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Abstract. Interactive video segmentation has become a popular topic
in computer vision and computer graphics. Discrete optimization using
maximum ow algorithms is one of the preferred techniques to perform
interactive video segmentation. This paper extends pixel based graph cut
approaches to overcome the problem of high memory requirements. The
basic idea is to use a graph cut optimization framework on top of tem-
porally coherent superpixels. While grouping spatially coherent pixels
sharing similar color, these algorithms additionally exploit the tempo-
ral connections between those image regions. Thereby the number of
variables in the optimization framework is severely reduced. The e�ec-
tiveness of the proposed algorithm is shown quantitatively, qualitatively
and through timing comparisons of di�erent temporally coherent super-
pixel approaches. Experiments on video sequences show that temporally
coherent superpixels lead to signi�cant speed-up and reduced memory
consumption. Thus, video sequences can be interactively segmented in a
more e�cient manner while producing better segmentation quality when
compared to other approaches.

1 Introduction

Segmenting an image into foreground and background is a basic step in many
computer vision and computer graphics applications. Likewise the segmentation
of videos can be fundamental for applications like object tracking, video editing
or video content analysis [1{3]. Algorithms for image and video segmentation can
be divided into two major categories. First, there are unsupervised techniques in
which the algorithm decides which portion of an image or video is the region of
interest that should be segmented. Second, the object or region of interest can be
speci�ed in a supervised manner e.g. by a human operator who roughly marks
the region of interest as can be seen in Fig. 1 and 2. A special form of supervised
segmentation is the interactive segmentation were the user helps the algorithm
to segment a region of choice. This is done by repeatedly correcting the system's
segmentation result using additional strokes on foreground or background. As
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Fig. 1. Example of an interactive video segmentation. First row: user strokes and orig-
inal images of the zoo sequence. The foreground strokes are painted white the back-
ground strokes black. Only the right gorilla should be segmented as foreground. Second
row: graph cut applied on a pixel-level graph. Third row: segmentation result of graph
cut applied on a graph built from temporally coherent superpixels created with [4].

the user has to wait for the system's response to do his or her additional strokes
it is crucial for these systems to provide a minimal response time.

Popular representatives for these kinds of approaches have been proposed by
Boykov et al. [5] and Rother et al. [6]. The segmentation problem is formulated
using conditional random �elds and the maximum a posteriori solution can be
computed by optimizing a discrete energy function. For low-resolution images
(e.g. 1Mpixels) these algorithms are able to segment an image on pixel-level in
a run-time less than one second [6]. The approach of Boykov et al. [5] was also
applied on a video sequence of 21 frames and a resolution of 255 � 189 pixels
which is quite small regarding HD content that is ubiquitous even in home
entertainment systems nowadays. With the emerging market of 4K content the
amount of data that needs to be processed will rise accordingly. The amount of
memory that is needed to segment a 120 frames sequence of HD-ready content
(1280� 720) with the approach of [5] can easily rise up to 30 GB which is near
the upper bound of memory today's desktop computer can have built-in. As
shown by Delong et al. [7] the run-time of the max-ow algorithm rises rapidly
if the data of the problem does not �t into the physical memory. In [8] the
authors presented a variable grouping based on the energy function to reduce
the problem size and showed that the grouping helps to increase the segmentation
quality while decreasing the run-time.

But this variable grouping can only be applied to some extent. To overcome
this problem it has become popular to create an over-segmented representation
of the input image which reduces the size of the graph that needs to be processed.
These still image techniques are often called superpixels [9] and have also been
applied to the task of video segmentation as publications like [10, 11] show.
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Fig. 2. Example user strokes for the sequences harley and gokart with the original
video frames. Foreground is marked white and background black. Only for one frame
per sequence user strokes were generated.

Beside, there has also been much e�ort to modify the still image approaches to
directly process video content. The output if these techniques are small, compact
image regions connected over the image plane and over time [12, 13, 4, 14] (we call
them temporally coherent superpixels). These approaches have already shown
promising results in unsupervised video segmentation frameworks as shown by
Xu et al. [15].

For this reason the contribution of this paper is to examine the bene�ts
temporally coherent superpixels can have in an interactive video segmentation
framework. We show that, besides severely reducing the time needed to �nd
an optimal cut of the graph, the temporally coherent superpixels based frame-
work can additionally increase the segmentation quality. The rest of the paper
is structured as follows. In Sec. 2 we give a short overview of the related work.
Our framework is described in Sec. 3 while Sec. 4 gives experimental results and
Sec. 5 concludes the paper.

2 Related work

Although unsupervised video segmentation frameworks can bene�t from the us-
age of temporally coherent superpixels as well, this work focuses on their usage in
an interactive segmentation framework. Therefore, this chapter will leave out the
broadly populated sector of unsupervised video segmentation literature and will
concentrate on the recent works on interactive video segmentation. One of the
�rst authors addressing the task of interactive video segmentation were Wang et
al. [16] with their framework called interactive video cutout. To boost the sys-
tem's performance they used a two-staged hierarchical meanshift clustering as
a preprocessing step. The graph built from the over-segmented spatio-temporal
video volume was then cut by applying the popular graph cut framework of [5].
Their system allowed the user to paint strokes on single frames as well as along
the time axis of the video volume and contained a postprocessing step for creat-
ing a spatio-temporally coherent alpha matte to visually optimize the blending
of segmented objects onto a new background. A more recent framework named
LIVEcut of Price et al. [17] individually over-segmented the video frames using
Watershed and incorporated appearance, motion and shape features just like
the framework proposed by Bai et al. [18] did. While the former used graph cut
like [16] to �nd a global optimal cut through the graph the latter used local
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overlapping classi�ers which were propagated to new frames using optical ow
information.

