2x1 − x2

x4 = 4 + x0 − x2

x5 = −2 + x0 − x1 + 2x2

x6 = 4 + x0 − x1

w = 0 − x0 .

The pivoting of the auxiliary dictionary has a couple of special rules that we need

to follow: (i) the initial move will always be to make x0 the entering variable, and

the leaving variable will be the one with the least value bi, (ii) whenever x0 is one of

the possible leaving variables, preferentially choose it. In our example, if x0 enters, the

leaving variable can either be x3 or x5. We choose x5 and obtain the following dictionary:

x0 = 2 + x1 − 2x2 + x5

x3 = 0 + 3x1 − 3x2 + x5

x4 = 6 + x1 − 3x2 + x5

x6 = 6 − 2x2 + x5

w = −2 − x1 + 2x2 − x5 .

The next pivot is done with x2 as entering and x3 as leaving variable, leading to the

following dictionary:

x0 = 2 − x1 +
2

3
x3 +

1

3
x5

x2 = 0 + x1 − 1

3
x3 +

1

3
x5

x4 = 6 − 2x1 + x3

x6 = 6 − 2x1 +
2

3
x3 +

1

3
x5

w = −2 + x1 − 2

3
x3 − 1

3
x5 .

Finally, after choosing x1 as entering variable, we see that x0 is the leaving variable,

which leads to the final dictionary of the auxiliary problem:
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x1 = 2 − x0 +
2

3
x3 +

1

3
x5

x2 = 2 − x0 +
1

3
x3 +

2

3
x5

x4 = 2 + 2x0 − 1

3
x3 − 2

3
x5

x6 = 2 + 2x0 − 2

3
x3 − 1

3
x5

w = 0 − x0 .

As we can see, the solution associated with the final auxiliary dictionary is x0 = 0, x1 =

2, x2 = 2, x3 = 0, x4 = 2, x5 = 0, x6 = 2 and the final objective value is w = 0, which

means that the original LP is feasible. As we can see, the point x1 = 2, x2 = 2 is inside

the feasible region depicted in Figure 3.8.

The question now is, how do we construct a feasible dictionary for the original LP, so

we can start Phase II of Simplex? The answer is simple, we just eliminate x0 from

the constraints and rewrite the objective function z with respect to the new non-basic

variables. Here is the resulting dictionary:

x1 = 2 +
2

3
x3 +

1

3
x5

x2 = 2 +
1

3
x3 +

2

3
x5

x4 = 2 − 1

3
x3 − 2

3
x5

x6 = 2 − 2

3
x3 − 1

3
x5

z = 6 +
4

3
x3 +

5

3
x5 .

Recall that the original objective function was z = x1 + 2x2, which we just rewrite by

substituting x1 and x2. The solution associated with this dictionary is x1 = 2, x2 =

2, x3 = 0, x4 = 2, x5 = 0, x6 = 2, which is a feasible solution. Therefore, now we can use

this dictionary to start Phase II of the Simplex algorithm to find the optimal solution.
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3.5.3.1 Infeasible problems

In this section we just want to present an infeasible problem, and how the auxiliary

problem helps us determine its infeasibility. Let us consider the following LP:

max 2x1 − 3x2

s.t. − x1 + x2 ≤ −3

2x1 + x2 ≤ 10

x1 − 2x2 ≤ −2

x1, x2 ≥ 0

with associated initial dictionary:

x3 = −3 + x1 − x2

x4 = 10 − 2x1 − x2

x5 = −2 − x1 + 2x2

z = 0 + 2x1 − 3x2 .

The solution associated with this dictionary is x1 = 0, x2 = 0, x3 = −3, x4 = 10, x5 = −2,

which is infeasible. We therefore start Phase I of the Simplex algorithm by constructing

the auxiliary problem:

x3 = −3 + x0 + x1 − x2

x4 = 10 + x0 − 2x1 − x2

x5 = −2 + x0 − x1 + 2x2

w = 0 − x0 .

We start the pivoting for auxiliary problems by choosing x0 as entering variable and x3

as leaving, obtaining the following dictionary:

x0 = 3 − x1 + x2 + x3

x4 = 13 − 3x1 + x3

x5 = 1 − 2x1 + 3x2 + x3

w = −3 + x1 − x2 − x3 .

We continue pivoting by making x1 enter and x5 leave the basis:
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x0 =
5

2
− 1

2
x2 +

1

2
x3 +

1

2
x5

x1 =
1

2
+

3

2
x2 +

1

2
x3 − 1

2
x5

x4 =
23

2
− 9

2
x2 − 1

2
x3 +

3

2
x5

w = −5

2
+

1

2
x2 − 1

2
x3 − 1

2
x5 .

Next, we make x2 enter and x4 leave:

x0 =
11

9
+

5

9
x3 +

1

9
x4 +

1

3
x5

x1 =
13

3
+

1

3
x3 − 1

3
x4

x2 =
23

9
− 1

9
x3 − 2

9
x4 +

1

3
x5

w = −11

9
− 5

9
x3 − 1

9
x4 − 1

3
x5 .

Once we reach this dictionary, we see that there are no possible entering variables, and

we reach a solution where x0 = 11
9 > 0. We can only conclude that the original problem

is infeasible.

If we take another look at the constraints of the original problem, and we sum the first

and the third constraints, we get:

−x1 + x2 + x1 − 2x2 ≤ −3− 2 −→ −x2 ≤ −5 −→ x2 ≥ 5.

And if we take the second equation and subtract the first one, we get:

2x1 + x2 + x1 − x2 ≤ 10 + 3 −→ 3x1 ≤ 13 −→ x1 ≤
13

3
.

If we now substitute the two variables into the first equation:

−13

3
+ 5 =

2

3
≤ −3

x2 has a value of 5 or larger, while x1 cannot be larger than 13
3 , which means that the

minimum value of the first constraint −x1 + x2 will be 2
3 , which is clearly larger than

−3. Therefore, we can see that the problem is, indeed, infeasible.
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3.6 Graph model representation

Now that we have a clear definition of Linear Programs and its important properties, and

we know how to solve a Linear Program with Simplex, we move towards the graphical

model of a polyhedron. Going from LP representations to graphical model represen-

tations and vice versa is certainly useful since, for example, there will be certain LPs

which will be solved faster by using network flow solvers like k-shortest paths.

An undirected graph G = (V,E) consists of a finite set V of nodes or vertices and a

set E of edges, where each edge e ∈ E is a two-element subset of vertices e = (u, v),

where u 6= v ∈ V . An example of such a graph is shown in Figure 3.9(a), where

V = {1, 2, 3, 4, 5} and E = {(1, 2), (1, 4), (2, 3), (3, 4), (3, 5), (4, 5)}.

1

2

3

4

5
(a) Undirected graph

1

2

3

4

5
(b) Walk (green) and path (orange)

1

2

3

4

5
(c) Diameter

Figure 3.9: Basic concepts of graph theory

A walk from node i1 ∈ V to it ∈ V is a sequence i1, i2, . . . , it of nodes such that

(ik, ik+1) ∈ E for k = 1, . . . , t − 1. A walk is called a path if it has no repeated nodes.

In Figure 3.9(b) we show an example of a walk 1, 2, 3, 4, 5, 3 in green; note that it is not

a path since node 3 is repeated. We depict a path 1, 2, 3, 5 in orange.

The distance between u, v ∈ V is the smallest t such that there exists a path i1, . . . , it

in G with i1 = u and it = v. The diameter of G is the largest distance between two

nodes of G. In Figure 3.9(c) we show a case, where the longest distance between any

two nodes in the graph is 2, therefore the diameter of the graph is 2.

Now that we have defined some basic concepts of graphs, we can proceed by representing

polyhedra used to describe Linear Programs as graphs.

A polyhedron P = {x ∈ Rn : Ax ≤ b} with vertices defines a graph GP = (V,E) as

follows. The set of nodes V is the set of vertices of P and (v1, v2) ∈ E ⇐⇒ v1 and v2

are adjacent in P (see Figure 3.10).

The diameter of GP is the diameter of P . If a version of the Simplex algorithm requires

only a polynomial number of iterations (in both n and m), then the diameter of each

polyhedral graph is polynomial.
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(a) Polyhedron P (b) Graph representation of P , vertices
in orange, edges in blue.

Figure 3.10: Conversion from polyhedron to graph

Considering the previously defined Linear Program max{cᵀx : x ∈ Rn,Ax ≤ b}, we

know that the Simplex algorithm walks along the edges of a graph GP of P = {x ∈
Rn : Ax ≤ b}. The question we asked ourselves in previous sections was whether

there is a version of Simplex requiring a polynomial number of iterations. A necessary

condition for this is that the diameter of GP must be polynomial. We define a new

variable ∆(n,m) as the diameter of a graph GP of a polyhedron P ⊆ Rn described by

m inequalities. The best bound for ∆(n,m) found so far was presented in 1992 by Kalai

and Kleitman [Kalai and Kleitman, 1992] and it is defined as ∆(n,m) ≤ m1+logn. This

bound belongs to a family of functions called quasi polynomial, which grow much slower

than exponential functions, but not as slow as polynomial functions.

Now we introduce an important property of a graph GP related to polyedron P = {x ∈
Rn : Ax ≤ b}, which is that GP is connected. Furthermore, for each pair of vertices u, v

there exists a path connecting u and v such that each inequality of Ax ≤ b active at

both u and v is also active at each vertex of that path.

Let us look at the example shown in Figure 3.11, where we have our graph GP drawn

in black and two vertices u and v marked in red. Inequality x1 ≤ 1 is active at both

vertices and there is a path (marked in red) along which this constraint is also active.

x3
x2

x1

x1 � 1

Figure 3.11: Path between u and v that satisfies the inequality active at both vertices.

The most interesting thing is that vertices and feasible bases are equivalent concepts. A

graph GP = (V,E) has a set of vertices or nodes which is indeed a set of feasible bases.

Let us look at the following example shown in Figure 3.12. There are six conditions

active for this polyhedron (blue edges), they are written and numbered on the right side
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on the Figure. For each vertex, we can determine the active constraints, and therefore

form the basis of that vertex. We show some of the vertex - basis correspondence in

Figure 3.12.

x3
x2

x1 5. x2 � 1

6. x3 � 1

4. x1 � 1

3. x3 � 0

2. x2 � 0

1. x1 � 0

(0, 0, 0) (1, 0, 0)

{1, 2, 3} {4, 2, 3}

{4, 5, 6}
(1, 1, 1)

Figure 3.12: Identifying vertices with their feasible bases.

3.7 Matchings and vertex covers

A graph G = (V,E) is bipartite if one can partition V into V = A ∪ B such that each

edge (u, v) ∈ E satisfies u ∈ A, v ∈ B. As we can see in Figure 3.13, edges within a set

are not allowed (marked in red), while edges that connect a node of one set with a node

of the other set are allowed (marked in green). Each edge has a weight w ∈ R0, which

can be used to represent costs, distances, etc. depending on what the graph is modeling.

A B

w

Figure 3.13: Bipartite graph: two sets A and B, edges between sets are allowed
(green) while edges within the same set are not allowed (red). Edges are assigned a

weight w.

A matching is a subset M ⊆ E of the edges such that each pair e1, e2 ∈ M, e1 6= e2

satisfies e1 ∩ e2 = ∅.
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The maximum weight (bipartite) matching problem can be defined as follows: given

a (bipartite) graph G = (V,E) and edge weights w ∈ R0, determine a matching

M ⊆ E such that w(M) =
∑
e∈M

we is maximal.

Let us consider a typical example of a matching problem in bipartite graphs: the job

assignment problem. The problem is very simple: we have four job openings and four

applicants. Each applicant has a performance score for each job, and we want to maxi-

mize the total performance score for the company. This can be translated to a bipartite

graph as shown in Figure 3.14(a). One possible match is shown with green edges in

Figure 3.14(b), but now the question is whether this match is maximal or not. In this

case, the sum of the weight of the edges used in the matching is equal to 15.

Tom

James

Kate

Alice

Programmer

Web master

Professor

Secretary

5

4

2

3

5

6

3

5

(a) Graph representation of the job assignment prob-
lem

Tom
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Alice

Programmer

Web master

Professor
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3

5

6

3

5

(b) Possible match M marked by green edges

Tom

James

Kate

Alice

Programmer

Web master

Professor

Secretary

2 3

2

5

5

4

2

3

5

6

3

5

3

0

0 0

(c) Possible w-vertex cover

Figure 3.14: Bipartite graph representation of the job assignment problem.

In order to find out if this matching is optimal, we use the concept of w-vertex covers.

The relation between w-vertex covers and the maximum weight matching problem is

similar to the relation between primal and dual problems.

A w-vertex cover is a vector y ∈ N‖V ‖0 such that ∀(u, v) ∈ E : yu + yv ≥ wuv. The

value of a w-vertex cover is
∑
v∈V

yv. An example of w-vertex cover for the job assignment

bipartite graph can be found in Figure 3.14(c). In this case, we need to assign a value to

each node (number inside the red rectangle) so that the value of the edge that connects

two nodes is smaller than or equal to the sum of the node values. Using the concept of

w-vertex cover we can prove the optimality of a matching M .
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Lemma 3.10. Let G = (V,E) be a graph and let w ∈ R0 be edge weights. If M is a

matching of G and if y is a w-vertex cover of G, then w(M) ≤ ∑
v∈V

yv.

This lemma is equivalent to the weak duality of Linear Programs presented in Theorem

3.7. We will know that the matching M and the w-vertex cover y are both optimal if

their values are equal, as is the case of Figure 3.14, where w(M) = 15 =
∑
v∈V

yv.

3.7.1 Back to Linear Programs and towards Integer Programs

Now we can return to Linear Programs to find another way to prove the weak duality on

bipartite graphs, move towards strong duality and later on discuss integer programs and

linear relaxation. These last concepts are extremely important for the multiple people

tracking formulation we present in Chapter 4.

Let us first convert our graph to a Linear Programming formulation. We want to describe

the matchings by linear constraints. We start by enumerating all edges and describing

matchings as vectors ∈ {0, 1}. In Figure 3.15(a) we see an example graph, in this case,

the numbers identify the edges and not the nodes. We show two possible matchings,

one marked by red edges and the other by green edges. The vectors corresponding to

these matchings are: xM = (1, 0, 0, 0, 1, 0, 0) and xM = (0, 1, 0, 0, 0, 1, 0). The vector

xM = (1, 0, 0, 1, 0, 0, 1), for example, would not be a possible matching vector, since the

edges 1 and 4 share a node, and so do edges 4 and 7. One of the characteristics of a

vector that represents a matching is that one node can only be connected once by an

edge. We describe this property formally now.

1 2

3
4

5

6

7

(a) Example of a graph with two possible
matchings (in red and green)

1

2 3

1 2

3
(b) Triangle graph

Figure 3.15: Example graphs
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For v ∈ V we denote the set of edges incident to v by δ(v) = {e ∈ E : v ∈ e}. The set

{xM : M is matching of G} is a set of feasible solutions that satisfies

v ∈ V :
∑

e∈δ(v)

xe ≤ 1

e ∈ E : xe ∈ {0, 1}, (3.25)

where xe is an indicator that tells us if an edge is used in the matching (1) or not (0).

Let us look at the simple graph of Figure 3.15(b), where nodes are denoted by black

numbers and edges by red ones. The conditions defined before in Equation (3.25) can

be summarized by the following expression




1 0 1

1 1 0

0 1 1


x ≤




1

1

1


 where x ∈ {0, 1}3

These constraints have a similar expression as the ones we have seen before for Linear

Programs

Ax ≤ b

x ∈ Zn, (3.26)

except that now x can now only take integer values. This defines an Integer Program, a

problem like the one depicted in Figure 3.16, where the conditions form the red polyhe-

dron. The black points represent integer solutions, and those within the polyhedron are

feasible. The green arrow is the direction of maximization of our optimization problem.

As we can see, if the program was a Linear Program as the ones defined in previous

sections, the optimal solution would be the vertex marked by the green dot. But since

our problem has decision variables which can only take integer values, we have to find

the closest integer-valued solution, which is marked by the orange dot.

The biggest drawback of Integer Programs is that they are NP-hard, which means that

they cannot be solved in polynomial time. Though NP complexity is not a central topic

of this thesis, we make a short explanation in the following lines. We refer the interested

reader to [Ahuja et al., 1993] for more details.

A note on NP complexity

• Class P: a decision problem P belongs to P if it can be solved by a deter-

ministic Turing machine in polynomial time.
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Figure 3.16: Representation of an integer program. The conditions define the red
polyhedron, solutions inside it will be feasible. The green arrow points to the direction
of maximization of our optimization problem, while the orange dot marks the optimal

integer-valued solution.

• Class NP: a decision problem P is in NP if for every instance of P that has

a positive results, there is a certificate proving the positive result, which can

be verified in polynomial time.

• Class NP-complete: a decision problem P is said to be NP-complete if: (i)

P ∈ NP and (ii) all other problems in the class NP are reducible to P in

polynomial time. This implies that, if there is an efficient algorithm for some

NP-complete problem, there is an efficient algorithm for every problem in

the class NP. As a result, an NP-complete problem is at least as hard as

every other problem in the class NP.

• Class NP-hard: a problem P is said to be NP-hard if all other problems in

the class NP are reducible to P in polynomial time. Informally, an NP-hard

problem is at least as hard as the hardest problems in NP.

Returning to the max-weight matching problem, we formulate it as an Integer Program

with the constraints shown in Equation 3.26. The variables xe are the indicators of

whether an edge belongs to a matching or not, as we said before. Recall that the goal

of the max-weight matching problem was to maximize the sum of we, which are the

weights of the edges of the matching solution. Note that the condition xe ∈ {0, 1} is

now expressed as xe ≥ 0, because together with the other condition, we only allow the

variables to be bounded between 0 and 1, and if they can only take integer values, then

they can only take the value 0 or 1.
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P

NP-complete
NP-complete

NP-hard

NP

Graph connectivity
Primality testing
Linear programming

Factoring
Graph isomorphism

Graph 3-coloring
Maximum clique
Traveling salesman

Matrix permanent
Halting problem

Figure 3.17: Representation of computational complexity classes. Some examples of
common problems belonging to each of the classes are given.

INTEGER PROGRAM

max
∑

e∈E
wexe

s.t. ∀v ∈ V :
∑

e∈δ(v)

xe ≤ 1

∀e ∈ E : xe ≥ 0

∀e ∈ E : xe ∈ Z|E| (3.27)

�
LP RELAXATION

max
∑

e∈E
wexe

s.t. ∀v ∈ V :
∑

e∈δ(v)

xe ≤ 1

∀e ∈ E : xe ≥ 0

∀e ∈ E : xe ∈ R|E| (3.28)

We can convert the problem into a Linear Program by changing the condition marked

in red in Equation (3.27) and simply considering a larger set of feasible solutions. By

doing so, we would obtain the formulation of Equation (3.28). Since we are considering

a larger set of solutions (Z ⊂ R), it follows that the solution of the relaxed problem will

always be an upper bound of the integer program.

Let us look into a quick example illustrating the difference between the integer program

solution and the linear relaxation solution. We take the graph of Figure 3.15(b), where

all weights are 1 and the maximum number of active edges connected to a node is also

1. In this setting, the maximum cardinality of a matching is 1, since the use of any

edge invalidates the use of all other edges. If we consider the Linear Program relaxation

though, we can find a solution like x1 = 1/2, x2 = 1/2, x3 = 1/2. This would make the

objective value equal to 3/2 which is indeed larger than 1. To prove that this is indeed

the optimal solution, we can add the three constraints and obtain 2x1 + 2x2 + 2x3 ≤ 3

which brings us to x1 + x2 + x3 ≤ 3/2.
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We can express the minimum w-vertex cover problem as an Integer Program as well, as

shown in Equation (3.29), and its LP-relaxed version in Equation (3.30). In this case,

since we are working with minimization, the LP relaxation version is a lower bound of

the integer solution.

INTEGER PROGRAM

min
∑

v∈V
yv

s.t. ∀(u, v) ∈ E : yu + yv ≥ wuv
∀v ∈ V : yv ≥ 0

y ∈ Z|V | (3.29)

�
LP RELAXATION

min
∑

v∈V
yv

s.t. ∀(u, v) ∈ E : yu + yv ≥ wuv
∀v ∈ V : yv ≥ 0

y ∈ R|V | (3.30)

With these Linear Programming representations, we can again prove the weak duality

between the maximum weight matching and the w-vertex cover, relationship shown in

Figure 3.18.

Theorem 3.11. The maximum weight of a matching is at most the minimum value of

w-vertex cover.

� = �

Maximum weighted
matching

Minimum value

w-vertex cover

�

max
∑

e∈E

wexe

s.t. ∀v ∈ V :
∑

e∈δ(v)

xe ≤ 1

∀e ∈ E : xe ≥ 0

∀e ∈ E : xe ∈ Z|E|

max
∑

e∈E

wexe

s.t. ∀v ∈ V :
∑

e∈δ(v)

xe ≤ 1

∀e ∈ E : xe ≥ 0

∀e ∈ E : xe ∈ R|E|

min
∑

v∈V

yv

s.t. ∀(u, v) ∈ E : yu + yv ≥ wuv

∀v ∈ V : yv ≥ 0

y ∈ Z|V |

min
∑

v∈V

yv

s.t. ∀(u, v) ∈ E : yu + yv ≥ wuv

∀v ∈ V : yv ≥ 0

y ∈ R|V |

Figure 3.18: Relationship between the maximum weighted matching problem, its
integer and LP relaxation versions, and the minimum w-vertex cover, also with its

integer and LP relaxation versions.

The only thing left to prove is that the LP relaxation representation of the maximum

weighted matching is equal to the minimum w-vertex cover, which would be the proof

of strong duality.

3.7.2 Total unimodularity and strong duality

If we again take a look at the LP relaxed versions of the problems, we can see that they

have the general forms described in Equations (3.31) and (3.32). In this section we will

take a closer look at the matrix AG and see that these two problems are, in fact, duals

of each other.
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max
∑

e∈E
wexe

s.t. ∀v ∈ V :
∑

e∈δ(v)

xe ≤ 1

∀e ∈ E : xe ≥ 0

x ∈ R|E|

max wᵀx

s.t. AGx ≤ 1

x ≥ 0 (3.31)

min
∑

v∈V
yv

s.t. ∀(u, v) ∈ E : yu + yv ≥ wuv
∀v ∈ V : yv ≥ 0

y ∈ R|V |

max 1ᵀy

s.t. Aᵀ
Gy ≥ w

y ≥ 0 (3.32)

Let G = (V,E) be a graph and suppose the nodes and edges are ordered as v1, . . . , vn

and e1, . . . , em, respectively. The matrix AG ∈ {0, 1}n×m with

Ai,j
G =





1 if vi ∈ ej
0 otherwise

is the node-edge incidence matrix of G.
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Figure 3.19: Node-edge incidence matrix AG of the graph represented on the left.
The green numbers identify the nodes, while the red ones identify the edges.

By using Linear Programming strong duality we will be able to prove that, in fact,

the optimal solutionw for the LP relaxation versions of the problems are equal to the

solutions of their integer counterparts. This is true for bipartite graphs and in general

Linear Programs defined by a node-edge incidence matrix A which is totally unimodular.

A matrix A ∈ {0,±1} is totally unimodular if the determinant of each square sub-matrix

of A is equal to 0, 1 or -1.

Theorem 3.12. Let G = (V,E) be a bipartite graph. The node-edge incidence matrix

AG of G is totally unimodular.
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The proof of Theorem 3.12 is interesting since we can use it to prove the total unimod-

ularity of the matrix that will define our tracking problem, as we will see in Chapter

4.

Proof. We will give a proof depending on the value of k, where B is a k× k sub matrix

of AG. Remembering that the columns of AG represent edges and rows represent nodes,

we can see that each column will contain two 1’s for the nodes that edge connects, and

the rest will be 0’s.

• k = 1.

If we only take a matrix of one element, this element can be B = 0,±1 which

means det(B) = 0,±1.

• k > 1, B has a column with exactly one entry equal to 1.

If we develop the determinant along that column, then all coefficients are 0 except

for one, and we can derive the following expression: det(B) = ±1 det(B′), where

B′ is a (k − 1) × (k − 1) sub matrix obtained by deleting the column and row

marked by an orange line.

B =

�
�����������

0
...
0
1
0
...
0

�
�����������

�
�����������

0
...
0
1
0
...
0

�
�����������

�
�����������

0
...
0
1
0
...
0

�
�����������

Of course, we can see that B′ is a sub matrix of AG, so we can use induction on

B′ to prove its total unimodularity.

• k > 1, each column of B contains exactly two entries equal to 1.

We can order the rows according to the set they belong to. Remember that a

bipartite graph consists of two sets of vertices (for example, F and M), and that

an edge can only connect one vertex from set F to a vertex of the other set M .

If we put all the rows of the first set on top and all the rows of the second set at

the bottom, we can see that for each column we will have exactly one 1 above the

orange line and another below it. If we then add up all the rows above the line,

we will obtain an all 1’s vector. We will obtain the same if we add up all rows

below the line. This means that these rows are not linearly independent, making

det(B) = 0.



Chapter 3. Introduction to Linear Programming 69

�
�����������

...
1
...
...
1
...

�
�����������

B =

�
�����������

0
...
0
1
0
...
0

�
�����������

�
�����������

0
...
0
1
0
...
0

�
�����������

w

F M

F

M

Going back to integer and linear programs, we can state the following theorem.

Theorem 3.13. If A ∈ Zm×n is totally unimodular and b ∈ Zm, then every vertex

of the polyhedron P = {x ∈ Rn : Ax ≤ b} is integral.

This basically tells us that as long as our matrix A is totally unimodular, even if

the indicator variable x is not specified to be integer-valued, the optimal solution

will always be integral.

Therefore, we can state the following corollary.

Corollary 3.14. If A ∈ Zm×n is totally unimodular, b ∈ Zm, and if max{cᵀx : x ∈
Rn,Ax ≤ b} is bounded, then

max{cᵀx : x ∈ Rn,Ax ≤ b,x ≥ 0} = max{cᵀx : x ∈ Zn,Ax ≤ b,x ≥ 0}

From all this, we can conclude that the maximum weight of a matching is equal to the

minimum value of a w-vertex cover, which is the strong duality in a bipartite graph.

This is all summarized in the following theorem by Egerváry [Egerváry, 1931].

Theorem 3.15. Let G = (V,E) be a bipartite graph and let w ∈ N0 be edge weights.

The maximum weight of a matching is equal to the minimum value of a w-vertex cover.

If we take a look at Figure 3.18, we see that we have proven all inequalities to be equal

when AG is totally unimodular, which is in fact true for the bipartite graph, so we have

proven Theorem 3.15.

A similar but less general theory was developed independently by König in 1931 [König,

1931]. It defines a vertex cover of a graph G = (V,E) to be a subset U ⊆ V such that
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e ∩U 6= ∅ for each e ∈ E. This is the same as a w-vertex cover in the special case when

w = 1, i.e.an all ones vector.

Theorem 3.16. Let G = (V,E) be a bipartite graph. The maximum cardinality of a

matching of G is equal to the minimum cardinality of a vertex cover of G.

3.8 The shortest path problem

After explaining the main concepts of Linear Programming and their relationship to

graph theory, in this section we focus on solvers for graphs, namely shortest paths.

Though we do not use this particular algorithm to solve our multiple people tracking

problem, it has been widely used in the literature [Berclaz et al., 2011], [Pirsiavash et al.,

2011] and therefore we consider them to be a valuable concept to be included in this

Chapter. Towards the end of the section, we will see again the connection of this method

to Linear Programming.

So far we have talked about undirected graphs G = (V,E), where V = {1, . . . , n} is the

set of vertices or nodes and M ∈ {0, 1}|V |×|V | represents their adjacency matrix. Every

pair of nodes connected by an edge has a 1 entry in the matrix, i.e.:

Mij =





1 if (i, j) ∈ E

0 otherwise.

We can see an example of this graph in Figure 3.20(a), note that the adjacency matrix

is symmetric since the edges are undirected.

A directed graph, on the other hand, is a tuple D = (V,A), where V is a finite set of

vertices or nodes and A is the set of arcs or directed edges of D. We denote a directed

edge by its defining tuple (u, v) ∈ A. The nodes u and v are called tail and head of

(u, v), respectively. In the example of Figure 3.20(b), the edge (3, 4) would have 3 as

head and 4 as tail. The adjacency matrix of directed graphs is composed by:

Muv =





1 if (u, v) ∈ A

0 otherwise.

This means that a 1 represents not an undirected edge but a directed arc, so we have

to pay attention to the beginning and end point, since the direction of the arc changes

where the 1 is placed within the adjacency matrix. We can see the same example as

before in Figure 3.20(b), but this time as a directed graph. As we can see, the adjacency

matrix is no longer symmetric.
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(a) Undirected graph and its adjacency matrix
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(b) Directed graph and its adjacency matrix

Figure 3.20: Undirected vs. directed graphs

For our multiple people tracking problem, we use weighted directed graphs, where each

edge has a weight related to it. Let D = (V,A) be a directed graph without cycles, where

c : A → R are the lengths or costs of the arcs. The length of a walk W = v0, . . . , vk is

the sum of the lengths or costs of its arcs:

c(W ) =
k∑

i=1

c(vi−1, vi).

The distance between two nodes s and t is the cost of a shortest path from s to t.

s

t

a

b

c

d
3

4

-2

1

2

-3

2

3

Figure 3.21: Weighted directed graph. Shortest path from s to t with length 4 marked
in green.

In Figure 3.21 we can see an example of a weighted directed graph. We can see, for

example, that the cost of the walk s, a, b, c is 3 + 1− 2 = 2. The shortest path from s to

t is marked in green and has cost s, a, b, d, t = 3 + 1 + 3− 3 = 4.
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The shortest path problem can be formally defined as: given a directed graph with edge

costs and a designated node s, compute d(s, v) for each v ∈ V . This is an NP-hard

problem in general but solvable in polynomial time if there are no negative cycles. A

cycle is defined as a walk v0, v1, . . . , vk with v0 = vk.

There are many solvers to find the shortest path in a graph, e.g. Dijkstra’s algorithm or

the Bellman-Ford algorithm. Like Dijkstra’s Algorithm, Bellman-Ford is based on the

principle of relaxation, in which an approximation to the correct distance is gradually

replaced by more accurate values until eventually reaching the optimum solution. In

both algorithms, the approximate distance to each vertex is always an overestimate of

the true distance, and is replaced by the minimum of its old value with the cost of a

newly found path.

For the multiple people tracking problem, we can use a solver based on Dijkstra’s al-

gorithm or Bellman-Ford algorithm that will find a series of k-shortest paths, each one

representing a valid pedestrian trajectory [Berclaz et al., 2011, Pirsiavash et al., 2011].

3.8.1 The Bellman-Ford method

In this section, we describe a method to compute minimum length walks given a weighted

directed graph D = (V,A) with no cycles of negative length and a designated node s ∈ V .

The goal of the method is to compute shortest path distances from s to all other nodes,

assuming that each node is reachable from s.

For k ≥ 0 and t ∈ V , we can define dk(t) to be the minimum length of any s − t walk,

traversing at most k arcs. For example, d0(s) = 0, since the length of a walk from s to

s traversing at most 0 arcs is, in fact, also 0. d0(t) = ∞ unless t = s, since we cannot

reach any other node from s by traversing at most 0 arcs.

Let us assume di(t) is known for each i ≤ k and each t ∈ V , and now we want to

compute dk+1(t) for each t ∈ V . Now we can encounter two cases: the first one is when

a shortest walk traversing at most k + 1 arcs traverses exactly k + 1 arcs; the second

one is when the shortest walk traversing at most k+ 1 arcs actually traverses at most k

arcs, i.e.dk+1(t) = dk(t). Both of these are upper bounds of dk+1(t).

To sum up, for k ≥ 0 and t ∈ V : dk+1(t) = min{dk(t), min
(u,t)∈A

dk(u) + c(u, t)}. In

Algorithm 6 we depict the procedure to compute the values dk+1(t) assuming that dk(t)

are pre-computed. The idea of the algorithm is to iteratively set dk+1(t) to the smallest

value possible. Since both dk(t) and dk(t)+c(u, t) are upper bounds of dk+1(t), we make

sure that this is set to its smallest possible value at each iteration.
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Algorithm 6 Bellman-Ford algorithm

initialize

∀t ∈ V \ {s}, d0(t) =∞
d0(s) = 0

for k = 0 to n− 2 do

for each t ∈ V do

dk+1(t) := dk(t)

end for
for each (u, t) ∈ A do

if dk(t) + c(u, t) < dk+1(t) then

dk+1(t) := dk(t) + c(u, t)

end if

end for

end for

if ∃t ∈ V with dn(t) < dn−1(t) then

D has a negative cycle

end if

Let us consider the following example as depicted in Figure 3.22. We start the compu-

tation of distances as explained in Algorithm 6, by first initializing d0 to 0 for the node

s and ∞ for all other nodes. We start the first iteration with k = 0, where we compute

d1 accordingly. By traversing at most 1 arc from s, we can reach nodes a and c with

lengths 3 and 4, respectively. We therefore obtain the distances as shown in Table 3.2,

third row from the bottom. We keep computing distances for k = 2, 3 until we reach

k = 4, where the algorithm converges and all values of d5 are equal to d4.

s

a

b

c

d

3

4
-2

1

-3

2

3

e

1

-5

Figure 3.22: Bellman-Ford algo-
rithm example.

0 3 4 2 7 2 d5

0 3 4 2 7 2 d4

0 3 4 2 7 6 d3

0 3 4 4 ∞ ∞ d2

0 3 ∞ 4 ∞ ∞ d1

0 ∞ ∞ ∞ ∞ ∞ d0

s a b c d e

Table 3.2: Distances com-
puted by the Bellman-Ford

algorithm.

Now we have to formally define the conditions under which the Bellman-Ford algorithm

terminates (converges).
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Theorem 3.17. Given D = (V,A), s ∈ V , dn = dn−1 for n = |V | iff D does not have a

cycle of negative length that is reachable from s.

Theorem 3.18. Given D = (V,A), s ∈ V , and suppose no negative cycle is reachable

from s. Then for each t ∈ V , the computed dn−1(t) is the distance between s and t.

If we do not encounter any negative length cycles, we just need to perform n−1 iterations,

where n is the number of vertices of the graph, and we are guaranteed to find the shortest

path solution from s to all vertices in the graph.

The Bellman-Ford algorithm runs in time O(|V ||A|). While for most of the graphs the

algorithm needs much less than |V |−1 iterations, the algorithm still does not scale well.

3.8.2 Shortest path expressed as a Linear Program

There is a natural linear programming formulation for the shortest path problem.

Given a directed graph D = (V,A) with source node s, target node t, and cost

c(u, v) for each arc (u, v) ∈ A, consider the program with variables f(u, v):

min
∑

(u,v)∈A

c(u, v)f(u, v) (3.33)

subject to f ≥ 0 (3.34)

and ∀u ∈ V,
∑

v∈V
f(u, v)−

∑

v∈V
f(v, u) =





1, if u = s;

−1, if u = t;

0, otherwise.

(3.35)

This LP has the special property that it is integral; more specifically, the decision vari-

ables of every basic optimal solution (when one exists) assume values of 0 or 1. This is

because the condition matrix is totally unimodular, as explained in Section 3.7.2.

The shortest path problem can be seen from a network flow point of view [Ahuja et al.,

1993], where we are interested in sending a commodity through a network at the smallest

cost possible (see Equation (3.33)). In this case, each commodity sent through the

network is one unit of “flow”, represented by the variable f . The capacity of an arc is

defined as the amount of flow that can be sent through that arc; this is the first condition

of the LP, shown in Equation (3.34). The mass balance constraints are defined for each

node and make sure that all flow that enters a node also exits that node as expressed in

Equation (3.35).
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3.8.3 k-shortest paths

To conclude this chapter, we will introduce the k-shortest paths algorithm. There are

several types of k-shortest paths problems that can be solved, e.g., finding k paths with

decreasing costs [Yen, 1971], but for the multiple object tracking problem we are inter-

ested in the problem of finding k-shortest disjoint paths [Ahuja et al., 1993, Suurballe,

1974]. This problem is based on the assumption that we are interested in finding edge-

disjoint paths, i.e.paths that do not share common edges. This exclusion property is

key to the multiple people tracking problem, since a node represents a detected person

and therefore we cannot assign it to two trajectories.

Node potentials.

Let us first start by introducing some useful concepts. In many network flow algorithms

it is useful to measure the cost of an arc relative to “imputed” costs associated with its

incident nodes. These costs are typically intermediate data that is computed within the

context of an algorithm. Let D = (V,A) be a directed graph; we associate to each node

i ∈ V a number π(i), which we refer to as the potential of that node. We can define a

reduced cost (or length) of an arc as:

cπ(i, j) = c(i, j)− π(i) + π(j).

Often algorithms work with these reduced costs, since they have an interesting property:

minimum cost flow problems with arc costs c(i, j) or cπ(i, j) have the same optimal

solutions since their objective functions only differ by a constant.

Residual network.

Sometimes it is convenient to measure flow f not in absolute terms, but rather in terms

of incremental flow about some given feasible solution, what would be the equivalent of

an intermediate solution. For this, we can define a new additional network called the

residual network [Ford and Fulkerson, 1956]. The advantage is that the formulations of

a problem in the original network and in the residual one are actually equivalent.

Given an original graph G, we define a residual network G(f0) with respect to flow f0

as follows. We replace arc (i, j) in the original network with two arcs: (i, j) with cost

c(i, j) and residual capacity r(i, j) = u(i, j)−f0(i, j), and another arc (j, i) that has cost

−c(i, j) and residual capacity r(j, i) = f0(i, j), as shown in Figure 3.23. The residual

network consists of only the arcs with a positive residual capacity.

An interesting property of residual networks is that a flow f is feasible in the network G

if and only if its corresponding flow f ′, defined by f ′(i, j)−f ′(j, i) = f(i, j)−f0(i, j) and
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i j

, u(i, j) � f0(i, j)

f0(i, j)

�c(i, j)

c(i, j)

i j
c(i, j)

, u(i, j) � f0(i, j)

Figure 3.23: How to construct a residual network.

f ′(i, j)f ′(j, i) = 0, is feasible in the residual networkG(f0). Furthermore, cf = c′f ′+cf0.

This provides us with the flexibility of working with a residual network, and once we

determine an optimal solution for it, we can convert it to an optimal solution of the

original network.

Shortest paths for multiple people tracking.

The idea of the successive shortest path algorithm [Ahuja et al., 1993] is to maintain

optimality of the solution at every step while trying to achieve feasibility. It maintains

a solution f that satisfies the nonnegativity and capacity constraints but violates the

mass balance constraints of the node.

The details of the general k-shortest paths algorithm in Algorithm 7.

Algorithm 7 k-shortest paths

initialize

f := 0 and π := 0

for 1 to k do

1. Compute the shortest path from node s to node t, computed using the Bellman-
Ford algorithm of Section 3.8.1.

2. Update π := −d.

3. δ := min[e(s),−e(t),min{r(i, j) : (i, j) ∈ P}].
4. Create a residual graph from sending flow δ along P .

5. Compute the reduced costs cπ(i, j) = c(i, j)− π(i) + π(j).

end for

Let us look at the example of Figure 3.24; we start with the initial graph depicted in

Figure 3.24(a) where we find the first shortest path s− b− t. With this we compute the

node potentials shown in Figure 3.24(b) and create the residual graph from sending flow

through the path s− b− t. We then go to step 5 of Algorithm 7 and compute the new

reduced costs as shown in Figure 3.24(c). Now we can start the cycle again by computing

a new shortest path s − a − b − t, new potentials and residual graph (Figure 3.24(d)),
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new reduced costs and the final shortest path s− a− t as shown in Figure 3.24(e). The

three shortest paths found are shown in red, green and black in Figure 3.24(f).
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t�(s) = 0 �(t) = 0

�(a) = 0

�(b) = 0

(2, 4) (3, 3)

(1, 5)(2, 2)

(1, 2)

(a) Initial graph with zero potentials. First shortest
path found.
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(b) Compute new node potential and create the resid-
ual graph.
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(c) Reduce costs according to new potentials and find
new shortest path.
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(d) Compute new node potential and create the residual
graph.
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(e) Reduce costs according to new potentials and find
new shortest path.
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(f) Three shortest paths found on this graph.

Figure 3.24: Example of how k-shortest path algorithm works

This algorithm is described as an edge-disjoint successive shortest path, which means

that a node might be used by two or more different paths, as a and b in the example of

Figure 3.24. In order to convert it to a node-disjoint successive shortest path algorithm,

one can divide each node into two nodes and insert an extra edge in the middle with

capacity equal to 1. This procedure is done anyway for multiple people tracking as

explained in Chapter 4, so we can directly compute the k-shortest paths as explained in

Algorithm 7.
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For multiple people tracking, we build a graph with the detections and add a

source s node and a sink t node, from where all flows start and end. The algorithm

iterates k times the following two steps: (i) find the shortest path in the network;

(ii) create a residual network and augment the flow along the path. Each time

a flow of 1 is pushed to the network (δ = 1), which can be interpreted as one

trajectory. Trajectories found previously can be changed if the algorithm pushes

the flow back.

Computational complexity.

Bellman-Ford algorithm has a complexity of O(|V ||A|) and while it can be applied to

graphs with a wider range of inputs, it is slower than Dijkstra’s algorithm which runs at

O(|A| log |V |) under certain conditions. For the multiple people tracking problem, there

exist negative costs in the network and therefore we cannot directly apply Dijkstra to

find the shortest paths. Fortunately, we can convert this initial graph into an equivalent

graph by using Bellman-Ford once at the beginning and creating a graph with reduced

costs using node potentials. For the rest of k iterations, we can use Dijkstra’s algorithm

to find the shortest paths. This procedure is described in [Pirsiavash et al., 2011] for

multiple people tracking with the network structure that we will present in Chapter 4.

3.9 Programming Linear Programs

There are several Linear Programming solvers available online. In this section, we give

a quick overview of a C library which includes several Linear and Integer Programming

solvers as well as the MatLab functions that allow us to solve LPs using Simplex.

3.9.1 GLPK Library

The GNU Linear Programming Kit (GLPK) package is intended for solving large-scale

Linear Programs, Mixed Integer Programs (MIP), and other related problems. It is a set

of routines written in C and organized in the form of a callable library. It can be down-

loaded from http://www.gnu.org/software/glpk/, where installation instructions can

be found.

http://www.gnu.org/software/glpk/
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As an example, we will present how to write up the following LP:

max 4x1 − 6x2 + 3x2

s.t. x1 + 10x2 + x3 ≤ 5

2x1 − x2 = 0

x1, x2, x3 ≥ 0

All GLP API data types and routines are defined in a header that should be included

in all source files:

#include <glpk.h>

The problem object contains all the information of the LP, i.e.the objective function, the

constraint matrix, the parameters of the solver, etc. It can be initialized in the following

way:

glp_prob *lp;

lp = glp_create_prob (); // creates an empty problem

glp_set_prob_name(lp, "tracking"); // problem object name

The most important characteristic of the problem is whether it is a maximization or a

minimization, which we can change with the function:

glp_set_obj_dir(lp , GLP_MAX); // minimization or maximization

Now we are ready to define the actual LP. An important property of the GLPK library

is that the index 0 is not used, therefore we will always start inputing information from

index 1.

The information of the objective function is included in the columns or structural vari-

ables of the problem object. The structural variables contain both the coefficients c of

the LP as well as the limits of the variables x, for example, the non-negativity con-

straints. In our example:

glp_add_cols(lp , 3); // Create Columns: Structural variables

glp_set_col_name(lp ,1,"x1");

glp_set_col_bnds(lp , 1, GLP_UP , 0.0, 0.0); // we set x_1 >= 0

glp_set_obj_coef(lp , 1, 4 ); // objective function coefficient c_1
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glp_set_col_name(lp ,1,"x2");

glp_set_col_bnds(lp , 1, GLP_UP , 0.0, 0.0); // we set x_2 >= 0

glp_set_obj_coef(lp , 1, -6 ); // objective function coefficients c_2

glp_set_col_name(lp ,1,"x3");

glp_set_col_bnds(lp , 1, GLP_UP , 0.0, 0.0); // we set x_3 >= 0

glp_set_obj_coef(lp , 1, 3 ); // objective function coefficients c_3

The values b of the constraints are set using the rows or auxiliary variables of the prob-

lem object. In our example, we have to represent one equality and one inequality:

glp_add_rows(lp , 2); // Create Rows: Auxiliary variables

glp_set_row_name(lp , 1,"constraint1");

glp_set_row_bnds(lp , 1, GLP_FX , 0.0, 0.0); // x_1+x_2+x_3 <= 5

glp_set_row_name(lp , 2,"constraint2");

glp_set_row_bnds(lp , 2, GLP_FX , 0.0, 0.0); // 2x_1 - x_2 =0

Finally, we only need to define the matrix A, which represents the coefficients of the

variables in the constraints. This information is introduced using three variables, ia and

ja which contain the indices i and j of each matrix element, and the corresponding ar

which contains the actual value of the coefficient aij .

double *ar;

int *ia ,*ja;

ar=new double[constraintsize +1];

ia=new int[constraintsize +1];

ja=new int[constraintsize +1];

ia [1]=1; ja [1]=1; ar [1]=1; /* a[1 ,1]=1 */

ia [2]=1; ja [2]=2; ar [2]=10; /* a[1 ,2]=10 */

ia [3]=1; ja [3]=3; ar [3]=1; /* a[1 ,3]=1 */

ia [4]=2; ja [4]=1; ar [4]=2; /* a[2 ,1]=2 */

ia [5]=2; ja [5]=2; ar[5]= -1; /* a[2,2]=-1 */

ia [6]=2; ja [6]=3; ar [6]=0; /* a[2 ,3]=0 */

Once we have defined the whole LP, we are ready to proceed to the solver.

glp_load_matrix(lp ,constraintsize , ia2 , ja2 , ar2); // load the problem

ia
ja
ar
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glp_simplex(lp, &param); // Solve with Simplex!

We can obtain the objective value of the optimal solution as well as the values of x:

z = glp_get_obj_val(lp);

x1= glp_get_col_prim(lp ,1);

x2= glp_get_col_prim(lp ,2);

x3= glp_get_col_prim(lp ,3);

glp_delete_prob(lp); // clear problem from memory

There exists also a MEX package in order to use the GLPK library in MatLab. It can be

downloaded here http://glpkmex.sourceforge.net. It can be used in a similar way

as the native MatLab LP solver, which we explain next.

3.9.2 MatLab

MatLab provides a simple way to define and solve Linear Programs using the function

linprog. The inputs are directly the matrices A, c and b. If the problem has some

equalities, they can be specifically defined using Aeq and beq, as shown in the example

below which represents the same LP as the one in the previous section.

c=[4,-6,3];

b=5;

beq=0;

A=[1 ,10 ,1];

Aeq=[2,-1,0];

lb=[0 ,0 ,0];

ub=[inf ,inf ,inf];

[x,fval] = linprog(c,A,b,Aeq ,beq ,lb ,ub); % Solve!

The values of the variables at the optimum can be found in x and the final objective

value is fval, which are both outputs of the function linprog.

http://glpkmex.sourceforge.net
linprog
x
fval
linprog


Chapter 4

Linear Programming for Tracking

We have seen in previous chapters that tracking is commonly divided into object de-

tection and data association. First, objects are detected in each frame of the sequence

and second, the detections are matched to form complete trajectories. In Chapter 2, we

presented an introduction to several state-of-the-art detection methods. In this chapter,

we focus on data association, which is the core of this thesis. We define the data as-

sociation problem formally and describe how to convert it to a minimum-cost network

flow problem, which can be efficiently solved using Linear Programming. The idea is

to build a graph in which nodes represent pedestrian detections. These nodes are fully

connected to past and future observations by edges, which determine the relation be-

tween two observations with a cost. Thereby, the matching problem is equivalent to a

minimum-cost network flow problem: finding the optimal set of trajectories is equivalent

to sending flow through the graph so as to minimize the cost. This can be efficiently

computed using the Simplex algorithm [Dantzig, 1963] or k-shortest paths [Ahuja et al.,

1993] as presented in the previous chapter. In this chapter, we define the multiple object

tracking problem using the Linear Programming formulation, which will be the basis for

the contributions introduced in Chapters 5 and 6.

4.1 Related work: from local to global matching

The data association problem deals with keeping the identity of tracked objects given

available detections. False alarms and missed detections mainly due to occlusions are

two sources of inaccuracies in the data association problem, and these become more

apparent as the density of objects to be tracked is increased. Typically, data associa-

tion is performed on a frame-by-frame basis, predicting pedestrians’ motion from one

frame to the next with, e.g. Kalman Filter [Kalman, 1960] or particle filter [Alspach

82
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and Sorenson, 1972, Julier and Uhlmann, 1997, Arulampalam et al., 2002] and then

matching them with the detections using, e.g. the Hungarian algorithm [Kuhn, 1955] or

the Auction algorithm [Munkres, 1957]. While this type of approach is very useful for

real-time applications [Breitenstein et al., 2009], the matching decisions are made indi-

vidually for each pedestrian and with only the information of the previous frame, which

makes it difficult to distinguish targets in crowded environments and it is completely

defenseless against occlusions. Joint particle approaches, such as the joint probabilistic

data association filter (JPDAF) [Rasmussen and Hager, 2001], can be used to make a

joint motion prediction for all pedestrians at the same time. Sampling can be done

using, e.g. Markov Chain Monte Carlo (MCMC) [Schikora et al., 2012, Khan et al.,

2005], but matching is still limited to be frame-by-frame.

In order to include more information from previous frames, researchers have proposed

several solutions: multi-hypothesis (MHT) approaches [Betke et al., 2007, Ess et al.,

2008], which extend the prediction of a pedestrian’s motion to several frames, thereby

creating several hypotheses of what path the pedestrian might have followed; solving the

matching problem for a small fixed number of frames [Leal-Taixé et al., 2009a]; using

Bayesian networks to reason about how trajectories split and merge [Nillius et al., 2006];

or dealing with difficult matching situations, such as matching people in groups, using

the Nash Equilibrium of game theory [Yang et al., 2007]. Nonetheless, for most of these

techniques computational time increases exponentially as more and more frames and

objects are taken into account, since the search space of hypotheses quickly grows.

In contrast, in [Berclaz et al., 2006] an efficient approximative Dynamic Programming

(DP) scheme was presented in which trajectories are estimated in succession. The ad-

vantage is that tracking each individual is done using the information of all frames. On

the other hand, if a trajectory is formed using a certain detection, the other trajectories

which are computed later will not be able to use that detection anymore. This obviously

does not guarantee a global optimum for all trajectories.

Recent works show that global optimization can be more reliable in crowded scenes,

as it solves the matching problem jointly for all tracks. The multiple object track-

ing problem is defined as a linear constrained optimization flow problem and Linear

Programming (LP) [Dantzig, 1963] is commonly used to find the global optimum. Lin-

ear Programming is widely used for Computer Vision applications such as 3D shape

matching [Windheuser et al., 2011a,b], image segmentation [Schoenemann et al., 2009]

or pose estimation [Ben-Ezra et al., 2000]. The idea to use it for people tracking was

first published in [Jiang et al., 2007], although this method requires a priori the number

of targets to track, which limits its application in real tracking situations. In [Berclaz

et al., 2011], the scene is divided into equally-sized cells, each represented by a node in
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the constructed graph. Using the information from the Probability Occupancy Map, the

problem is formulated either as a max-flow and solved with Simplex, or as a min-cost

and solved using k-shortest paths, which is a more efficient solution. In [Andriyenko and

Schindler, 2010], the problem is also defined as a maximum flow on a hexagonal grid,

but instead of matching individual detections, they make use of tracklets. There also

exist continuous solutions which do not work with a discrete state space, i.e.a finite set

of possible detection locations, but with a continuous state space which provides a more

accurate pedestrian location. In [Andriyenko and Schindler, 2011] the authors propose

a well-designed local optimization scheme in a continuous state space. Mixed solutions

have also been presented [Andriyenko et al., 2012] where tracking is performed in the

discrete domain but trajectory estimation is performed continuously. In [Wu et al.,

2011], global and local methods are combined to match trajectories across cameras and

across time.

Finally, in [Leal-Taixé et al., 2011a, Zhang et al., 2008, Pirsiavash et al., 2011] the

tracking problem is formulated as a Maximum A-Posteriori (MAP) problem which is

mapped to a minimum-cost network flow and then efficiently solved using LP. In this

case, each node represents a detection, which means the graph is much smaller compared

to [Berclaz et al., 2011, Andriyenko and Schindler, 2010]. In this chapter we detail the

graph construction and creation of the system of linear equations as proposed in [Leal-

Taixé et al., 2011a, Zhang et al., 2008, Pirsiavash et al., 2011]

4.2 Multiple object tracking: Problem statement

Let O = {otj} be a set of object detections with otj = (ptj , t), where ptj = (x, y, z) is

the 3D position and t is the time stamp. A trajectory is defined as a list of ordered

object detections Tk = {ot1k1
,ot2k2

, · · · ,otNkN } with t1 ≤ t2 ≤ . . . ≤ tN and the goal of

multiple object tracking is to find the set of trajectories T ∗ = {Tk} that best explains

the detections.

This is equivalent to finding the T that maximizes the a-posteriori probability given the

set of detections O, which is known as maximum posterior or MAP problem.

T ∗ = arg max
T

P (T |O) (4.1)
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Further assuming that detections are conditionally independent, the equation can be

rewritten as:

T ∗ = arg max
T

P (O|T )P (T ) = arg max
T

∏

j

P (oj |T )P (T ) (4.2)

Optimizing Eq. (4.2) directly is intractable since the space of T is huge. Nonetheless,

we make the assumption trajectories cannot overlap (i.e., a detection cannot belong to

two trajectories) which allows us to treat each trajectory independently, and therefore

decompose the equation as:

T ∗ = arg max
T

∏

j

P (oj)
∏

Tk∈T
P (Tk) (4.3)

where P (oj) is the likelihood of detection oj and the trajectories are represented by a

Markov chain:

P (T ) =
∏

Tk∈T
Pin(ot1k1

)P (ot2k2
|ot1k1

) . . . P (otmkm |o
tm−1

km−1
) . . . P (otnkn |o

tn−1

kn−1
)Pout(o

tn
kn

) (4.4)

where Pin(ot1k1
) is the probability that a trajectory k is initiated with detection ot1k1

,

Pout(o
tn
kn

) the probability that the trajectory is terminated at otnkn and P (otmkm |o
tm−1

km−1
) is

the probability that o
tm−1

km−1
is followed by otmkm in the trajectory.

4.3 Tracking with Linear Programming

In this section, we explain how to convert the MAP problem into a Linear Program,

which is particularly interesting, since it can be efficiently solved in polynomial time, as

explained in Chapter 3.

Let us recall the definition of a linear programming problem. It consists in minimizing

or maximizing a linear function in the presence of linear constraints which can be both

equalities and inequalities.

Minimize c1f1 + c2f2 + . . .+ cnfn (4.5)
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Subject to a11f1 + a12f2 + . . .+ a1nfn ≥ b1 (4.6)

a21f1 + a22f2 + . . .+ a2nfn ≥ b2
...

...
...

am1f1 + am2f2 + . . .+ amnfn ≥ bm

where Eq. (4.5) is the objective function and Eq. (4.6) represents the constraints.

c1, c2, . . . , cn denote the known cost coefficients and f1, f2, . . . , fn are the decision vari-

ables to be determined.

To convert our problem into a linear program, we linearize the objective function by

defining a set of flow flags f = {fin(i), fout(i), ft(i, j), fdet(i)} which are limited to the

values of {0, 1}. Flow flag ft(i, j) is defined as:

ft(i, j) =





1, otii is directly followed by o
tj
j in a trajectory.

0, otherwise
(4.7)

These edges are only allowed if ∆f ≤ Fmax, where ∆f is the frame number difference

between observations o
tj
j and otii and Fmax is the maximum allowed frame gap. Flow

flag fdet(i) is defined as:

fdet(i) =





1, oti belongs to a trajectory,

0, otherwise
(4.8)

while fout(i) is:

fin(i) (or fout(i)) =





1, a trajectory starts (or ends) at oti.

0, otherwise
(4.9)

In a minimum cost network flow problem, the objective is to find the values of the

variables that minimize the total cost of the flows through the network. Defining the

costs as negative log-likelihoods, and combining Equations (4.3) and (4.4), the following
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objective function is obtained:

T ∗ = arg min
T

∑

Tk∈T
− logP (Tk)−

∑

j

logP (oj) (4.10)

= arg min
f

∑

i

Cin(i)fin(i) +
∑

i,j

Ct(i, j)ft(i, j) (4.11)

+
∑

i

Cdet(i)fdet(i) +
∑

i

Cout(i)fout(i)

subject to the following constraints:

• Edge capacities: assuming each detection can only correspond to one trajectory,

the edge capacities have an upper bound of 1. Furthermore, two conditions have

to be fulfilled in order to make sure that, if an observation is active, this is either

the start or end of a trajectory, or it is in the middle of a trajectory:

fin(i) + fdet(i) ≤ 1 fout(i) + fdet(i) ≤ 1 (4.12)

• Flow conservation at the nodes:

fin(i) + fdet(i) =
∑
j
ft(i, j)

∑
j
ft(j, i) = fout(i) + fdet(i) (4.13)

• Exclusion property:

f ∈ {0, 1} (4.14)

The condition in Eq. 4.14 requires to solve an integer program, which is known to

be NP-complete. Nonetheless, we can relax the condition to have the following linear

equation:

0 ≤ f ≤ 1. (4.15)

Now the problem is defined and can be solved as a linear program. If certain conditions

are fulfilled, namely that the constraint matrix A is totally unimodular, as explained in

Chapter 3, the solution T ∗ will still be integer, and therefore it will also be the optimal

solution to the initial integer program. If the unimodularity condition is not fulfilled, as

we will see for the graph structure of Chapter 6, we can always use branching [Ahuja

et al., 1993] to transform fractional solutions into integers.
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Figure 4.1: Example of a graph with the special source s and sink t nodes, 6 detections
which are represented by two nodes each: the beginning bi and the end ei.

4.4 Graphical model representation

To map this formulation to a cost-flow network, we define G = (V,E) to be a directed

network with a cost C(i, j) and a capacity u(i, j) associated with every edge (i, j) ∈ E,

as explained in Chapter 3. An example of such a network is shown in Figure 4.1; it

contains two special nodes, the source s and the sink t; all flow that goes through the

graph starts at the s node and ends at the t node. Thereby, each unit of flow represents

a trajectory Tk, and the path that it follows indicates which observations belong to each

Tk. Each observation oi is represented with two nodes, the beginning node bi ∈ V and

the end node ei ∈ V (see Figure 4.1). A detection edge connects bi and ei.

Below we detail the three types of edges present in the graphical model and the cost for

each type:

Link edges. The edges (ei, bj) connect the end nodes ei with the beginning nodes bj

in following frames, with cost Ct(i, j). This cost represents the spatial relation between

different subjects. Assuming that a subject cannot move a lot from one frame to the
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next, we define the costs to be an increasing function of the distance between detections

in successive frames. The time gap between observations is also taken into account in

order to be able to work at any frame rate, therefore velocity measures are used instead

of distances. The velocities are mapped to probabilities with a Gauss error function as

shown in Equation (4.16), assuming the pedestrians cannot exceed a maximum velocity

Vmax.

E(Vt, Vmax) =
1

2
+

1

2
erf

(
−Vt + Vmax

2
Vmax

4

)
(4.16)

As we can see in Figure 4.2, the advantage of using Equation (4.16) over a linear function

is that the probability of lower velocities decreases more slowly, while the probability

of higher velocities decreases more rapidly. This is consistent with the probability dis-

tribution of speed learned from training data (in our case, we use the two sequences in

[Pellegrini et al., 2009] to obtain the velocity distribution).
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Figure 4.2: Blue = normalized histogram of speeds learned from training data. Red
= probability distribution if cost depends linearly on the velocity. Green = probability
distribution if the relation of cost and velocities is expressed by Equation (4.16). A

Vmax =7 m/s is used in the experiments.

Therefore, the cost of a link edge is defined as:

Ct(i, j) = − log
(
P (o

tj
j |otii )

)
+ C(∆f) (4.17)

= − logE

(
‖pt+∆t
j −pti)‖

∆t , Vmax

)
+ C(∆f)
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where C(∆f) = − log
(
B∆f−1
j

)
is the cost depending on the frame difference between

detections. How high this cost is depends on parameter Bj and its effects will be analyzed

in section 5.6.2.3.

Detection edges. The edges (bi, ei) connect the beginning node bi and end node ei,

with cost Cdet(i). If all costs of the edges are positive, the solution to the minimum-cost

problem is the trivial null flow. Consequently, we represent each observation with two

nodes and a detection edge with negative cost:

Cdet(i) = log
(
1− Pdet(oti)

)
+ log

(
BBmin

‖pBB − pti‖

)
. (4.18)

The higher the likelihood of a detection Pdet(o
t
i) the lower the negative the cost of the

detection edge, hence, flow is likely to be routed through edges of confident detections

in order to minimize the total cost. If a map of the scene is available, we can also

include this information in the detection cost. If a detection is far away from a possible

entry/exit point, we add an extra negative cost to the detection edge, in order to favor

the inclusion of that observation into a trajectory. The added cost depends on the

distance to the closest entry/exit point pBB, and is only computed for distances higher

than BBmin =1.5 m. This is a simple probabilistic way of including other information

present in the scene, such as obstacles or attraction points (shops, doors, etc).

Entrance and exit edges. The edges (s, ei) connect the source s with all the end

nodes ei, with cost Cin(i) and flow fin(i). Similarly, (bi, t) connects the end node bi with

sink t, with cost Cout(i). This connection, as shown in Figure 4.3(b), was proposed in

[Leal-Taixé et al., 2011a] so that when a track starts (or ends) it does not benefit from

the negative cost of the detection edge. Setting Cin = Cout = 0 and taking into account

the flow constraints of Eqs. (4.12) and (4.13), trajectories are only created with the

information of link edges.

In contrast, the authors in [Zhang et al., 2008] propose to create the opposite edges (s, bi)

and (ei, t), which means tracks entering and leaving the scene go through the detection

node and therefore benefit from its negative cost (see Figure 4.3(a)). If the costs Cin

and Cout are then set to zero, a track will be started at each detection of each frame,

because it will be cheaper to use the entrance and exit edges than the link edges. On

the other hand, if Cin and Cout are very high, it will be hard for the graph to create any

trajectories. Therefore, the choice of these two costs is extremely important. In [Zhang

et al., 2008], the costs are set according to the entrance and exit probabilities Pin and

Pout, which are data dependent terms that need to be calculated during optimization.
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Figure 4.3: (a) Graph structure as used in [Zhang et al., 2008], which requires the
computation of Pin and Pout in an Expectation-Maximization step during optimization.
(b) Graph structure as used in [Leal-Taixé et al., 2011a] which does not require the com-
putation of these two parameters; the trajectories are found only with the information

of the link and detection edges.



Chapter 5

Tracking with social context

If a pedestrian does not encounter any obstacles, the natural path to follow is a straight

line. But what happens when the space gets increasingly crowded and the pedestrian can

no longer follow the straight path? Social interaction between pedestrians is especially

important when the environment is crowded.

Though each object can be tracked separately, recent works have proven that tracking

objects jointly and taking their interaction into consideration can give much better

results in complex scenes. Current research is mainly focused on two aspects to exploit

interaction between pedestrians: the use of a global optimization strategy as presented

in Chapter 3 and a social motion model [Helbing and Molnár, 1995]. The focus of this

chapter is to marry the concepts of global optimization and social and grouping behavior

to obtain a robust tracker able to work in crowded scenarios.

5.1 Related work: social forces

Most tracking systems work with the assumption that the motion model for each target

is independent. This simplifying assumption is especially problematic in crowded scenes:

imagine the chaos if every pedestrian followed his or her chosen path and completely

ignored other pedestrians in the scene. In order to avoid collisions and reach the chosen

destination at the same time, a pedestrian follows a series of social rules or social forces.

These have been defined in what is called the Social Force Model (SFM) [Helbing and

Molnár, 1995] which has been used for abnormal crowd behavior detection [Mehran

et al., 2009], crowd simulation [Pelechano et al., 2007, Pellegrini et al., 2012] and has

only recently been applied to multiple people tracking.
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Most methods include these social forces or motion contexts in a predictive tracking

framework. In [Scovanner and Tappen, 2009], an energy minimization approach was

used to estimate the future position of each pedestrian considering all terms of the

social force model. In [Pellegrini et al., 2009] and [Luber et al., 2010], the social forces

were included in the motion model of the Kalman or Extended Kalman filter. In [Ge

et al., 2009] a method was presented to detect small groups of people in a crowd, but it

is only recently that grouping behavior has been included in a tracking framework [Choi

and Savarese, 2010, Pellegrini et al., 2010, Yamaguchi et al., 2011].

Predictive approaches though, are too local and unable to deal with trajectory changes

(e.g. when people meet and stop to talk). Recently, [Pellegrini et al., 2010] included

group information in a graphical model. Nonetheless, the structure created to express

these group relations is a graph which contains cycles and, therefore, Dual Decomposition

[Bertsekas, 2004] was needed to find the solution, which obviously is computationally

much more expensive than using Linear Programming. Moreover, the results presented

in [Pellegrini et al., 2010] were only for short time windows. In [Butt and Collins, 2013]

a solution is presented to include certain constant velocity conditions into a Linear

Programming tracking framework. However, in that case the constraint matrix is no

longer totally unimodular, so the authors propose to use Lagrangian relaxation in order

to solve the problem. This kind of context information can also be extremely useful to

track players in sports videos [Liu et al., 2013], given the great amount of interaction

present in those sequences.

The authors of [Andriyenko and Schindler, 2010] also define the problem as a maximum

flow on a hexagonal grid, but instead of matching individual detections, they make use

of tracklets. This has the advantage that they can precompute the social forces for

each of these tracklets, nonetheless, the fact that the tracklets are chosen locally means

the overall matching is not truly global, and if errors occur during the creation of the

tracklets, these cannot be overcome by global optimization. In [Wu et al., 2011], global

and local methods are combined to match trajectories across cameras and across time.

In this chapter, we focus on the method presented in [Leal-Taixé et al., 2011a] where

tracking is done by taking the interaction between pedestrians into account in two ways:

first, using global optimization for data association and second, including social as well

as grouping behavior. The key insight is that people plan their trajectories in advance

in order to avoid collisions, therefore, a graph model which takes into account future

and past frames is the perfect framework to include social and grouping behavior. The

problem of multiple object tracking is formulated as a minimum-cost network flow prob-

lem as presented in Chapter 3. Instead of including social information by creating

a complex graph structure which then cannot be solved using classic LP solvers, the
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method proposes an iterative solution relying on Expectation-Maximization. Results on

several challenging, public datasets are presented to show the improvement of tracking

in crowded environments. Experiments with missing data, noise and outliers are also

shown to test the robustness of the approach.

5.2 The social force model

The social force model states that the motion of pedestrians can be described as if they

were subject to ”social forces”. These forces are not directly exerted by the pedestrians’

personal environment, but they are a measure for the internal motivations of the indi-

viduals to perform certain actions, in this case, movements. The idea is that there are

certain sensory stimuli that cause a behavioral reaction that depends on personal aims.

This reaction is chosen among all behavioral alternatives with the objective of utility

maximization. In summary, one can say that a pedestrian acts as if he/she would be

subject to a set of external forces.

There are three main terms that need to be considered, visualized in Figure 5.1:

• Constant velocity: The acceleration of a pedestrian to keep a desired speed and

direction.

• Collision avoidance: The term reflecting that a pedestrian keeps a comfortable

distance from other pedestrians and borders.

• Group behavior: The attraction forces which occur when a pedestrian is attracted

to a friend, shop, etc.

In this chapter we only consider the attractive effects of people within a group, since

we do not consider any information about the static environment such as shops, en-

tries/exists, etc. In contrast with [Pellegrini et al., 2009], we do not use the destination

of the pedestrian as input, since we want to keep the tracking system as independent as

possible from the environment.

In following sections we detail how to include this specific information into the Linear

Programming multi-people tracking framework introduced in Chapter 4.

5.3 Updated MAP and Linear Programming formulation

The original social force model [Helbing and Molnár, 1995] describes a physical sys-

tem that estimates the position of a pedestrian in a continuous way, which has been
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(a) Constant velocity (b) Collision avoidance (c) Group behavior

Figure 5.1: The three terms of the social force model that are included in the tracking
framework

successfully used for crowd simulation [Pelechano et al., 2007, Pellegrini et al., 2012].

Nonetheless, we use the social information within a different paradigm: in our Linear

Programming system, we have a set of hypothetical pedestrian positions (in the form

of nodes) and we apply the social forces to find out the probability of a certain match

(i.e., a certain trajectory being followed by a pedestrian).

When including social and grouping information in the Linear Programming formulation,

we can no longer assume that the motion of each subject is independent, which means

we have to deal with a much larger search space of T .

We extend this space by including the following dependencies for each trajectory Tk:

• Constant velocity assumption: the observation otmkm ∈ Tk depends on the previous

two observations [o
tm−1

km−1
,o

tm−2

km−2
]

• Grouping behavior: If Tk belongs to a group, the set of members of the group

Tk,GR has an influence on Tk

• Avoidance term: Tk is affected by the set of trajectories Tk,SFM which are close to

Tk at some point in time and do not belong to the same group as Tk

The first and third dependencies are grouped into the SFM term. The sets Tk,SFM and

Tk,GR are disjoint, i.e., for a certain pedestrian k, the set of pedestrians that have an

attractive effect (the group to which pedestrian k belongs) is different from the set of

pedestrians that have a repulsive effect on pedestrian k. Therefore, we can assume that
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these two terms are independent and decompose P (T ) as:

P (T ) =
∏

Tk∈T
P (Tk ∩ Tk,SFM ∩ Tk,GR) (5.1)

=
∏

Tk∈T
P (Tk,SFM|Tk)P (Tk,GR|Tk)P (Tk)

Let us assume that we are analyzing observation otk. In Figure 5.2 we summarize which

observations influence the matching of otk. Typical approaches [Zhang et al., 2008] only

take into account distance (DIST) information, that is, the observation in the previous

frame ot−1
k . We introduce the social dependencies (SFM) given by the constant velocity

assumption (green nodes) and the avoidance term (yellow nodes). In this case, two

observations, otq and otr that do not belong to the same group as otk, will be considered

to create a repulsion effect on otk. On the other hand, the orange nodes which depict

the grouping term (GR), are two other observations otm and otn which do belong to the

same group as otk and therefore have an attraction effect on otk. Note that all these

dependencies can only be modeled by high order terms, which means that either we use

complex solvers [Pellegrini et al., 2010] to find a solution in graphs with cycles, or we

keep the linearity of the problem by using an iterative approach as we explain later on.

Constant velocity assumption

Distance measure (DIST)

and
Avoidance term (SFM)

Grouping behavior (GR)

ot
k ot−1

k

ot−1
k

ot−2
kot

q

ot
r

ot
m

ot
n

ot
k,SFM

ot
k,GR

Figure 5.2: Diagram of the dependencies for each observation otk.
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The objective function is accordingly updated:

T ∗ = arg max
T

P (O|T )P (T ) (5.2)

= arg min
T

∑

Tk∈T
− logP (Tk)− logP (TSFM|Tk)

− logP (TGR|Tk) +
∑

j

− logP (oj)

= arg min
f

∑

i

Cin(i)fin(i) +
∑

i

Cout(i)fout(i)

+
∑

i,j

[Ct(i, j) + CSFM(i, j) + CGR(i, j)]ft(i, j) +
∑

i

Cdet(i)fdet(i)

In the following section, we define the new cost terms according to the Social Force

Model.

5.4 New costs for the social terms

Constant velocity assumption. A pedestrian tries to keep a certain speed and di-

rection, therefore we assume that at time t + ∆t we have the same speed as at time t

and we estimate the pedestrian’s position accordingly.

p̃t+∆t
SFM,i = pti + vti∆t

Avoidance term. Pedestrians also try to avoid collisions and keep a comfortable

distance from each other. This term is modeled as a repulsion field with an exponential

distance-decay function with value α learned from training data.

at+∆t
i =

∑

gm 6=gi

exp

(
−‖p̃

t+∆t
i − p̃t+∆t

m ‖
α∆t

)
(5.3)

The constant velocity assumption is used to estimate the positions of all pedestrians at

time t + ∆t. From these estimated positions, the repulsion acceleration they exert on

each other can be computed as shown in Eq. (5.3). For a pedestrian i, only non-members

of his group (gm 6= gi) who are less than 1 m away, that is ‖p̃t+∆t
i − p̃t+∆t

m ‖ ≤ 1 m, are

used to compute the avoidance acceleration.
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The estimation of the pedestrian’s future position is computed using also the aforemen-

tioned avoidance acceleration term:

p̃t+∆t
SFM,i = pti + (vti + at+∆t

i ∆t)∆t. (5.4)

To compute the cost of the edge connecting (i, j), the distance between estimated posi-

tion and real measurement is used:

CSFM(i, j) = − logE

(
‖p̃t+∆t

SFM,i − pt+∆t
j ‖

∆t
, Vmax

)
(5.5)

where the function E is detailed in Eq. (4.16).

In Figure 5.3 we plot the probability distributions computed using different terms. Note,

this is just for visualization purposes, since we do not compute the probability for each

point on the scene, but only for the positions where the detector has fired. There are

4 pedestrians in the scene, the purple one and 3 green ones walking in a group. As

shown in 5.3(b), if we only use the estimated positions (yellow heads) given the previous

speeds, there is a collision between the purple pedestrian and the green marked with a

1. The avoidance term shifts the probability mode to a more plausible position.

Grouping behavior. Before modeling group behavior, we need to determine which

tracks form each group and at which frame the group begins and ends (to deal with

splitting and formation of groups). The idea is that if two pedestrians are close to

each other over a determined period of time, they are likely to belong to the same

group. From the training sequence in [Pellegrini et al., 2009], the distance and speed

probability distributions of the members of a group Pg vs. individual pedestrians Pi are

learned. If m and n are two trajectories which appear on the scene at t ∈ [0, N ], we

compute the flags gm and gn which indicate to which groups do m and n belong. If
N∑
t=0

Pg(m,n) >
N∑
t=0

Pi(m,n), then gm = gn.

Therefore, for every observation oti, we will have a group label gi which indicates to

which group the observation belongs, if any. If several pedestrians form a group, they

tend to keep a similar speed, therefore, if oti belongs to a group, we can use the mean

speed of all the other members of the group to estimate the next position for oti:

p̃t+∆t
GR,i = pti +

1

|{m|gm = gi}|
∑

{m|gm=gi}

vtm∆t (5.6)
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Figure 5.3: Three green pedestrians walk in a group, the estimated positions in
the next frame are marked by yellow heads. The purple pedestrian’s linearly estimated
position (yellow head) clearly interferes with the trajectory of the group. Representation
of the probability map (blue is 0 red is 1) for the purple pedestrian’s next position using:
(a) only distances, (b) only SFM (constant velocity assumption and avoidance term), (c)
only GR (considering the purple pedestrian belongs to the group), (d) distances+SFM

and (e) distances+SFM+GR.

The distance between this estimated position and real measurements is used in (4.16)

to obtain the edge costs for the grouping term:

CGR(i, j) = − logE

(
‖p̃t+∆t

GR,i − pt+∆t
j ‖

∆t
, Vmax

)
(5.7)

An example is shown in Figure 5.3(c), where we can see that the maximum probability

provided by the group term keeps the group configuration. In Figure 5.3(d) we show the

combined probability of the distance and SFM information which narrows the space of

probable positions. Finally, Figure 5.3(e) represents the combined probability of DIST,

SFM and GR. As we can see, the space of possible locations for the purple pedestrian is

considerably reduced, as we add the social and grouping behaviors, which means we have

less ambiguities for data association. This is specially useful to decrease the number of

identity switches, as we present in Section 5.6.



Chapter 5. Tracking with social context 100

5.5 Optimization

To compute the SFM and grouping costs, we need to have information about pedestrians’

velocities, which can only be obtained if we already have the trajectories. We solve this

in an expectation-maximization (EM) fashion where the parameters to estimate are the

flow flags fi and the latent variables are the velocities and group flags. The proposed

solver is presented in Algorithm 8; on the first iteration, trajectories are estimated only

with the information defined in Section 4.3, while for the rest of iterations, the SFM

and GR is also used. The algorithm stops when the trajectories do not change or when

a maximum number of iterations Mi is reached.

Algorithm 8 Iterative optimization

while Ti 6= Ti−1 and i ≤Mi do

if i == 1 then

1.1. Create the graph using only DIST information

else

1.2. Create the graph using DIST, SFM and GR information

end if

2. Solve the graph to find Ti
3. Compute velocities and groups given Ti

end while

Typically, only 4− 6 iterations are needed for the algorithm to converge to a solution.

5.5.1 Computational reduction

To reduce the computational cost, the graph can be pruned by using the physical con-

straints represented by the edge costs. If any of the costs C(i, j), CSFM(i, j) or CGR(i, j)

is infinite, the two detections i and j are either too far away to belong to the same

trajectory or they do not match according to social and grouping rules, therefore the

edge (i, j) is erased from the graphical model. For long sequences, the video can be di-

vided into several batches and optimized for each batch. For temporal consistency, the

batches have an overlap of Fmax = 10 frames. The runtime of [Leal-Taixé et al., 2011a]

for a sequence of 800 frames (114 seconds), 4837 detections, batches of 100 frames and

6 iterations is 30 seconds on a 3GHz machine.
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5.6 Experimental results

In this section we show the tracking results of several state-of-the-art methods on three

publicly available datasets and compare them using the CLEAR metrics [Kasturi et al.,

2009], explained below.

5.6.1 Metrics used for performance evaluation

The CLEAR metrics were presented in [Kasturi et al., 2009] for detection and tracking

of both single objects as well as multiple objects. The framework includes guidelines for

ground truth annotation, performance metrics, evaluation protocols, and tools including

scoring software and baseline algorithms. The scores for multiple people tracking are

computed in 2D using pedestrian bounding boxes. They are split into accuracy and

precision:

Detection Accuracy (DA). Measures how many detections were correctly found and

therefore is based on the count of missed detections mt and false alarms ft for each

frame t.

DA = 1−
∑Nf

t=1mt + ft∑Nf
t=1N

t
G

where Nf is the number of frames of the sequence and N t
G is the number of ground truth

detections in frame t. A detection is considered to be correct when the 2D bounding

boxes of both ground truth and detection have some overlap. In this thesis, the overlap

measure that we use is 25% which is the standard measure taken in most of the literature.

Tracking Accuracy (TA). Similar to DA but also including identity switches it. In

this case, the measure does not penalize identity switches as much as missing detections

or false alarms, as we use a log10 weight. That is why in most papers the number of

identity switches is explicitly shown in order to better compare performance with other

methods.

TA = 1−
∑Nf

t=1mt + ft + log10(1 + it)∑Nf
t=1N

t
G

Detection Precision (DP). Precision measurements represent how well bounding box

detections match the ground truth. For this, an overlap measure between bounding
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boxes is used:

Ovt =

Nt
mapped∑

i=1

∣∣Gti ∩Dt
i

∣∣
|Gti ∪Dt

i |

where N t
mapped is the number of mapped objects in frame t, i.e., the number of detections

that are matched to some ground truth object. Gti is the ith ground truth object of frame

t and Dt
i the detected object matched to Gti. The DP measure is then expressed as:

DP =

Nf∑
t=1

Ovt

Nt
mapped

Nf

Tracking Precision (TP). Measures the spatiotemporal overlap between ground truth

trajectories and detected ones, considering also split and merged trajectories.

TP =

Nt
mapped∑
i=1

Nf∑
t=1

|Gti∩Dti |
|Gti∪Dti |

Nf∑
t=1

N t
mapped

5.6.2 Analysis of the effect of the parameters

All parameters defined in previous sections are learned from training data using one

sequence of the publicly available dataset [Pellegrini et al., 2009]. In this section we

study the effect of the few parameters needed in [Leal-Taixé et al., 2011a] and show

that the method works well for a wide range of values and, therefore, no parameter

tuning is needed to obtain good performance. The analysis is done on two publicly

available datasets: a crowded town center [Benfold and Reid, 2011] and the well-known

PETS2009 dataset [Ferryman, 2009], to observe the different effects of each parameter

on each dataset. In order to apply the Social Force Model to pedestrians, we need their

3D position in world coordinates. Since all pedestrians walk on a 2D ground plane, we

can transform the 2D image coordinates to 3D real world coordinates (with z=0) using

a simple homography [Hartley and Zisserman, 2004]. We use the calibration provided

with each dataset.

5.6.2.1 Number of iterations

The first parameter we analyze is Mi, the number of iterations allowed. This determines

how many times the loop of computing social forces and trajectories is executed as
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Figure 5.4: Tracking accuracy (black) and precision (magenta) obtained for the Town
Center dataset (left column) and the PETS 2009 dataset (right column) given varying

parameter values.
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explained in Algorithm 8. Looking at the results on the PETS 2009 dataset in Figure

5.4(b), we can see that after just 2 iterations the results remain very stable. Actually, the

algorithm reports no changes in the trajectories after 3 iterations, and therefore stops

even though the maximum number of iterations allowed is higher. The result with 1 and

2 iterations is not very different either, which means the social and grouping behavior

does not effect significantly the results for this particular dataset. This is due to the

fact that this dataset is very challenging from a social behavior point of view, with

subjects often changing direction and groups forming and splitting frequently. More

details and comments on these results can be found in Section 5.6.4.2. We observe a

different effect on the TownCenter dataset, shown in Figure 5.4(a). In this case, there is

a clear improvement when using social and grouping behavior (i.e., the result improves

when we use more than one iteration). We also observe a pattern on how the Tracking

Accuracy of the dataset evolves: there is a cycle of 3 iterations for which the accuracy

increases and decreases in a similar way. This means that the algorithm is jumping

between two solutions and will not converge to either one of them. This happens when

pedestrians are close together for a long period of time but are not forming a group,

which means that even with social forces it is hard to say which paths they will follow.

5.6.2.2 Maximum speed

This is the parameter that determines the maximum speed we assume for the pedestrians

we are observing. In this case, we can see in Figures 5.4(c) and 5.4(d) a clear trend in

which the results are very bad when we underestimate the pedestrians maximum speed,

since we are artificially splitting trajectories. The results converge when the maximum

speed allowed is between 3 m/s - 7 m/s, which makes sense since the reported mean speed

of pedestrians in a normal situation is around 2 m/s. More interestingly, we observe that

the results remain constant when using higher maximum speed values. This is a positive

effect of the global optimization framework, since we can use a speed limit much above

average and this will still give us good results and will allow us to track, for example, a

person running through the scene.

5.6.2.3 Cost for the frame difference

The last parameter, Bj , appears in Eq. (4.18) and represents the penalty term we apply

when the frame difference between two detections that we want to match is larger than

1. This term is used in order to give preference to matches that are close in time. Here

again we can see different effects on the two datasets. In Figure 5.4(e), we see that

the results are stable up to a value of 0.4. The lower the value, the higher the penalty
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cost for the frame difference, which means it is more difficult to match those detections

which are more than 1 frame apart. When the value of Bj is higher than 0.4, there are

more ambiguities in the data association process, because it is easier to match detections

across distant frames. In the TownCenter dataset, there is no occluding object in the

scene, which means missing detections are sporadic within a given trajectory. In this

scenario, a lower value for Bj is better, since small gaps can be filled and there are fewer

ambiguities. Nonetheless, we see different results in the PETS 2009 dataset in Figure

5.4(f) since there is an occluding object in the middle of the scene (see Figure 5.5) which

occludes pedestrians for longer periods of time. In this case, a higher value of Bj allows

to overcome these large gaps of missing data, and that is why the best value for this

dataset is around 0.6.

Figure 5.5: Four frames of the PETS2009 sequence (separation of 9 frames), showing
several occlusions, both created by the obstacle on the scene and among pedestrians.

All occlusions can be overcome with the proposed method.

5.6.3 Evaluation with missing data, noise and outliers

We evaluate the impact of every component of the approach in [Leal-Taixé et al., 2011a]

with one of the sequences of the dataset [Pellegrini et al., 2009] which contains images

from a crowded public place with several groups as well as walking and standing pedes-

trians. The sequence is 11601 frames long and contains more than 300 trajectories. First

of all, the group detection method is evaluated on the whole sequence with ground truth

detections: 61% are correctly detected, 26% are only partially detected and 13% are not
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(a) Wrong match with
DIST, corrected with
SFM.

(b) Missing detections cause the matches to shift
due the global optimization; correct result with
SFM.

(c) Missed detection for subject 3 on two consecutive frames. With SFM, subject 2 in the
first frame (yellow arrow) is matched to subject 3 in the last frame (yellow arrow), creating an
identity switch; correct result with grouping information.

Figure 5.6: Top row : Tracking results with only DIST. Bottom row : Tracking results
with SFM+GR. Green = correct trajectories, Blue = observation missing from the set,

Red = wrong match.

found. Furthermore, an extra 7% false positive groups are detected. All experiments are

performed with 6 iterations, a batch of 100 frames, Vmax =7 m/s, Fmax = 10, α = 0.5

and Bj = 0.3.

Using the ground truth (GT) pedestrian positions as the baseline for our experiments,

we perform three types of tests: missing data, outliers and noise, and compare the results

obtained with:

• DIST: proposed network model with distances

• SFM: adding the Social Force Model (Section 5.4)
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• SFM+GR: adding SFM and grouping behavior (Section 5.4)

Missing data. This experiment shows the robustness of our approach given missed

detections. This is evaluated by randomly erasing a certain percentage of detections

from the GT set. The percentages evaluated are [0, 4, 8, 12, 16, 20] of the total number

of detections over the whole sequence. As we can see in Figure 5.7, both SFM and

SFM+GR increase the tracking accuracy when compared to DIST.

Outliers. With an initial set of detections of GT with 2% missing data, tests are

performed with [0, 10, 20, 30, 40, 50] percent outliers added in random positions over the

ground plane. In Figure 5.7, the results show that the SFM is especially important when

the tracker is dealing with outliers. With 50% of outliers, the SFM+GR terms reduce

the number of identity switches by 70% w.r.t the DIST results.

Noise. This test is used to determine the performance of our approach given noisy

detections, which are very common mainly due to small errors in the 2D-3D mapping.

From the GT set with 2% missing data, random noise is added to every detection.

The variances of the noise tested are [0, 0.002, 0.004, 0.006, 0.008, 0.01] of the size of the

observed scene. As expected, group information is the most robust against noise; if the

position of pedestrian A is not correctly estimated, other pedestrians in the group will

contribute to the estimation of the true trajectory of A.

These results corroborate the assumption that having good behavioral models becomes

more important as observations deteriorate. In Figure 5.6 we plot the tracking results of

a sequence with 12% simulated missing data. If we only use distance information, we can

see the resulting identity switches as shown in Figure 5.6(a). In Figure 5.6(b) we can see

how missing data affects matching results. The matches are shifted; this chain reaction

is caused by the global optimization. In both cases, the use of SFM allows the tracker

to extrapolate the necessary detections and find the correct trajectories. Finally, in

Figure 5.6(c) we plot the wrong result caused by track 3 having two consecutive missing

detections. Even with SFM, track 2 is switched for 3 since the switch does not create

extreme changes in velocity. In this case, the grouping information is key to obtaining

good tracking results. More results are shown in Figure 5.10.

5.6.4 Tracking results

In this section, we compare results of several state-of-the-art methods on two publicly

available datasets: a crowded town center [Benfold and Reid, 2011] and the well-known

PETS2009 dataset [Ferryman, 2009]. We compare results obtained with:
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Figure 5.7: Experiments are repeated 50 times with random generation of outliers,
missing data and noise and the average result, maximum and minimum are plotted.
Blue star = results with DIST, Green diamond = results with SFM, Red square =
results with SFM+GR. From top to bottom: Experiment with simulated missing data,

with outliers, and with random noise.
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Figure 5.8: Predictive approaches [Pellegrini et al., 2009, Yamaguchi et al., 2011]
(first row) vs. Proposed method (second row)

• [Benfold and Reid, 2011]: using the results provided by the authors for full pedes-

trian detections. The HOG detections are also given by the authors and used as

input for all experiments.

• [Zhang et al., 2008]: globally optimum tracking based on network flow linear pro-

gramming.

• [Pellegrini et al., 2009]: tracker based on Kalman Filter which includes social

behavior.

• [Yamaguchi et al., 2011]: tracker based on Kalman Filter which includes social

and grouping behavior.

• [Leal-Taixé et al., 2011a]: globally optimum tracking based on network flow linear

programming and including social and grouping behavior.

For a fair comparison, we do not use appearance information for any method. The

methods [Benfold and Reid, 2011, Pellegrini et al., 2009, Yamaguchi et al., 2011] are

online, while [Leal-Taixé et al., 2011a, Zhang et al., 2008] processes the video in batches.

For these last two methods, all experiments are performed with 6 iterations, a batch of

100 frames, Vmax =7 m/s, Fmax = 10, α = 0.5 and Bj = 0.3.
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5.6.4.1 Town Center dataset

We perform tracking experiments on a video of a crowded town center [Benfold and

Reid, 2011] using one out of every ten frames (simulating 2.5 fps). We show detection

accuracy (DA), tracking accuracy (TA), detection precision (DP) and tracking precision

(TP) measures as well as the number of identity switches (IDsw).

DA TA DP TP IDsw
HOG Detections 63.1 − 71.9 − −

[Benfold and Reid, 2011] 64.9 64.8 80.5 80.4 259
[Zhang et al., 2008] 66.1 65.7 71.5 71.5 114

[Pellegrini et al., 2009] 64.1 63.4 70.8 70.7 183
[Yamaguchi et al., 2011] 64.0 63.3 71.1 70.9 196
[Leal-Taixé et al., 2011a] 67.6 67.3 71.6 71.5 86

Table 5.1: CLEAR results on the Town Center sequence.

Note, the DP reported in [Benfold and Reid, 2011] is about 9 percentage points higher

than the input detection precision; this is because the authors use the motion estima-

tion obtained with a KLT feature tracker to improve the exact position of the detec-

tions, while we use the raw detections. Still, our algorithm reports almost 67% fewer

ID switches. As shown in Table 5.1, [Leal-Taixé et al., 2011a] algorithm outperforms

[Pellegrini et al., 2009, Yamaguchi et al., 2011], both of which include social behavior

information, by almost 4 percentage points in accuracy and reduces the number of iden-

tity switches by more than 53%. In Figure 5.8 we can see an example where [Pellegrini

et al., 2009, Yamaguchi et al., 2011] fail. The errors are created in the greedy phase of

predictive approaches, where trajectories compete to get assigned to detections. A red

trajectory is started by a false detection in the first frame. This trajectory then takes

the detection in the second frame that should belong to the green trajectory (which

ends in the first frame). In the third frame, the red trajectory takes over the yellow

trajectory and a new blue trajectory starts where the green should have been. None

of the resulting trajectories violate the SFM and GR conditions. On the other hand,

a global optimization framework takes full advantage of the SFM and GR information

and correctly recovers all trajectories. More results of the proposed algorithm can be

seen in Figure 5.12.

5.6.4.2 Results on the PETS2009 dataset

In addition, we present results of monocular tracking on the PETS2009 sequence L1,

View 1 with the detections obtained using the Mixture of Gaussians (MOG) background

subtraction method. We compare the results with the previously described methods plus

the monocular result of View 1 presented in [Berclaz et al., 2011], where the detections
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are obtained using the Probabilistic Occupancy Map (POM) and the tracking is done

using k-shortest paths.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

DA                           DP                            TA                           TP

CL
EA

R 
 m

et
ric

s

 

 
POM+KSP
Kalman+SFM
Kalman+SFM+GR
LP
LP+SFM+GR

Figure 5.9: Results of the proposed method on the PETS2009 dataset, view
1. DA=Detection accuracy. DP=Detection precision. TA=Tracking accuracy.

TP=Tracking precision.

The first observation we make is that the linear programming methods (LP and LP+SFM+GR)

clearly outperform predictive approaches in accuracy. This is because this dataset is very

challenging from a social behavior point of view, because subjects often change direction

and groups form and split frequently. Approaches based on a probabilistic framework

[Leal-Taixé et al., 2011a, Zhang et al., 2008] are better suited for unexpected behav-

ior changes (like destination changes), where other predictive approaches fail [Pellegrini

et al., 2009, Yamaguchi et al., 2011]. We can also see that the LP+SFM+GR method

has a higher accuracy than the LP method which does not take into account social

and grouping behavior. The grouping term is specially useful to avoid identity switches

between members of a group (see an example in Figure 5.11, the cyan and green pedes-

trians who walk together). Precision is similar for all methods since the same detections

have been used for all experiments and we do not apply smoothing or correction of the

bounding boxes.

5.7 Conclusions

In this chapter, we presented an overview of methods that integrate pedestrian interac-

tion into a tracking framework in two ways: using a globally optimum solver or improving

the dynamic model with social forces. Furthermore, we explained how to combine the
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strength of both approaches by finding the MAP estimate of the trajectories’ total pos-

terior, including social and grouping models using a minimum-cost network flow with

an improved novel graph structure that outperforms existing approaches. Pedestrian

interaction is persistent rather than transient, hence the probabilistic formulation fully

exploits the power of behavioral models, as opposed to standard predictive and recursive

approaches, such as Kalman filtering. Experiments on three public datasets reveal the

importance of using social interaction models for tracking in difficult conditions, such as

crowded scenes with the presence of missed detections, false alarms and noise.

Figure 5.10: Visual results on the BIWI dataset (Section 5.6.3). The scene is heavily
crowded, social and grouping behavior are key to obtaining good tracking results.

Figure 5.11: Visual results on the PETS2009 dataset (Section 5.6.4.2).
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Figure 5.12: Visual results on the Town Center dataset (Section 5.6.4.1).



Chapter 6

Tracking with multiple view

context

Combinatorial optimization arises in many computer vision problems such as feature cor-

respondence, multi-view multiple object tracking, human pose estimation, segmentation,

etc. In the case of multiple object tracking, object locations in images are temporally

correlated by system dynamics and are geometrically constrained by the spatial config-

uration of the cameras (i.e.the same object seen in two different cameras satisfies the

epipolar constraints).

These two sources of structure have been typically exploited separately by either Tracking-

Reconstruction or Reconstruction-Tracking. Splitting the problem in two phases has,

obviously, several disadvantages because the available evidence is not fully exploited. For

example, if one object is temporarily occluded in one camera, both data association for

reconstruction and tracking become ambiguous and underconstrained when considered

separately. If, on the other hand, evidence is considered jointly, temporal correlation

can potentially resolve reconstruction ambiguities and vice versa. However, finding the

joint optimal assignment is a hard combinatorial problem that is both difficult to for-

mulate and difficult to optimize. In this chapter, we argue that it is not necessary to

separate the problem in two parts, and we present a novel formulation to perform 2D-

3D assignments (reconstruction) and temporal assignments (tracking) in a single global

optimization. The proposed graph structure contains a huge number of constraints,

therefore, it cannot be solved with typical Linear Programming (LP) solvers such as

the simplex algorithm. We rely on multi-commodity flow theory and use Dantzig-Wolfe

decomposition and branching to solve the linear program.

113
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Figure 6.1: We jointly exploit spatial and temporal structure to solve the multiple
assignment problem across multiple cameras and multiple frames. With our proposed
method, both tracking and reconstruction are obtained as the solution of one single

optimization problem.

6.1 Related work: reconstruction vs. tracking

As we argued in previous chapters, we divide the problem of multiple target tracking

into two steps: detection and data association. When dealing with multi-view data, data

association is commonly split into two optimizations, namely sparse stereo matching and

tracking. While stereo matching is needed for reconstruction (obtaining 3D positions

from 2D calibrated cameras), tracking is needed to obtain trajectories across time.

As we have seen in Chapter 4, solving the tracking problem as one single optimization

problem using Linear Programming is more reliable, as it solves the matching problem

jointly for all tracks.

The sparse stereo matching problem for reconstruction is usually formulated as a linear

assignment problem, and it is well-known that for more than 3 cameras the problem

is NP-hard [Poore, 1994]. In [Wu et al., 2009], a comparison of the methods Tracking-

Reconstruction vs. Reconstruction-Tracking is presented. In [Berclaz et al., 2011], first

reconstruction is performed using Probabilistic Occupancy Map (POM), and then track-

ing is done globally using Linear Programming. In [Yu et al., 2007], the assignments

are found using a data-driven MCMC approach, while [Wu et al., 2011] presented a for-

mulation with two separate optimization problems: linking across-time is solved using

network flows and linking across-views is solved using set-cover techniques. In contrast

to all previous works, we formulate the problem as a single optimization problem.

In this chapter we present a graph formulation that captures the whole structure of the

problem which leads to a problem with a high number of constraints. This rules out

standard Linear Programming solvers such as the simplex algorithm [Leal-Taixé et al.,
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2011a, Zhang et al., 2008] or k-shortest paths [Berclaz et al., 2011, Pirsiavash et al.,

2011]. In [Nillius et al., 2006], interactions between objects are modeled in a multiple

hypotheses fashion and heuristics are applied to make the problem practical. We define

our problem as a multi-commodity flow problem, i.e., each object has its own graph with

a unique source and sink. Multi-commodity flows are used in [Shitrit et al., 2011] in order

to maintain global appearance constraints during multiple object tracking. However, the

solution is found by applying several k-shortest paths steps to the whole problem, which

would be extremely time consuming for our problem and lead to non-integer solutions.

By contrast, we use decomposition and branching methods, which take advantage of the

structure of the problem to reduce computational time and obtain better bounds of the

solution. Decomposition methods are closely related to Lagrangian Relaxation based

methods such as Dual Decomposition [Bertsekas, 2004, Komodakis et al., 2007] which

was used for feature matching in [Torresani et al., 2008] and for monocular multiple

people tracking with groups in [Pellegrini et al., 2010]. In our case, we make use of the

Dantzig-Wolfe decomposition [Bertsimas and Tsitsiklis, 1997, Dantzig and Wolfe, 1960]

which allows us to take advantage of the special block-angular structure of our problem.

It is well-known in the field of traffic flow scheduling [Rios and Ross, 2010] as it is able

to handle huge linear programs. As is usual in multi-commodity flow problems, the

solutions found are not integers and therefore branch-and-bound [Chardaire and Sutter,

1995] is used. The combination of column generation and branch-and-bound methods

is known as branch-and-price [Barnhart et al., 1996].

Recently, [Hofmann et al., 2013] proposed a Linear Programming solution using a simpli-

fied graph structure that also includes multi-camera information, but does not constrain

the problem as tightly as the formulation presented in this chapter. The advantage is

that their problem can be solved in linear time.

In this chapter, we present a global optimization formulation for multi-view multiple

object tracking [Leal-Taixé et al., 2012b]. We argue that it is not necessary to separate

the problem into two parts, namely, reconstruction (finding the 2D-3D assignments) and

tracking (finding the temporal assignments) and propose a new graph structure to solve

the problem globally. To handle this huge integer program, we introduce decomposition

and branching methods which can be a powerful tool for a wide range of computer vision

problems.
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6.2 Multi-view Multi-object tracking

Tracking multiple objects in several calibrated camera views can be expressed as an

energy minimization problem. We define an energy function that at the 2D level (i)

enforces temporal smoothness for each camera view (2D-2D), and at the 3D level (ii)

penalizes inconsistent 2D-3D reconstructions from camera pairs, (iii) enforces coherent

reconstructions from different camera pairs and (iv) favors temporal smoothness of the

putative 3D trajectories. In the following section, we detail the proposed graph structure

used for multi-view multi-object tracking.

6.2.1 Proposed multi-layer graph

Matching between more than two cameras (k-partite matching) is an NP-hard problem.

In order to be able to handle this problem, we propose to create a multi-layer graph.

In Figure 6.2 an example of the proposed graph with three cameras and two frames is

shown.

The first layer, the 2D layer, depicted in Figure 6.2(a), contains 2D detections (circular

nodes) and the flow constraints and is where trajectories are matched across time. The

second layer, the 3D layer, depicted in Figure 6.2(b), contains the putative 3D locations

(square nodes) obtained from the 2D detections on each pair of cameras. It is designed

as a cascade of prizes and favors consistent matching decisions across camera views.

Thereby, the problem is fully defined as a singled global optimization problem.

In the following lines, we define the edges characterizing each of the two layers, namely,

the entrance/exit, the detection and the temporal 2D edges that define the 2D layer and

the reconstruction, the camera coherence and the temporal 3D edges that form the 3D

layer.

Entrance/exit edges (Cin, Cout). These edges determine when a trajectory starts

and ends; the cost balances the length of the trajectories with the number of identity

switches. Shown in blue in Figure 6.2(a).

Detection edges (Cdet). If all costs of the edges in a graph are positive and we do

not know the amount of flow that has to go through that graph (i.e., the number of

objects in the scene), then the trivial solution of zero flow is found. To avoid the trivial

solution, some costs have to be negative so that the solution has a total negative objective

cost. Following [Leal-Taixé et al., 2011a, Zhang et al., 2008], each detection piv in view

v ∈ {1 . . . V } is divided into two nodes, b and e, and a new detection edge is created
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with cost

Cdet(iv) = log
(
1− Pdet(p

t
iv

)
)
.

The higher the likelihood of a detection Pdet(p
t
iv

) the higher the negative cost of the

detection edge (shown in black in Figure 6.2(a)), hence, flow is likely to be routed

through edges of confident detections in order to minimize the total cost.

Temporal 2D edges (Ct). The costs of these edges (shown in orange in Figure 6.2(a))

encode the temporal dynamics of the targets. Assuming temporal smoothness, we define

F to be a decreasing function [Leal-Taixé et al., 2011a] of the distance between detections

in successive frames

Ct(iv, jv) = − log

(
F
(
‖pt+∆t
jv

−ptiv‖
∆t , V 2D

max

)
+B∆f−1

f

)
,

where V 2D
max is the maximum allowed speed in pixels and B∆f−1

f is a bias that depends

on the frame difference ∆f and favors matching detections in consecutive frames. The

function F maps a distance to a probability which is then converted to a cost by the

negative logarithm.

Note, that the 2D layer alone is a special case of our multi-layer graph and would be

suited to find the trajectories on each camera independently. Finding a global optimum

match between trajectories for k cameras means solving a k-partite matching problem,

which in the case of k > 2 is well-known to be NP-complete. We take a slightly different

approach and decide to track independently on each camera, but we introduce a series

of edges that bind the 2D layers with 3D information. For this, we create the 3D layer

which contains three types of edges.

Reconstruction edges (Crec). These edges connect the 2D layer (Figure 6.2(a)) with

the 3D layer (Figure 6.2(b)). For each camera pair, all plausible 2D-2D matches create

new 3D hypothesis nodes (marked by squares in Figure 6.2(b)). The reconstruction

edges, shown in green, connect each newly created 3D detection with the 2D detections

that have originated it. The costs of these edges encode how well 2D detections match

in 3D, which is implemented by computing the minimum distance between pairs of

projection rays. Let Cv be the set of all possible camera pairs andmk a new 3D hypothesis

node generated from the 2D nodes iv1 and jv2 , where k = (v1, v2) ∈ Cv and v1, v2 are two

different views. Given the camera calibration, each 2D point defines a line in 3D, L(iv1)

and L(jv2). Now let Pmk define the 3D point corresponding to the 3D node, which is

the midpoint between the two closest points on the lines. The reconstruction cost is

Crec(mk) = log (1−F (dist (L(iv1),L(jv2)),E3D)) ,
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Figure 6.2: An example of the proposed multi-layer graph structure with three cam-
eras and two frames. Let u and v represent a 2D detection j and P be a 3D reconstructed

point.
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where E3D is the maximum allowed 3D error. These edges are active, i.e., have a

positive flow, when both originating 2D detections are also active. This constraint can

be expressed in linear form as explained in Sect. 6.2.2. Essentially, the 3D layer is a

model of possible 3D events in the scene which is supported by 2D evidence (detections).

The reconstruction edges are the link to that evidence.

Camera coherency edges (Ccoh). Their purpose is to verify the evidence coming from

two different cameras. Their cost is related to the 3D distance between two 3D nodes

from different camera pairs. We show a few of these edges in Figure 6.2(b) in purple.

Considering two camera pairs k, l ∈ Cv, two 3D nodes mk and nl and their corresponding

3D points Pt
mk

and Pt
nl

, we define the camera coherency edge cost as

Ccoh(mk, nl) = log
(
1−F

(
‖Pt

mk
−Pt

nl
‖,E3D

))
.

These edges are active when the two 3D nodes they connect are also active.

Temporal 3D edges (Ct3D). The last type of edges are the ones that connect 3D nodes

in several frames (shown in orange in Figure 6.2(b)). The connection is exactly the same

as for the 2D nodes and their cost is defined as

Ct3D(mk, nk) = log

(
1−F

(
‖Pt+∆t

mk
−Ptnk‖

∆t , V 3D
max

))
,

where V 3D
max is the maximum allowed speed in world coordinates. These edges are active

when the two 3D nodes they connect are also active.

It is important to note that the 3D layer costs are always negative. To see this, recall

that F maps a distance to a probability, and the lower the distance it evaluates, the

higher the probability will be and hence the higher the negative cost. If the costs were

positive, the solution would favor a separate trajectory for each camera and frame,

because finding a common trajectory for all cameras and frames activates these edges.

Instead, these edges act as prizes for the graph, so that having the same identity in 2

cameras is beneficial if the reconstruction, camera coherence and temporal 3D edges are

sufficiently negative.

6.2.2 Linear programming

In the literature, multiple object tracking is commonly formulated as a Maximum A-

Posteriori (MAP) problem. To convert it to a Linear Program (LP), its objective func-

tion is linearized with a set of flow flags f(i) ∈ {0, 1} which indicate whether an edge

i is in the path of a trajectory or not [Leal-Taixé et al., 2011a, Zhang et al., 2008].

The proposed multi-layer graph can be expressed as an LP with the following objective
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Figure 6.3: 3D layer edges: (a) The 2D nodes in each camera activate the recon-
struction and camera coherency edges because they are assigned the same trajectory
ID visualized in red. The reconstruction error Crec is defined as the minimum line
distance between projection rays. The camera coherency edges Ccoh are defined as the
3D distance between putative reconstructions (illustrated as red silhouettes in 3D) from
different camera pairs. (b) graph structure of the 3D layer: active edges are shown in
continuous lines. The red 2D nodes (circles) activate the 3D nodes (square nodes) since

they are assigned the same ID (product of flows equals one).

function:

T ∗ = arg min
f

CTf =
∑

i

C(i)f(i)

=

V∑

v=1

∑

iv

Cin(iv)fin(iv) +

V∑

v=1

∑

iv

Cout(iv)fout(iv)

+

V∑

v=1

∑

iv

Cdet(iv)fdet(iv) +

V∑

v=1

∑

iv ,jv

Ct(iv, jv)ft(iv, jv)

+
∑

k∈Cv

∑

mk

Crec(mk)frec(mk)

+
∑

k∈Cv

∑

l∈Cv

∑

mk,nl

Ccoh(mk, nl)fcoh(mk, nl)

+
∑

k∈Cv

∑

mk,nk

Ct3D(mk, nk)ft3D(mk, nk) (6.1)

where k, l ∈ Cv are the indices of different camera pairs. The problem is subject to the

following constraints:

• Edge capacities: we assume that each detection belongs to only one trajectory, thus

the flow that goes through detection edges can only assume the values f(i) = {0, 1}.
Since integer programming is NP-hard, we relax the conditions to obtain a linear

program: 0 ≤ f(i) ≤ 1. In the remainder of this chapter, all conditions will be

expressed in their relaxed form.
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• Flow conservation at the 2D nodes: fin(iv), fout(iv) indicate whether a trajectory

starts or ends at node iv.

fdet(iv) = fin(iv) +
∑

jv

ft(jv, iv)

fdet(iv) =
∑

jv

ft(iv, jv) + fout(iv) (6.2)

• Activation for reconstruction edges: these 2D-3D connections have to be activated,

i.e., have a positive flow, if their 2D originating nodes are also active. More

formally, this imposes the following relationship:

frec(mk) = fdet(iv1)fdet(jv2) (6.3)

• Activation for the camera coherency edges: for 3D-3D connections we take a similar

approach as for the reconstruction edges and define the flow to be dependent on

the 3D nodes it connects:

fcoh(mk, nl) = frec(mk)frec(nl) (6.4)

• Activation for temporal 3D edges:

ft3D(mk, nk) = frec(mk)frec(nk) (6.5)

As we can see, the pairwise terms in Eqs. (6.3), (6.4) and (6.5) are non-linear. Let

fab = fafb be a pairwise term consisting of two flows fa and fb . Using the fact that the

flows are binary, we can encode the pairwise term with the following linear inequations:

fab − fa ≤ 0 fab − fb ≤ 0 fa + fb − fab ≤ 1.

We can now express the constraints in Eqs. (6.3), (6.4) and (6.5) in linear form. These

constraints define the 3D layer of the graph as a cascade of prizes. Consider two 2D

nodes on different cameras which belong to different trajectories. The question will be

whether it is favorable to assign the same trajectory ID to both 2D nodes. The answer

depends on the prize costs this assignment activates. When both 2D nodes are assigned

the same trajectory ID, the corresponding 3D reconstruction edge is activated. If two

3D nodes from different camera pairs are activated, the camera coherency edge between

them is activated, and the same will happen across time. This means that trajectories

are assigned the same ID only if the reconstruction, camera coherency and temporal 3D

costs are sufficiently negative to be beneficial to minimize the overall solution.
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6.2.3 Multi-commodity flow formulation

The goal of the flow constraints defined in the previous section is to activate certain

prize edges when two 2D nodes are activated by the same object. This means that in

one graph we can only have a total flow of 1, which corresponds to one object. To that

end, we create one more condition on the number of objects per camera:

0 ≤
∑

iv

fin(iv) ≤ 1 0 ≤
∑

iv

fout(iv) ≤ 1 ∀v (6.6)

In order to deal with several objects, we use the multi-commodity flow formulation,

well-known in traffic scheduling [Dantzig and Wolfe, 1960]. We create one graph for

each object n to be tracked on the scene. Each graph has its own source and sink nodes,

and each object is a commodity to be sent through the graph. The problem has now a

much larger set of variables f =
[
f1 . . . fNobj

]
. Obviously, with no further restrictions,

computing the global optimum would result in the same solution for all instances of the

graph, i.e., we would find the same trajectory for all objects. Therefore, we need to

create a set of binding constraints which prevent two trajectories from going through

the same edges:

∑

n

fn(i) ≤ 1 n = 1 . . . Nobj (6.7)

where fn(i) is the flow of object n going through the edge i. This set of binding

constraints creates a much more complex linear program which cannot be solved with

standard techniques. Nonetheless, the problem still has an interesting block-angular

structure, which can be exploited. The problem consists of a set of small problems

(or subproblems), one for each object, with the goal to minimize Eq. (6.1) subject

to the constraints in Eq. (6.2)-(6.6). On the other hand, the set of complex binding

constraints in Eq. (6.7) defines the master problem. This structure is fully exploited

by the Dantzig-Wolfe decomposition method which is explained in the next section,

allowing the algorithm to find a solution with less computation time.

6.3 Branch-and-price for multi-commodity flow

Branch-and-price is a combinatorial optimization method for solving large scale integer

linear problems. It is a hybrid method of column generation and branching.

Column generation: Dantzig-Wolfe decomposition. The principle of decomposi-

tion is to divide the constraints of an integer problem into a set of “easy constraints”

and a set of “hard constraints”. The idea is that removing the hard constraints results
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in several subproblems which can be easily solved by k-shortest paths, simplex, etc. Let

us rewrite our original minimum cost flow problem:

min
f

CTf =
Nobj∑
n=1

(cn)Tfn (6.8)

subject to:

A1f ≤ b1 An
2 fn ≤ bn2 0 ≤ f ≤ 1 (6.9)

where (A1,b1) represent the set of hard constraints Eq. (6.7), and (A2,b2) the set

of easy constraints, Eqs. (6.3)-(6.6), which are defined independently for each object

n = 1 . . . Nobj. The idea behind Dantzig-Wolfe decomposition is that the set T ∗ = {f ∈
T : f integer}, with T bounded, is represented by a finite set of points, i.e., a bounded

convex polyhedron is represented as a linear combination of its extreme points. The

master problem is then defined as:

min
λ

Nobj∑
n=1

(cn)T
J∑
j=1

xnj λ
n
j (6.10)

subject to:

∑
n

An
1

J∑
j=1

xnj λ
n
j ≤ b1

J∑
j=1

λnj = 1 0 ≤ λnj ≤ 1 (6.11)

where fn =
∑J

j=1 λ
n
j x

n
j and {xj}Jj=1 are the extreme points of a polyhedron. This prob-

lem is solved using column generation (Algorithm 9). The advantage of this formulation

is that the Nobj column generation subproblems can be solved independently and there-

fore in parallel. We use the parallel implementation found in [Rios], which is based on

[Dantzig and Wolfe, 1960].

Algorithm 9 Column generation

while Restricted master problem new columns > 0 do

1. Select a subset of columns corresponding to λnj which form what is called the
restricted master problem

2. Solve the restricted problem with the chosen method (e.g., simplex).

3. Calculate the optimal dual solution µ

4. Price the rest of the columns with µ(An
1 fn − bn1 )

5. Find the columns with negative cost and add them to the restricted master
problem. This is done by solving Nobj column generation subproblems.

min
f

(cn)Tfn + µ(An
1 fn − bn1 ) s.t. An

2 fn ≤ bn2

end while
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Branching. Typically in multi-commodity flow problems, the solution is not guaran-

teed to be composed of all integers. Nonetheless, once we find the fractional solution,

we can use branching schemes to find the integer optimal solution. This mixture of col-

umn generation and branching is called branch-and-price. One important thing is that

branching must be done on the original variables, not on the λnj of the master problem.

For more details we refer to [Ahuja et al., 1993, Barnhart et al., 1996].

6.4 Experimental results

In this section, we show the tracking results of the proposed method on two key problems

in computer vision, namely multi-camera multiple people tracking and 3D human pose

tracking. We compare our method with the following approaches for multi-view multiple

object tracking:

• Greedy Tracking-Reconstruction (GTR): first tracking is performed in 2D on a

frame-by-frame basis using bipartite graph matching, and then 3D trajectories are

reconstructed from the information of all cameras.

• Greedy Reconstruction-Tracking (GRT): first 3D positions are reconstructed from

all cameras. In a second step, 3D tracking is performed on a frame-by-frame basis

using bipartite graph matching.

• Tracking-Reconstruction (TR): first tracking is performed in 2D using [Zhang

et al., 2008] and then 3D trajectories are recovered as in GTR.

• Reconstruction-Tracking (RT): first the 3D positions are reconstructed as in GRT

and then 3D tracking is performed using [Zhang et al., 2008].

Tests are performed on two publicly available datasets [Ferryman, 2009, Sigal et al., 2010]

and a comparison with existing state-of-the-art tracking approaches is made using the

CLEAR metrics [Kasturi et al., 2009], DA (detection accuracy), TA (tracking accuracy),

DP (detection precision) and TP (tracking precision).

6.4.1 Multi-camera multiple people tracking

In this section, we show the tracking results of our method on the publicly available

PETS2009 dataset [Ferryman, 2009], a scene with several interacting targets. Detections

are obtained using the Mixture of Gaussians (MOG) background subtraction. For all

experiments, we set Bf = 0.3, E3D = 0.5 m which represents the diameter of a person,



Chapter 6. Tracking with multiple view context 125

(a) Tracking-Reconstruction (b) Reconstruction-Tracking (c) Proposed method

Figure 6.4: Even with 40% of outliers our method 6.4(c) can recover the trajectories
almost error free on the entire the sequence. This is in contrast to 6.4(a) and 6.4(b)

that struggle with the ambiguities generated by the outliers.

V 2D
max =250 pix/s and V 3D

max =6 m/s which is the maximum allowed speed for pedestrians.

Note that for this particular dataset, we can infer the 3D position of a pedestrian with

only one image since we can assume z = 0. Since we evaluate on view 1 and the second

view we use does not show all the pedestrians, it would be unfair towards the RT and

GRT methods to only reconstruct pedestrians visible in both cameras. Therefore, we

consider the detections of view 1 as the main detections and only use the other cameras

to further improve the 3D position. We also compare our results to monocular tracking

using [Zhang et al., 2008] and multi-camera tracking with Probability Occupancy Maps

and Linear Programming [Berclaz et al., 2011]. As we can see in the results with 2 camera

DA TA DP TP miss

Zhang et al. [Zhang et al., 2008] (1) 68.9 65.8 60.6 60.0 28.1
Greedy tracking-reconstruction (2) 51.9 49.4 56.1 54.4 31.6
Greedy reconstruction-tracking (2) 64.6 57.9 57.8 56.8 26.8

Tracking-reconstruction (2) 66.7 62.7 59.5 57.9 24.0
Reconstruction-tracking (2) 69.7 65.7 61.2 60.2 25.1

Leal-Taixé et al. [Leal-Taixé et al., 2012b] (2) 78.0 76 62.6 60 16.5

Tracking-reconstruction (3) 48.5 46.5 51.1 50.3 20
Reconstruction-tracking (3) 56.6 51.3 54.5 52.8 23.5

Leal-Taixé et al. [Leal-Taixé et al., 2012b] (3) 73.1 71.4 55.0 53.4 12.9

Berclaz et al. [Berclaz et al., 2011] (5) 76 75 62 62 −

Table 6.1: PETS2009 L1 sequence. Comparison of several methods tracking on a
variable number of cameras (indicated in parenthesis).

views, Table 6.1, our algorithm [Leal-Taixé et al., 2012b] outperforms all other methods.

In general, TR and RT methods perform better than their counterparts GRT and GTR,

since matching across time with Linear Programming is robust to short occlusions and

false alarms. Nonetheless, it still suffers from long term occlusions. In contrast, our

method is more powerful than existing approaches when dealing with missing and noisy

data, with misdetection rates 8.5 to 15 percentage points lower than other methods.

Notably, our method also outperforms [Berclaz et al., 2011] in accuracy, even though
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our results are computed using only 2 cameras instead of 5. When using 3 cameras,

the 2D-3D inaccuracies become more apparent since the detections of the third camera

project badly on the other two views (see Figure 6.6). Interestingly, RT and TR methods

are greatly affected by these inaccuracies, while our method is more robust and still able

to further reduce the missed detections by 4.6 percentage points.

(a) Reconstruction-Tracking

(b) Proposed method

Figure 6.5: Results on the PETS sequence, tracking with 2 camera views. Identity
switch appears when using Reconstruction-Tracking, while the proposed method is able

to correctly track the pedestrian even behind the pole.

In Figure 6.5, we can see an example with 2 camera views. A pedestrian hides behind a

pole and therefore goes undetected for a number of frames in view 1. In this case, the

RT method is not able to reconstruct any 3D position, and so a new track is initiated

when the pedestrian is visible again in view 1. The advantage of the proposed approach

is that, during the occlusion, the pedestrian can be tracked in view 2 using only 2D

information. When he reappears in view 1 and therefore 3D information is available

again, the method is able to correctly assign the same identity as he had before. It

combines the power of RT methods to correctly identify pedestrians with the power of

TR methods to track by usings only one view.
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Figure 6.6: Results on the PETS sequence, tracking with 3 camera views. Although
there are clear 2D-3D inaccuracies, the proposed method is able to track the red pedes-

trian which is occluded in 2 cameras during 22 frames.

In Figure 6.6, we show an example with three camera views where a pedestrian (red) is

occluded in two of the three views for a length of 22 frames. The RT method is unable

to recover any 3D position, and therefore loses track of the pedestrian. The TR method

tries to track the pedestrian in one view, but the gap is too large and TR fails to finally

recover the whole 3D trajectory. The proposed method overcomes the long occlusion

and the noisy 2D-3D correspondences to recover the full trajectory. We obtain a better

accuracy than RT(3) by 13.5 percentage points which further proves the advantages of

our approach.

6.4.2 Human Motion

We also tested our algorithm on the problem of human pose tracking using the publicly

available human motion database HumanEva [Sigal et al., 2010]. The problem we con-

sider here is the following: given a set of 2D joint locations in two cameras, the goal is

to link the locations across time and across cameras at every frame to reconstruct the

sequence of poses. In these experiments, we use only two cameras at a reduced frame

rate of 10 fps to reconstruct the 3D poses. To obtain joint locations in the image, we
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Figure 6.7: Robustness evaluation: simulation of increasing rate of missing data 6.7(a)
and increasing rate of outliers 6.7(b),6.7(c).

project the ground truth 3D data using the known camera parameters. The parameters

used are: Bf = 0.3, E3D = 0.01 mm, V 2D
max =400 pix/s and V 3D

max =3 m/s. We study the

robustness of our algorithm to missing data and outliers. Missing data often occurs due

to occlusions, while outliers appear as the result of false detections.

Missing data: To simulate missing data, we increasingly removed percentages of the 2D

locations ranging from 0 to 40%. As can be seen in Figure 6.7(a), our proposed method

outperforms all other baselines and brings significant improvement. In Figure 6.8, we

show the trajectories of the lower body reconstructed with our method with 20% of

missing data. The 3D error for our method stays below 5 mm, whereas it goes up to

10 mm for the other methods.
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Outliers: We added from 0% to 40% of uniformly distributed outliers in windows of 15×
15 pixels centered at randomly selected 2D joint locations. Again, our method shows a far

superior performance as the percentage of outliers increases, see Figure 6.7(b). Notably,

our method performs equally well independently from the number of outliers. Since

outliers are uncorrelated across cameras, they produce lower prizes in the 3D layer of our

graph and are therefore correctly disregarded during optimization. This clearly shows

the advantage of globally exploiting temporal and 3D coherency information together.

Here, the 3D error is only 2 mm for our method. Furthermore, in Figure 6.7(c), we plot

the count of the identity switches for an increasing number of outliers. Our method

is the only one that is virtually unaffected by outliers, an effect that is also shown in

Figure 6.4. This last result is particularly important for pose tracking, as ID switches

result in totally erroneous pose reconstructions.

(a) Camera 1 (b) Camera 2 (c) 3D trajectories

Figure 6.8: Proposed method with 20% of missing data. Note that the trajectories
are assigned the same ID in both views.

6.5 Conclusions

In this chapter, we presented a formulation to jointly track multiple targets in multi-

ple views. The proposed graph structure captures both temporal correlations between

objects as well as spatial correlations enforced by the configuration of the cameras and

allows us to solve the problem as one global optimization. To find the global opti-

mum, we used the powerful tool of branch-and-price, which allows us to exploit the

special block-angular structure of the program to reduce computational time. We tested

the performance of the proposed approach on two key problems in computer vision:

multiple people tracking and 3D human pose tracking. We outperform state-of-the-art

approaches, which proves the strength of combining 2D and 3D constraints in a single

global optimization.
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Conclusions

In a world where video cameras are becoming an inherent part of our lives, it is becoming

more important to develop methods to automatically analyze such data streams. Many

tasks such as surveillance, animation or activity recognition need to have information

about where people are located and how they are moving. Hence, multiple people

tracking has become a classical problem in computer vision. Though a lot of research

has been done in this field, there are still major challenges to overcome, especially in

crowded environments.

In this thesis, we approached the problem of multiple people tracking using the paradigm

of tracking-by-detection. Recent advances in detectors make it possible to have a reason-

ably stable detection rate even in moderately crowded scenarios. Nonetheless, occlusions

and false alarms are still a big problem that has to be faced during the tracking step.

We argued that classical tracking methods fail to fully exploit two sources of context,

namely social context and spatial context coming from different views. Including this

context in an efficient way within a global optimization tracker has been the main scope

of this thesis.

We first presented our tracking framework based on Linear Programming. Multiple

people tracking is formulated as a unique optimization problem for all pedestrians in

all frames, and a globally optimum solution is found for all trajectories. This already

provides the perfect setup to introduce any kind of context, since the trajectories are

inherently linked to each other.

The first source of context we explored was that of the social context. In a scenario where

a pedestrian walks alone, it is obvious he or she will follow a straight path towards his

or her destination. Nonetheless, this path is affected by all kinds of obstacles, static or

moving, in a real life scenario. This effect becomes increasingly apparent in crowded

130
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scenarios, therefore, we argued it is far more natural to include the environment and

other moving targets during the multiple people tracking task. Most pedestrian move-

ments and reactions to the environment are captured by what is called the Social Force

Model. We presented a method to efficiently introduce social and grouping behavior into

the Linear Programming tracker. The observation that people interaction is persistent

rather than transient made it clear that the probabilistic formulation fully exploits the

power of behavioral models, as opposed to standard predictive and recursive approaches,

such as Kalman filtering. Experiments were shown on several public datasets revealing

the importance of using social interaction models for tracking under difficult conditions,

such as crowded scenes with the presence of missed detections, false alarms and noise.

Social information was proven to be specially useful in keeping the correct identity of a

pedestrian, which is in the end the main goal of tracking.

Even though the inclusion of social awareness in tracking improved trajectories signifi-

cantly, there is only so much a tracker can do given a certain set of detections. Pedestrian

pose, illumination or most commonly occlusions can make it hard to detect pedestri-

ans under certain conditions. Using input from multiple cameras is the most common

solution to increase the chances of detecting all pedestrians, specially in surveillance

scenarios where the same space is filmed from several angles. Nonetheless, information

coming from multiple cameras is typically combined in an ad-hoc fashion. Furthermore,

object locations in the images are temporally correlated by system dynamics and are

geometrically constrained by the spatial configuration of the cameras. These two sources

of structure have been typically exploited separately, but splitting the problem in two

phases has obviously several disadvantages, because the available evidence is not fully

exploited. For example, if one object is temporarily occluded in one camera, both data

association for reconstruction and tracking become ambiguous and underconstrained

when considered separately. If, on the other hand, evidence is considered jointly, tem-

poral correlation can potentially resolve reconstruction ambiguities and vice versa.

The spatial context is the second source of context that we aimed at fully exploiting in

this thesis. We proposed to create a unique graph structure capturing both temporal

correlations between objects as well as spatial correlations enforced by the configuration

of the cameras, allowing us to solve the problem as one global optimization. Given

the large number of constraints and variables, is it intractable to solve this problem

using standard Linear Programming solvers. We therefore used the powerful tool of

branch-and-price to find the global optimum, which allowed us to exploit the special

block-angular structure of the program to reduce computational time as well as to find a

better lower bound. Performance was tested for multiple people tracking, outperforming

state-of-the-art approaches and proving the strength of combining 2D and 3D constraints

in a single global optimization. The main strength was that pedestrians visible in only
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one view can be tracked in 2D, while pedestrians visible in several views can be tracked

using 3D information as well, making the method very flexible and robust at the same

time. Perhaps the most interesting contribution of our formulation is that it can be

of considerable interest to model complex dependencies which arise in a wide range of

computer vision problems. We also applied our method to 3D human pose tracking for

which we obtained largely better results compared to classical approaches.

One weakness of the method is that it is very sensitive to noise. For the multiple

people tracking sequence, there are large calibration errors which reduced the accuracy

of our results significantly. On the 3D human pose tracking dataset though, calibration is

extremely accurate and therefore we can see results which are perfect even when we have

up to 50% of outliers present in the data. This is because the graph structure contains

a high number of constraints that tightly link 2D and 3D information. If calibration is

correct, this structure does not allow any tracking error and provides excellent accuracy

results. Nonetheless, in practice we know there will be a certain percentage of errors

in the 3D position estimation, introduced either by the camera calibration or simply by

the detector which can wrongly estimate the 2D bounding box around a pedestrian. As

future work, we would like to explore ways of relaxing the sensitivity of the method to

noise while keeping the tight formulation.

Another direction for improvement would be to find a solver with better computational

complexity. Currently, the methods’ complexity increases exponentially with the number

of objects and cameras. In practice, it takes about one day to find the solution for one

tracking sequence.

The work presented in this thesis has shown that context can be a key source of in-

formation that can significantly improve tracking results, especially if introduced in a

global optimization framework which guarantees that this information will be fully ex-

ploited to improve all trajectories. Nonetheless, we believe that the tracking-by-detection

framework has reached a saturation point in which results can now only be marginally

improved. There is only so much that can be done to improve tracking given a certain

detection set. Long occlusions are still a common unsolved problem, there are just too

many assumptions that the tracker needs to make in order to correctly follow a pedes-

trian occluded for half of the sequence. We strongly believe that detection and tracking

should not be treated as two separate tasks. Detection can benefit considerably from

motion cues, while tracking can benefit from detailed appearance cues used commonly

by detectors.



Appendix A

A case study: microorganism

tracking and motion analysis

Throughout the thesis we have focused on tracking and motion analysis of pedestrians.

Humans are usually the center of attention for many computer vision tasks, e.g., de-

tection [Gall et al., 2011, Felzenszwalb et al., 2010b], tracking [Leal-Taixé et al., 2011a,

2012b], pose estimation [Pons-Moll et al., 2011a, Yang and Ramanan, 2011], crowd anal-

ysis [Ali and Shah, 2008, Rodriguez et al., 2011b]. Nonetheless, Computer Vision can

be useful in many other fields where huge amounts of data need to be automatically

analyzed, for example cell tracking [Li et al., 2008] for medical purposes. In this Ap-

pendix, we present a case study where Computer Vision is proven to be useful for the

field of marine biology and chemical physics. An automatic method is presented for the

tracking and motion analysis of swimming microorganisms. This includes early work

done by the author at the beginning of the PhD.

Many fields of interest in biology and other scientific research areas deal with intrinsically

three-dimensional problems. The motility of swimming microorganisms such as bacteria

or algae is of fundamental importance for topics like pathogen-host interactions [Ginger

et al., 2008], predator-prey interactions [Ginger et al., 2008], biofilm-formation [Stoodley

et al., 2002], or biofouling by marine microorganisms [Heydt et al., 2007, Rosenhahn

et al., 2008].

We present a complete system for the automatic analysis of digital in-line holographic

data. This microscopy technique provides videos of a 3D volume, see Figure A.1, and is

used to study complex movements of microorganisms. The huge amount of information

that we can extract from holographic images makes it necessary to have an automatic

method to analyze this complex 4D data. Our system performs the detection of 3D

positions, tracking of complete trajectories and classification of motion patterns. For

133
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YZ projection XZ projection

XY projection

(a) (b)

Figure A.1: (a) The input data, the projections obtained with digital in-line hologra-
phy (inverted colors for better visualization). Sample trajectory in red. (b) The output
data we want to obtain from each volume, the classification into four motion patterns,
colored according to speed: orientation (1), wobbling (2), gyration (3) and intensive

surface probing (4).

multiple microorganism tracking, we propose a geometrically motivated and globally

optimal multi-level Hungarian to compensate for leaving and entering particles, recover

from missing data and erase outliers to reconstruct the trajectories of the microorganisms

[Leal-Taixé et al., 2009a]. Afterwards, we focus on the classification of four motion

patterns of the green alga Ulva linza with the use of Hidden Markov Models [Leal-Taixé

et al., 2010]. Furthermore, our system is able to find and separate different patterns

within a single sequence. Besides classification of motion patterns, a key issue is the

choice of features used to classify and distinguish the involved patterns. For this reason,

we perform an extensive analysis of the importance of typical motion parameters, such

as velocity, curvature, orientation, etc. The system we developed is highly flexible and

can easily be extended. Especially for forthcoming work on cells, microorganisms or

human behavior, such automated algorithms are of pivotal importance, as they allow

high throughput analysis of individual segments in motion data.

A.1 Related work

Understanding the motility and behavioral patterns of microorganisms allows us to

understand their interaction with the environment and thus to control environmental

parameters to avoid unwanted consequences such as infections or biofouling. To study

these effects in 3D several attempts have been made: tracking light microscopy, capable

of tracking one bacterium at a time [Frymier et al., 1995], stereoscopy [Baba et al., 1991]

or confocal microscopy [Weeks et al., 2000].
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Berg built a pioneering tracking light microscope, capable of tracking one bacterium at

a time in 3D. This has been used to investigate bacteria like Escherichia Coli [Frymier

et al., 1995]. Another way of measuring 3D trajectories is stereoscopy, which requires

two synchronized cameras [Baba et al., 1991]. Confocal microscopy has also been used

to study the motion of particles in colloidal systems over time, however the nature of

this scanning technique limits the obtainable frame rate [Weeks et al., 2000].

For any of these techniques, in order to draw statistically relevant conclusions, thou-

sands of images have to be analyzed. Nowadays, this analysis is still heavily dependent

on manual intervention. Recent work [Li et al., 2008] presents a complete vision system

for 2D cell tracking, which proves the increasing demand for efficient computer vision

approaches in the field of microscopy as an emerging discipline. Research on the au-

tomatic analysis of biological images is extensive [Miura, 2005], but most of the work

focuses on position as well as on the shape of the particle [Tsechpenakis et al., 2008].

Several methods exist for multiple object detection based on methods such as Markov

Chain Monte Carlo (MCMC) [Khan et al., 2005], inference in Bayesian networks [Nillius

et al., 2006] or the Nash Equilibrium of game theory [Yang et al., 2007]. These have been

proven useful to track a fairly small number of targets but are less appropriate when

the number of targets is very large, as in our case. Statistical methods like Kalman

filters [Li et al., 2008], particle filters or recursive Bayesian filters [Betke et al., 2007] are

widely used for tracking but they need a dynamical model of the target, a requirement

that can be challenging to fulfill depending on the microorganism under study and to

which we dedicate the second part of this paper. In contrast to [Betke et al., 2007, Li

et al., 2008], we do not use the output predictions of the filters to deal with occlusions,

but rather use past and future information to complete broken trajectories and detect

false alarms. Therefore, we do not need an extra track linking step as in [Li et al.,

2008]. Furthermore, we deal with 3D trajectories of random and fast motions which

are unsuited for a prediction-based approach. In this work we propose a global optimal

matching solution and not a local one as suggested in [Lu et al., 2008].

Besides generating motion trajectories from microscopic data, a subsequent classifica-

tion allows biologists to get the desired information from large image sets in a compact

fashion. Indeed, the classification of motion patterns in biology is a well-studied topic

[Berg, 1993], but identifying these patterns manually is a complicated and time con-

suming task. Recently, machine learning and pattern recognition techniques have been

introduced to analyze such complex movements in detail. These techniques include:

Principal Component Analysis (PCA) [Hoyle and Rattay, 2003], a linear transformation

used to analyze high dimensional data; Bayesian models [Wang and Grimson, 2008],

which use a graph model and the rules of probability theory to select among different

hypotheses; Support Vector Machines (SVM) [Guyon et al., 2004], which use training
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data to find the optimum parameters of the model representing each class. A com-

parison of machine learning approaches applied to biology can be found in [Sbalzariniy

et al., 2002]. In order to classify biological patterns, we need to use an approach able to

handle time-varying signals. Hidden Markov Models [Rabiner, 1989] are statistical mod-

els especially known for their application in temporal pattern recognition. They were

first used in speech recognition, and since then HMMs have been extensively applied to

vision. Applications vary from handwritten word recognition [Chen et al., 1994], face

recognition [Nefian and M.H.Hayes, 1998] or human action recognition [Yamato et al.,

1992, Brand and Kettnaker, 2000].

A.2 Detection of 3D positions

In this section, we present the details of digital in-line holography, how this microscopy

technique allows us to obtain 3D positions of microorganisms as well as the image

processing methods used to robustly extract these positions from the images.

A.2.1 Digital in-line holographic microscopy (DIHM)

Digital in-line holographic microscopy provides an alternative, lensless microscopy tech-

nique which intrinsically contains three dimensional information about the investigated

volume. It does not require a feedback control which responds to motion and it uses

only one CCD chip. This makes the method very straightforward and in practice can

be implemented with a very simple setup as shown in Figure A.2.

Laser beam CCD detector

Hologram

Microorganisms

Pinhole

Figure A.2: Schematic setup for a digital in-line holographic experiment consisting of
the laser, a spatial filter to create the divergent light cone, the objects of interest (e.g.

microorganisms) and a detector which records the hologram.
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The holographic microscope requires only a divergent wavefront which is produced by

diffraction of laser light from a pinhole. A CCD chip finally captures the hologram. The

holographic microscope setup follows directly Gabors initial idea [Gabor, 1948] and has

been implemented for laser radiation by Xu et al. [Xu et al., 2001]. A hologram recorded

without the presence of particles, called the source, is subtracted from each hologram.

This is used to reduce the constant illumination background and other artifacts; there are

filtering methods [Raupach et al., 2006, Fugal et al., 2009] to achieve this in case a source

image is not readily available. These resulting holograms can then be reconstructed back

into real-world coordinates by a Kirchhoff-Helmholtz transformation [Xu et al., 2001]

shown in Equation (A.1).

K(r) =

∫

S
d2ξI(ξ)e

ikr·ξ
|ξ| (A.1)

The integral extends over the 2D surface of the screen with coordinates ξ = (X,Y, L),

where L is the distance from the source (pinhole) to the center of the detector (CCD

chip), I(ξ) is the contrast image (hologram) on the screen obtained by subtracting the

images with and without the object present and k the wave number: k = 2π/λ.

XY projection

Hologram

zNz1 zi

z

y

x

Stacked XY projections
XZ projectionYZ projection

Figure A.3: Illustration of the reconstruction process. From the hologram a stack of
XY projections is obtained in several depths and from those, the final 3 projections

(XZ, XZ and Y Z) are obtained.

As we can see in Figure A.3, the idea behind the reconstruction is to obtain a series

of stacked XY projections from the hologram image. These projections contain the

information at different depth values. From these images, we can obtain the 3 final

projections XY , XZ and Y Z, as described in [Heydt et al., 2009]. These projections

contain the image information of the complete observation volume, i.e. from every object

located in the light cone between pinhole and detector. The resolution in X and Y is

δx,y = λ
NA , where NA stands for the numerical aperture given by NA = D

2L , where D is

the detector’s side length. The resolution in the Z direction, that is the direction of the

laser, is worse, δz = λ
2NA2 . This is because the third dimension, Z, is obtained with a

mathematical reconstruction, unlike confocal microscopy, where the value of every voxel

is returned. On the other hand, confocal microscopes take a long time to return the
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values of all voxels in a volume, and are therefore unsuited for tracking at a high frame

rate.

Using video sequences of holograms, it is possible to track multiple objects in 3D over

time at a high frame rate, and multiple spores present in a single frame can be tracked

simultaneously [Heydt et al., 2007, Lu et al., 2008, Garcia-Sucerquia et al., 2006]. Using

this advantage of digital in-line holographic microscopy, a number of 3D phenomena

in microbiology have been investigated: Lewis et al. [Lewis et al., 2006] examined the

swimming speed of Alexandrium (Dinophyceae), Sheng et al. [Sheng et al., 2007, 2010]

studied the swimming behavior of predatory dinoflagellates in the presence of prey, and

Sun et al. [Sun et al., 2007] used a submersible device to investigate in situ plankton in

the ocean.

A.2.2 Detection of the microorganisms

As we saw in Chapter 2, we can use information such as edges or color histograms in

order to detect humans, or we can build more complex models from training data in

order to robustly detect humans in single images or in videos with moving cameras. In

our case we can use simpler detection methods since the shape of our targets is much

more constant than that of a human. In our sequences, we are observing the green algae

Ulva linza which has a spherical spore body and four flagella. Since the body scatters

most of the light, in the projected images the particles have a circular shape. In order

to preserve and enhance the particle shape (see Figure A.4(a)) but reduce noise and

illumination irregularities of the image (see Figure A.4(b)), we apply the Laplacian of

Gaussian filter (LoG), which, for its shape, is a blob detector [Lindeberg, 1994]:

LoG(x, y) =
−1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (A.2)

Due to the divergent nature of the light cone, the particles can appear smaller or larger in

the projections depending on the z-plane. Therefore, the LoG filter is applied in several

scales [Lindeberg, 1994] according to the magnification. Note that the whole algorithm

is extremely adaptable, since we can detect differently shaped microorganisms by just

changing the filter. After this, we use thresholding on each projection to obtain the

positions of candidate particles in the image. The final 3D positions (Figure A.6, green

box labeled ”Candidate particles”) are determined by thresholding each projection XY ,

XZ and Y Z to find the particles in each image and crossing the information of the three

projections.
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(a)

(b)

Figure A.4: (a) Enhancement of the shape of the microorganisms. (b) Reduction of
the noise.

Once we have computed the 3D positions of all microorganisms in all frames, we are

interested in linking these 3D positions in order to find their complete 3D trajectories

over time (see Figure A.5).

A.3 Automatic extraction of 3D trajectories

In this section we present the complete method to estimate the 3D trajectories of mi-

croorganisms over time. Our algorithm, the Multi-level Hungarian, is a robust method

evolved from the Hungarian-Munkre’s assignment method and is capable of dealing with

entering and leaving particles, missing data and outliers. The diagram of the method is

presented in Figure A.6.

A.3.1 Cost function and bipartite graph matching

Let us briefly refresh some of the key concepts that we have seen in Chapter 3. Graph

Matching is one of the fundamental problems in Graph Theory and it can be defined
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XY projection

XZ projectionY Z projection

Figure A.5: From the 3D positions obtained at each time frame, we use the method
in Section A.3 to obtain the full trajectory of each microorganism.
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Figure A.6: Diagram of the algorithm described in Section A.3.2.
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as: given a graph G = (V,E), where E represents its set of edges and V its set of nodes

or vertices, a matching M in G is a set of pairwise non-adjacent edges, which means

that no edges share a common vertex. For our application, we are specially interested

in the Assignment Problem, which consists in finding a maximum weight matching in a

weighted bipartite graph. In a general form, the problem can be expressed as: ”There

are N jobs and N workers. Any worker can be assigned to any job, incurring some cost

that varies depending on the job-worker assignment. All jobs must be performed by

assigning exactly one worker to each job in such a way that the total cost is minimized

(or maximized)”. For the subsets of vertices X and Y , such that V = X ∪ Y and

X ∩Y = ∅, we build a cost matrix in which the element C(i, j) will represent the weight

or cost related to the edge connecting i in X and j in Y .

For numerical optimization, we use the Hungarian or Munkres’ assignment algorithm,

a combinatorial optimization algorithm [Kuhn, 1955, Munkres, 1957] that solves the

bipartite graph matching problem in polynomial time. For implementation details on

the Hungarian, we recommend [Pilgrim, 2009]. Our initial problem configuration is:

there are M particles in frame t1 and N particles in frame t2. The Hungarian will help

us to determine which particle in t1 corresponds to which particle in t2, allowing us to

reconstruct their full trajectories in 3D space. Nonetheless, the Hungarian algorithm

has some disadvantages which we should be aware of. In the context of our project,

we summarize in Table A.1 some of the advantages and disadvantages of the Hungarian

algorithm.

ADVANTAGES

Finds a global solution for all vertices
Cost matrix is versatile
Easy to solve, bipartite matching is the simplest of all graph prob-
lems

DISADVANTAGES

Cannot handle missing vertices (a)
Cannot handle entering or leaving particles (b)
No discrimination of matches even if the cost is very high (c)

Table A.1: Summary of the advantages and disadvantages of the Hungarian algorithm.

In the following sections, we present how to overcome the three disadvantages: (a) is

solved with the multi-level Hungarian method explained in Section A.3.2, (b) is solved

with the IN/OUT states of Section A.3.1.1 and finally a solution for (c) is presented in

Section A.3.1.2 as a maximum cost restriction.

The cost function C, as key input for the Hungarian algorithm, is created using the

Euclidean distances between particles, that is, element C(i, j) of the matrix represents
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the distance between particle i of frame t1 and particle j of frame t2. With this matrix,

we need to solve a minimum assignment problem, since we are interested in matching

those particles which are close to each other.

Note that it is also possible to include other characteristics of the particle, like speed, size

or gray level distribution, in the cost function. Such parameters can act as additional

regularizers during trajectory estimation.

A.3.1.1 IN and OUT states

In order to include more knowledge about the environment in the Hungarian algorithm

and avoid matches with very high costs, we have created a variation of the cost matrix.

In our experiments, particles can only enter and leave the scene by crossing the borders

of the Field Of View (FOV) of the holographic microscope, therefore, the creation and

deletion of particles depends on their distance to the borders of the FOV. Nonetheless,

the method can be easily extended to situations where trajectories are created (for

example by cell division) or terminated (when the predator eats the prey) away from

the FOV borders.

OUT OUT OUT 

IN 

IN 

IN 

IN 

Figure A.7: Change in the cost matrix to include the IN/OUT states. Each particle is
represented by a different color. The value of each extra element added is the distance

between the particle position and the closest volume boundary.

As shown in Figure A.7, we introduce the IN/OUT states in the cost matrix by adding

extra rows and columns. If we are matching the particles in frame f to particles in

frame f + 1, we will add as many columns as particles in frame f and as many rows as

particles in frame f+1. This way, all the particles have the possibility to enter/leave the
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scene. Additionally, this allows us to obtain a square matrix, needed for the matching

algorithm, even if the number of particles is not the same in consecutive frames.

The cost of the added elements includes the information of the environment by calcu-

lating the distance of each particle to the nearest edge of the FOV. Note that the lower

border of the z axis is not included, as it represents the surface where the microorganisms

might settle and, therefore, no particles can enter or leave from there.

If the distance is small enough, the Hungarian algorithm matches the particle with an

IN/OUT state.

In Figure A.8, we consider the simple scenario in which we have 4 particles in one

frame and 4 in the next frame. As we can see, there is a particle which leaves the

scene from the lower edge and a particle which enters the scene in the next frame from

the right upper corner. As shown in Figure A.8(a), the Hungarian algorithm finds a

wrong matching since the result is completely altered by the entering/leaving particles.

With the introduction of the IN/OUT state feature, the particles are now correctly

matched (see Figure A.8(b)) and the ones which enter/leave the scene are identified as

independent particles.

(a)

OUT 

IN 

(b)

Figure A.8: Representation of the particles in frame t1 (left) and t2 (right). The lines
represent the matchings. (a) Wrongly matched. (b) Correctly matched as a result of

the IN/OUT state feature.
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A.3.1.2 Maximum cost restriction

Due to noise and illumination irregularities of the holograms, it is common that a particle

is not detected in several frames, which means a particle can virtually disappear in the

middle of the scene. If a particle is no longer detected, all matches can be greatly affected.

That is why we introduce a maximum cost restriction for the cost matrix which does

not allow matches with costs higher than a given threshold V . This threshold is the

observed maximum speed of the algae spores under study [Heydt et al., 2009]. The

restriction is guaranteed by using the same added elements as the ones used for the

IN/OUT states, therefore if a particle is near a volume border or cannot be matched to

another particle which is within a reachable distance, it will be matched to an IN/OUT

state. This ensures that the resulting matches are all physically possible. Still, if we have

missing data and a certain particle is matched to an IN/OUT state, we will recover two

trajectories instead of the complete one. In the next section, we present a hierarchical

solution to recover missing data by extending the matching to the temporal dimension.

A.3.2 Multi-level Hungarian for missing data

If we consider just the particles detected using thresholding, we see that there are many

gaps within a trajectory (see Figure A.12(a)). These gaps can be a result of morphing

(different object orientations yield different contrast), changes in illumination, etc. The

standard Hungarian is not capable of filling in the missing data and creating full tra-

jectories, therefore, we now introduce a method based on the standard Hungarian that

allows us to deal with missing data, outliers and create full trajectories. The general

routine of the algorithm, the multi-level Hungarian, is:

• Find the matchings between particles in frames [i − 2 . . . i + 2], so we know the

position of each particle in each of these frames (if present). (Section A.3.2.1).

• Build a table with all these positions and fill the gaps given some strict conditions.

Let the algorithm converge until no particles are added. (Section A.3.2.2).

• On the same table and given some conditions, erase the outliers. Let the algorithm

converge until no particles are deleted. (Section A.3.2.2).

A.3.2.1 The levels of the multi-level Hungarian

The multi-level Hungarian takes advantage of the temporal information in 5 consecutive

frames and is able to recover from occlusions and gaps in up to two consecutive frames.
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The standard Hungarian gives us the matching between the particles in frame t1 and

frame t2 and we use this to find matchings of the same particle in 5 consecutive frames,

[i− 2, . . . , i+ 2]. In order to find these matchings, the Hungarian is applied on different

levels. The first two levels, represented in Figure A.9 by red arrows, are created to find

the matching of the particles in the frame of study, frame i. But it can also be the case

that a particle is not present in frame i but is present in the other frames. To solve all

possible combinations given this fact, we use levels 3, 4 and 5, represented in Figure A.9

by green arrows.

? ?

H1 H1 

H2 H2 

H5 H5 

H3 

H4 

H4 

?

Figure A.9: Represented frames: [i-2,i-1,i,i+1,i+2]. Levels of the multi-level Hungar-
ian.

Below we show a detailed description and purpose of each level of the multi-level Hun-

garian:

• Level 1: Matches particles in frame i with frames i± 1.

• Level 2: Matches particles in frame i with frames i± 2. With the first two levels,

we know, for all the particles in frame i, their position in the neighboring frames

(if they appear).

• Level 3: Matches particles in frame i− 1 with frame i+ 1.

• Level 4: Matches particles in frame i± 1 with frame i∓ 2. Level 3 and 4 solve the

detection of matchings when a particle appears in frames i± 1 and might appear

in i± 2, but is not present in frame i.

• Level 5: Matches particles in frame i± 1 with frame i± 2.
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A.3.2.2 Conditions to add/delete particles

Once all the levels are applied hierarchically, a table with the matching information is

created. The table has a column for each of the 5 frames from [i − 2 . . . i + 2] and a

row for each detected trajectory, as shown in Figure A.10. This table will be used to

interpolate missing detections and delete false alarms.

To change the table information, we use two iterations: the adding iteration and the

deleting iteration, which appear in Figure A.6 as blue boxes. During the adding iteration,

we look for empty cells in the table where there is likely to be a particle. A new particle

position is added if, and only if, two conditions are met:

1. The trajectory (row) consists of at least 3 particles. Trajectories have continuity

while noise points do not.

2. It is not the first or last particle of the row. We use this strict condition to avoid

the creation of false particle positions or the incorrect elongation of trajectories.

Let us look at particle 6 of the table in Figure A.10. In this case, we do not want to add

any particle in frames i− 2 and i− 1, since the trajectory could be starting at frame i.

In the case of particle 4, we do not want to add a particle in frame i + 2 because the

trajectory could be ending at i+1. This process is repeated iteratively until no particles

are added to the table.

After convergence, the deleting iteration starts and we erase the outliers considered as

noise. A new particle position is deleted if, and only if, two conditions are met:

1. The particle is present in the frame of study i.

2. There are less than 3 particles in the same row.

We only erase particles from the frames [i − 1,i,i + 1] because it can be the case that

a particle appears blurry in the first frames but is later correctly detected and has

more continuity. Therefore, only particles whose complete neighborhood is known are

removed. This process is repeated iteratively until no particles are deleted from the

table.

The resulting particles are shown in Figure A.10.
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Figure A.10: Table with: the initial particles detected by the multi-level Hungarian
(green ellipses), the ones added in the adding iteration (yellow squares) and the ones
deleted in the deleting iteration (red crosses). In the blank spaces no position has been

added or deleted.

A.3.2.3 Missing data interpolation

During the adding iteration, we use the information of the filtered projection in order

to find the correct position of the new particle (Figure A.6). For example, if we want to

add a particle in frame i− 1, we go to the filtered projections XY, XZ, YZ in t = i− 1,

take the positions of the corresponding particle in t = i or t = i − 2 and search for the

maximum likelihood within a window w. If the position found on that frame is already

present in the particles’ table, we go back to the projection and determine the position

of the second maximum value. This allows us to distinguish two particles which are

close to each other.

There are many studies on how to improve the particle depth-position resolution (z-

position). As in [Masuda et al., 2006], we use the traditional method of considering the

maximum value of the particle as its center. Other more complex methods [Fugal et al.,

2009] have been developed which also deal with different particle sizes, but the flexibility

of using morphological filtering already allows us to easily adjust our algorithm.

A.3.3 The final Hungarian

Once the final particle positions are obtained (in Figure A.6, orange box labeled ”Final

particles”), we perform one last step to determine the trajectories. We use the standard

Hungarian to match particles in all pairs of consecutive frames.

A.4 Motion pattern classification

In this section we describe the different types of motion patterns as well as the design

of the combined HMM and the features used for their classification.
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A.4.1 Hidden Markov Models

Hidden Markov Models [Rabiner, 1989] are statistical models of sequencial data widely

used in many applications in artificial intelligence, speech and pattern recognition and

modeling of biological processes.

In an HMM, the system is modeled as a Markov processN unobserved states S1, S2, ..., SN ,

with the condition that the system can only be in one of the states at any given time.

The only observable variables are the sequence of symbols O = o1, o2, ..., oM produced

by a set of stochastic processes. Every HMM can be defined by the triple λ = (Π, A,B).

Π = {πi} is the vector of initial state probabilities. Each transition from Si to Sj can

occur with a probability of aij , where
∑

j aij = 1. A = {aij} is the state transition

matrix. In addition, each state Si generates an output ok with a probability distribution

bik = P (ok|Si). B = {bik} is the emission matrix.

There are three main problems related to HMMs:

1. The evaluation problem: for a sequence of observations O, compute the probability

P (O|λ) that an HMM λ generated O. This is solved using the Forward-Backward

algorithm.

2. The estimation problem: given O and an HMM λ, recover the most likely state

sequence S1, S2, ..., SN that generated O. Problem 2 is solved by the Viterbi algo-

rithm, a dynamic programming algorithm that computes the most likely sequence

of hidden states in O(N2T ) time.

3. The optimization problem: find the parameters of the HMM λ which maximize

P (O|λ) for some output sequence O. A local maximum likelihood can be derived

efficiently using the Baum-Welch algorithm.

For a more detailed introduction to HMM theory, we refer to [Rabiner, 1989].

A.4.2 Types of patterns

In our experimental setup, we are interested in four patterns shown by the green algae

Ulva linza as depicted in Figure A.1(b): Orientation(1), Wobbling(2), Gyration(3) and

intensive surface probing or Spinning(4). These characteristic swimming patterns are

highly similar to the patterns observed before in [Iken et al., 2001] for the brown algae

Hincksia irregularis.

Orientation. Trajectory 1 in Figure A.1(b) is an example of the Orientation pattern.

This pattern typically occurs in solution and far away from surfaces. The most important
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characteristics of the pattern are the high swimming speed (a mean of approximately

150µ m/s) and a straight swimming motion with moderate turning angles.

Wobbling. Trajectory 2 shows the Wobbling pattern and its main characteristic is

a much slower mean velocity of around 50µ m/s. The spores assigned to the pattern

often change their direction of movement and only swim in straight lines for very short

distances, which leads to zig-zag trajectories.

Gyration. Trajectory 3 is an example of the Gyration pattern. This pattern is

extremely important for the exploration of surfaces, as occasional surface contacts are

observable. The behavior in solution is similar to the Orientation pattern. Since in this

pattern spores often switch between swimming towards and away from the surfaces, it

can be interpreted as a pre-stage to surface probing.

Intensive surface probing and Spinning. Trajectory 4 is an example of the Spinning

pattern, which involves swimming in circles close to the surface within a very limited

region. After a certain exploration time, the spores can either permanently attach to the

surface or start swimming in circular patterns again looking for a better position. This

motion is characterized by decreased mean velocities of about 30µ m/s in combination

with a higher tendency to change direction (see Figure A.1(b), case 4).

A.4.3 Features used for classification

An analysis of the features used for classification is presented in this section. Most of the

features are generally used in motion analysis problems. An intrinsic characteristic of

digital in-line holographic microscopy is the lower resolution of the Z position compared

to the X,Y resolutions [Fugal et al., 2009]. Since many of the following features depend

on the depth value, we compute the average measurements within 5 frames in order to

reduce the noise of such features. The four characteristic features used are:

• v, velocity: the speed of the particles is an important descriptive feature, as we

can see in Figure A.1(b). We use only the magnitude of the speed vector, since

the direction is described by the next two parameters. Range is [0,maxSpeed].

maxSpeed is the maximum speed of the particles as found experimentally in [Heydt

et al., 2009].

• α, angle between velocities: it measures the change in direction, distinguishing

stable patterns from random ones. Range is [0, 180].

• β, angle to normal of the surface: it measures how the particles approach the

surface or how they swim above it. Range is [0, 180].
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• D, distance to surface: this can be a key feature to differentiate surface-induced

movements from general movements. Range is (mz,Mz], where mz and Mz are

the z limits of the volume under study.

In order to work with Hidden Markov Models, we need to represent the features for each

pattern with a fixed set of symbols. The total number of symbols will depend on the

number of symbols used to represent each feature Nsymbols = NvNαNβND.

In order to convert every symbol for each feature into a unique symbol for the HMM, we

use Equation (A.3), where J is the final symbol we are looking for, J1..4 are the symbols

for each of the features, ranged [1..NJ1..4 ], where NJ1..4 are the number of symbols per

feature.

J = J1 + (J2 − 1)NJ1 + (J3 − 1)NJ1NJ2 + (J4 − 1)NJ1NJ2NJ3 (A.3)

In the next sections, we present how to use the resulting symbols to train the HMMs.

The symbols are the observations of the HMM, and the training process gives us the

probability of emitting each symbol in each of the states and the probability of going

from one state to the others.

A.4.4 Building and training the HMMs

In speech recognition, an HMM is trained for each of the phonemes of a language. Later,

words are constructed by concatenating several HMMs of the phonemes that form the

word. HMMs for sentences can be created by concatenating HMMs of words, etc. We

take a similar hierarchical approach in this paper. We train one HMM for each of

the patterns and then we combine them into a unique Markov chain with a simple yet

effective design that will be able to describe any pattern or combination of patterns.

This approach can be used in any problem where multiple motion patterns are present.

Individual HMM per pattern. In order to represent each pattern, we build a

Markov chain with N states and we only allow the model to stay in the same state or

move one state forward. Finally, from state N we can also go back to state 1. The

number of states N is found empirically using training data (we use N = 4 for all

experiments, see Section A.5.5). The HMM is trained using the Baum-Welch algorithm

to obtain the transition and emission matrices.

Combined HMM. The idea behind a combined HMM that represents all patterns is

that we can not only classify sequences where there is one pattern present, but sequences
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where the particle makes transitions between different patterns. In Figure A.11(a), we
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Figure A.11: (a) Combined HMM created to include changes between patterns within
one trajectory. (b) Transition matrix of the combined HMM

can see a representation of the combined model, while the design of the transition matrix

is depicted in Figure A.11(b). The four individual HMMs for each of the patterns are

placed in parallel (blue). In order to deal with transitions, we create two special states:

the START and the SWITCH state.

The START state is just created to allow the system to begin at any pattern (orange).

We define Pstart = PSwitchToModel = 1−Pswitch
NP

, where NP is the number of patterns. As

START does not contain any information of a pattern, it does not emit any symbol.

The purpose of the new state SWITCH is to make transitions easier. Imagine a given

trajectory which makes a transition from Pattern 1 to Pattern 2. While transitioning,

the features create a symbol that neither belongs to Pattern 1 nor 2. The system can

then go to state SWITCH to emit that symbol and continue to Pattern 2. Therefore,

all SWITCH emission probabilities are 1
Nsymbols

. Since SWITCH is such a convenient

state, we need to impose restrictive conditions so that the system does not go to or stay
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in SWITCH too often. This is controlled by the parameter Pswitch, set to the minimum

value of all the probabilities in the model minus a small ε. This way, we ensure that

Pswitch is the lowest transition probability in the system.

Finally, the sequence of states given by the Viterbi algorithm determines the motion

pattern observed. Our implementation uses the standard Matlab HMM functions.

A.5 Experimental results

In order to test our algorithm, we use 6 sequences (labeled S1 to S6) in which the

swimming motion of Ulva linza spores is observed [Heydt et al., 2007]. All sequences have

some particle positions which have been semi-automatically reconstructed, manually

labeled and inspected (our ground truth) for later comparison with our fully-automatic

results.

A.5.1 Performance of the standard Hungarian

First of all, we want to show the performance of the final standard Hungarian described

in Section A.3.3. For this, we use the ground truth particle positions and apply the

Hungarian algorithm to determine the full trajectories of the microorganisms. Compar-

ing the automatic matches to the ground truth, we can see that in 67% of all sequences

the total number of particles is correctly detected, while in the remaining 33%, there is

just a 5% deviation in the number of particles. The average accuracy of the matchings

reaches 96.61%.

To further test the robustness of the Hungarian algorithm, we add random noise to each

position of our particles. The added noise is in the same order as the noise intrinsically

present in the reconstructed images, determined experimentally in [Heydt et al., 2009].

N = 100 experiments are performed on each of the sequences and the accuracy is

recorded. Results show that the average accuracy of the matching is just reduced from

96.61% to 93.51%, making the Hungarian algorithm very robust to the noise present in

holographic images and therefore well suited to find the trajectories of the particles.

A.5.2 Performance of the multi-level Hungarian

To test the performance of the multi-level Hungarian, we apply the method to three sets

of particles:
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Figure A.12: (a) 3 separate trajectories are detected with the standard Hungarian
(blue dashed line). Merged trajectory detected with our method (with a smoothing
term, red line). Missing data spots marked by arrows. (b), (c) Ground truth trajectories

(blue dashed line). Trajectories automatically detected with our method (red line).

• Set A: particles determined by the threshold (pre multi-level Hungarian)

• Set B: particles corrected after multi-level Hungarian

• Set C: ground truth particles, containing all the manually labeled particles

We then start by comparing the number of particles detected, as shown in Table A.2.

As shown in Table A.2, the number of particles detected in Set A is drastically reduced

in Set B, after applying the multi-level Hungarian, demonstrating its abilities to com-

pensate for missing data and merging trajectories. If we compare it to Set C, we see
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S1 S2 S3 S4 S5 S6

Set A 1599 1110 579 668 1148 2336

Set B 236 163 130 142 189 830

Set C 40 143 44 54 49 48

Table A.2: Comparison of the number of particles detected by thresholding, by the
multi-level Hungarian and the ground truth for the 6 examined sequences (S1-S6).

that the number is still too high, indicating possible tracks which were not merged and

so detected as independent.

Nonetheless, as we do not know the exact amount of particles present in a volume (not

all particle positions have been labeled), it is of great value for us to compare the average

length of the trajectories, defined as the number of frames in which the same particle is

present. The results are shown in Table A.3, where we can clearly see that the average

length of a trajectory is greatly improved with the multi-level Hungarian, which is crucial

since long trajectories give us more information on the behavior of the particles.

S1 S2 S3 S4 S5 S6

Set A 3 5 5 4 6 7

Set B 19 31 27 23 38 23

Set C 58 54 54 70 126 105

Table A.3: Comparison of the trajectories’ average length.

Now let us consider just useful trajectories for particle analysis, that is, trajectories with

a length of more than 25 frames which are the trajectories that will be useful later for

motion pattern classification. Tracking with the standard Hungarian returns 20.7% of

useful trajectories from a volume, while the multi-level Hungarian allows us to extract

30.1%. In the end, this means that we can obtain more useful information from each

analyzed volume.

Ultimately, this means that fewer volumes have to be analyzed in order to have enough

information to draw conclusions about the behavior of a microorganism.

A.5.3 Performance of the complete algorithm

Finally, we are interested in determining the performance of the complete algorithm,

including detection and tracking. For this comparison, we are going to present two

values:
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• Missing: percentage of ground truth particles which are not present in the auto-

matic determination.

• Extra: percentage of automatic particles that do not appear in the ground truth

data.

In Table A.4 we show the detailed results for each sequence.

S1 S2 S3 S4 S5 S6

Missing (%) 8.9 20.7 19.1 23.6 11.5 12.9

Extra (%) 54.9 34.1 46.5 13.3 25.8 74.6

Table A.4: Missing labeled and extra automatic particles.

Our automatic algorithm detects between 76% and 91% of the particles present in the

volume. This gives us a measure of how reliable our method is, since it is able to detect

most of the verified particle positions. Combining this information with the percentage

of particles detected by our algorithm but not labeled, we can see that our method

extracts much more information from the volume of study. This is clear in the case of

S6, where we have a volume with many crossing particles which are difficult to label

manually, and where our algorithm gives us almost 75% more information.

We now consider the actual trajectories and particle position and measure the position

error of our method. The error is measured as the Euclidean distance between each

point of the ground truth and the automatic trajectories, both at time t. In Figure

A.12(a), we can see the 3 independent trajectories found with the standard Hungarian

and the final merged trajectory, which proves the power of our algorithm to fill in the

gaps (pointed by arrows). In Figure A.12(b), we can see that the automatic trajectory

is much shorter (there is a length difference of 105 frames), although the common part

is very similar with an error of just 4,2µm. Figure A.12(c), on the other hand, shows

a perfectly matched trajectory with a length difference of 8 frames and error of 6,4µm

for the whole trajectory which is around twice the diameter of the spore body. This

proves that the determination of the particle position is accurate but the merging of

trajectories can be improved.

A.5.4 Comparison with a Linear Programming tracker

In order to compare the Multi-level Hungarian with the Linear Programming formulation

introduced in Chapter 4, we perform several experiments with simulated and real data.

For the first experiment, we simulate 15 randomly moving particles and an increasing

number of missing data, from 2% to 10%. Four methods are compared:
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• Standard Hungarian (SH): matching frame by frame, shown in black.

• Multi-level Hungarian (MLH): matching taking into account several frames, as

presented in Section A.3.2, shown in blue.

• Linear programming, 1 level (LP1Lev): matching using Linear Programming but

only allowing matching of particles which are at a maximum distance of one frame,

shown in cyan.

• Linear Programming, 2 levels (LP): first, matching using Linear Programming,

1 level and second, creating another graph with the found trajectories, allowing

particles to be matched when they are up to 5 frames apart, shown in pink.

In Figure A.13(a), we can see the ratio between the number of trajectories found by each

algorithm and the ground truth number of trajectories. The closer this ratio is to 1, the

better the algorithm performs. A similar measure is the one plotted in Figure A.13(b),

where we plot the length ratio. Again, if this ratio is 1, it means that the average

length of the trajectories found automatically is the same as the length of ground truth

trajectories.

Note that, as the percentage of missing data increases, the SH and LP1Lev have an

increasing ratio of the number of trajectories and a decreasing ratio of length. This

means that these algorithms are not capable of filling the gaps found in the data, and

therefore the trajectories found are shorter as the missing data percentage increases.

The MLH performs better on both ratios, but cannot achieve the superior performance

of LP 2 levels, which scores an almost perfect 1 on both ratios. This means that the LP

is virtually unaffected by up to 10% of missing data.

In Figure A.13(c), we show the percentage of automatically found trajectories which

contain two or more ground truth trajectories, i.e.two or more trajectories have been

merged. In Figure A.13(d), on the other hand, we show the number of ground truth

trajectories that are split into two or more. As can be seen, the MLH is superior to SH

and LP1Lev in terms of splitting fewer trajectories, but the LP 2 levels improves the

number of split trajectories by 60% to 70%. Though it also merges more trajectories

than the other methods, the percentage of merged trajectories ranges from 4% to 7% on

average, which means overall the LP 2 levels is far superior than the other methods.

While the MLH performs much better than SH and LP 1 level, it is also computationally

more expensive than the other methods, as can be seen in Figure A.14. Using the same

experimental setup as before but with increasing number of objects, we observe that the

computational cost increases exponentially with the number of objects to be tracked.
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Figure A.13: Comparative experiments with a simulation of 15 randomly moving
particles and an increasing number of missing data from 2% to 10% (N=100 repetitions
of the experiment are performed and average results shown). Compared methods:
standard Hungarian (black), Multi-level Hungarian (blue), Linear Programming with
maximum matching distance of 1 frame (cyan) and Linear Programming 2 levels (pink).
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Figure A.14: Computational time vs. number of objects to be tracked. Compared
methods: standard Hungarian (black), Multi-level Hungarian (blue), Linear Program-
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Since our datasets contain up to 25 objects per sequence, the algorithm takes only a few

minutes to track each sequence.
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Figure A.15: Experiments on real data comparing 4 methods: standard Hungarian
(black), Multi-level Hungarian (blue), Linear Programming with maximum matching

distance of 1 frame (cyan) and Linear Programming 2 levels (pink).

Finally, we apply the four algorithms to the 6 sequences of real data and plot the average

length of the trajectories in Figure A.15(a). As we can see, the MLH and LP 2 levels

obtain much longer trajectories. Obtaining long trajectories is specially important for

conducting accurate motion analysis, as will be presented in the experiments in the

next sections. To this end, we plot in Figure A.15(b) the number of useful trajectories

obtained by each method. A useful trajectory for motion analysis is defined as having

a length of 25 frames or more. The LP 2 levels (pink) obtains a much larger number of

these trajectories for each sequence, which means this method is able to extract much

more useful information from each sequence than SH, MLH or LP1Lev.

The next sections are dedicated to several experimental results on the automatic clas-

sification of biological motion patterns. All trajectories used from now on are obtained

automatically with the method described in Section A.3 and are classified manually by

experts, which we refer to as our ground truth classification data.

A.5.5 Evaluation of the features used for classification

The experiments in this section have the purpose of determining the impact of each

feature on the correct classification of each pattern. We perform leave-one-out tests on

our training data which consists of 525 trajectories: 78 for wobbling, 181 for gyration,

202 for orientation and 64 for intensive surface probing. To perform these tests, all

training sequences except one are used to train the HMM. The remaining sequence is

then tested with the combined HMM and, using the Viterbi algorithm, the sequence of
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likely states is obtained. With this information, we can classify the sequence into one of

the four patterns.
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Figure A.16: Classification rate for parameters N = 4, Nv = 4, Nα = 3, Nβ = 3 and
ND = 3. On each experiment, one of the features is not used. In the last experiment

all features are used.

The first experiment that we conduct (see Figure A.16) is to determine the effect of each

parameter on the recognition of the patterns. The number of symbols and states can

only be determined empirically, since they depend heavily on the amount of training

data. In our experiments, we found the best set of parameters to be N = 4, Nv = 4,

Nα = 3, Nβ = 3 and ND = 3 for which we obtain a classification rate of 83.86%.

For each test, we set one parameter to 1, which means that the corresponding feature

has no effect in the classification process. For example, the first bar in blue labeled ”No

Depth” is done with ND = 1. The classification rate for each pattern (labeled from 1 to

4), as well as the mean for all the patterns (labeled Total), is recorded.

As we can see, the angles α and β (see section A.4.3) are the less relevant features,

since the classification rate with and without these features is almost the same. The

angle α depends on the z component, hence the lower resolution in z can result in noisy

measurements. In this case, the trade-off is between having noisy angle data which can

be unreliable, or an average measure which is less discriminative for classification. The

most distinguishing feature, according to Figure A.16, is the speed. Without it, the

total classification rate decreases to 55.51% and down to just 11.05% for the Orientation

pattern.

Based on the previous results, we could think of just using the depth and speed infor-

mation for classification. But if Nα = Nβ = 1, the rate goes down to 79.69%. That

means that we need one of the two measures for correct classification. The final set of
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parameters used for all experiments is: N = 4, Nv = 4, Nα = 1, Nβ = 3 and ND = 3,

for which we obtain a classification rate of 83.5%. This rate is very close to the result

with Nα = 3, with the advantage that we now use fewer symbols to represent the same

information. Several tests lead us to choose N = 4 number of states of the HMM.
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Figure A.17: Confusion matrix; parameters N = 4, Nv = 4, Nα = 1, Nβ = 3 and
ND = 3.

The confusion matrix for these parameters is shown in Figure A.17. As we can see,

patterns 3 and 4 are correctly classified. The common misclassifications occur when

Orientation (1) is classified as Gyration (3), or when Wobbling (2) is classified as Spin-

ning (4). In the next section we discuss these misclassifications in detail.

A.5.6 Classification on other sequences

In this section, we present the performance of the algorithm when several patterns appear

within one trajectory and also analyze the typical misclassifications. As test data we

use four sequences which contain 27, 40, 49 and 11 trajectories, respectively. We obtain

classification rates of 100%, 85%, 89.8% and 100%, respectively. Note that for the third

sequence, 60% of the misclassifications are only partial, which means that the model

detects that there are several patterns but only one of them is misclassified.
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Figure A.18: (a) Wobbling (pattern 2) misclassified as Spinning (4). (b) Gyration
(3) misclassified as Orientation (1). Color coded according to speed as in Figure A.1(b)
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One of the misclassifications that can occur is that Wobbling (2) is classified as Spinning

(4). Both motion patterns have similar speed values and the only truly differentiating

characteristics are the depth and the angle α. Since we use 3 symbols for depth, the fact

that the microorganism touches the surface or swims near the surface leads to the same

classification. That is the case of Figure A.18(a), in which the model chooses pattern

Spinning (4), because the speed is very low (dark blue), and sometimes the speed in the

Wobbling pattern can be a little higher (light blue).

As commented in section A.4.2, Gyration (3) and Orientation (1) are two linked pat-

terns. The behavior of Gyration in solution is similar to the Orientation pattern, that

is why the misclassification shown in Figure A.18(b) can happen. In this case, since the

microorganism does not interact with the surface and the speed of the pattern is high

(red color), the model detects it as an Orientation pattern. We note that this pattern is

difficult to classify, even for a trained expert, since the transition from Orientation into

Gyration usually occurs gradually as spores swim towards the surface and interrupt the

swimming pattern (which is very similar to the Orientation pattern) by short surface

contacts.

In general, the model has been proven to handle changes between patterns extremely

well. In Figure A.19(a), we see the transition between Gyration (3) and Spinning (4).

In Figure A.19(b), color coded according to classification, we can see how the HMM

detects the Orientation part (red) and the Gyration part (yellow) perfectly well. The

model performs a quick transition (marked in blue) and during this period the model

stays in the SWITCH state. We have verified that all transition periods detected by the

model lie within the manually annotated transition boundaries marked by experts, even

when there is more than one transition present in a trajectory.

The classification results on a full sequence are shown in Figure A.20.

Finally, we can obtain the probability of each transition (e.g. from Orientation to

Spinning) for a given dataset under study. This is extremely useful for experts to

understand the behavior of a certain microorganism under varying conditions.

A.6 Conclusions

In this chapter, we presented a fully-automatic method to analyze 4D digital in-line holo-

graphic microscopy videos of moving microorganisms by detecting the microorganisms,

tracking their full trajectories and classifying the obtained trajectories into meaningful

motion patterns.
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(a) Gyration (3) + Spinning (4). Zoom on the spinning part. Color coded ac-
cording to speed as in Figure A.1(b).
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Figure A.19: Sequences containing two patterns within one trajectory.

The detection of the microorganisms is based on a simple blob detector and can be easily

adapted for any microorganism shape. To perform multiple object tracking, we modified

the standard Hungarian graph matching algorithm, so that it is able to overcome the

disadvantages of the classical approach. The new multi-level Hungarian recovers from

missing data, discards outliers and is able to incorporate geometrical information in order

to account for entering and leaving particles. The automatically determined trajectories

are compared with ground truth data, proving the method detects between 75% and 90%

of the labeled particles. Nonetheless, we have seen that the proposed tracking approach

does not outperform the Linear Programming formulation presented in Chapter 4.

For motion pattern classification, we presented a simple yet effective hierarchical design

which combines multiple trained Hidden Markov Models (one for each of the patterns)

and has proven successful to identify different patterns within one single trajectory. The

experiments performed on four full sequences result in a total classification rate between

83.5% and 100%.
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Figure A.20: Complete volume with patterns: Orientation (1, red), Wobbling (2,
green), Gyration (3, yellow). The Spinning (4) pattern is not present in this sequence.

Trajectories which are too short to be classified are plotted in black.

As future work, we plan on including the motion pattern information into the tracking

framework, in a similar fashion as we included social behaviors to improve pedestrian

tracking in Chapter 5.
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dred, M. Grunze, A. S. Clare, B. Rosenhahn, and A. Rosenhahn. Three dimensional

tracking of exploratory behavior of barnacle cyprids using stereoscopy. Biointerphases,

7(50), August 2012.

164



Bibliography 165
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