In [19] Dondera et al. adopted the framework of [20] to produce superpixels
on every video frame independently. Afterwards, a spatio-temporal superpixel
graph is built-up using optical forward and backward ow information. Their
main contribution is to use the information of an occlusion boundary detec-
tor to modify the superpixel graph on occlusion boundaries. Subsequently they
partition the spatio-temporal superpixel graph into foreground and background
using graph cut similar to [16] and [17]. To reduce the size of the problem, [21]
as well as [22] proposed algorithms to reduce the graph without changing the
optimal solution. These techniques can be combined with [16, 17, 19] as well as
our proposed framework.

In contrast to the work of [19] that created superpixels in every frame in-
dependently, we use for our work the recently introduced class of algorithms
[13, 4, 14] producing temporally coherent superpixels inherently equipped with
spatio-temporal connections to the superpixels in di�erent frames. Showing in
our experiments that, besides speeding-up the calculation of the optimal cut,
the segmentation quality is increased.

3 Interactive Video Segmentation using Superpixels

Our framework consists of two main components. First an over-segmentation
step is performed generating temporally coherent superpixels. In the second
component a spatio-temporal graph is built from the superpixel segmentation
which is cut using a maximum ow algorithm. The maximum ow algorithm
is initialized by user de�ned strokes. In the following sections the individual
components of our framework are described.

3.1 Temporal Coherent Superpixels

In this section we will give a short overview of the algorithms for generating tem-
porally coherent superpixels utilized in the experimental section of this paper.
For a more detailed explanation please refer to the work of the original authors
we will abbreviate from here as TSP [13], TCS [4] and OVS [14].

Temporal Superpixels The approach proposed by Chang et al. in [13] trans-
fers the iterative clustering approach based on still images of [23] into a prob-
abilistic framework introducing a generative superpixel model. Instead of using
an EM-fashioned approach they maximize the log-likelihood-function

L(z) = log

"
p(z)

Y
k

Y
d

p(�k;d)
Y
i

p(xi;djzi; �d)

#
+ C (1)

for a superpixel segmentation z while implicitly estimating the parameters of
their generative model. Every pixel i is described using a feature vector xi =
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�
ai li

�
where ai are the pixels' color values in CIELAB-color space and li is the

pixels' location. The mean color and mean spatial values are denoted with �. The
indices k and d select the superpixel and feature vector dimension, respectively.
C is a constant term and the likelihood p(z) of a superpixel segmentation z

includes a geometric distribution controlling the number of superpixels and their
compactness. For invalid superpixel topologies (i.e. a single pixel is split from
the rest of the superpixel) the likelihood is zero. The observations' likelihood for
a pixel i being assigned to superpixel k is expressed as

p(xijzi = k; �) =
Y
d

N (xi;d;�k;d; �
2
d): (2)

The mean value distributions p(�k;d) are assumed to be uniform.
The log-likelihood is maximized by proposing label swaps of single pixels and

proposing splitting and merging of superpixels. A proposal is only accepted if the
log-likelihood function (1) is increased. After acceptance the parameters of the
generative model are recalculated. The generative model is extended to videos
by modelling superpixel motion using a gaussian process and modifying p(z) to
enable the deletion and creating of superpixels.

Temporally Consistent Superpixels In [4] and [24] the problem of tempo-
rally coherent superpixels is considered as a cluster assignment problem which
is solved by energy minimization. Pixels that are part of a temporally coherent
superpixel are viewed as part of a cluster which is represented by a color vector
and a position vector. As the position of a temporally coherent superpixel can
change along the time axis of a video, distinguished position vectors exist for
every frame. The color center is a three dimensional vector in CIELAB-color
space. An energy Etotal is de�ned to rate every possible assignment of pixels to
the cluster centers where T is the set of video frames and N(t) are all pixels of
the frame t.

Etotal =
X
t2T

X
n2N(t)

E(n; �n; t) (3)

Table 1. Mean segmentation error of 9 sequences of the Berkeley Video Dataset for
graph cut on the whole video volume compared to graph cut applied to the over-
segmented video on three di�erent temporally coherent superpixel approaches and a
meanshift over-segmentation. While all combinations with the temporally coherent su-
perpixels perform signi�cantly better than graph cut applied on pixel-level there is only
a slight di�erence between the di�erent temporally coherent superpixel approaches.

Algorithm Mean segmentation error

Pixel-level graph cut 14.27

Graph cut + meanshift 12.72

Graph cut + TSP [13] 9.60

Graph cut + TCS [24] 9.45

Graph cut + OVS [14] 9.54
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With �n denoting the assigned cluster center of a pixel n, the energy term
E(n; �n; t) is a weighted sum of the energies Ec(n; �n) and Es(n; �n; t).

E(n; �n; t) = (1��)Ec(n; �n) + �Es(n; �n; t) (4)

The factor � controls the trade-o� between color-sensitivity and spatial com-
pactness as the energies are proportional to the Euclidean distances of the pixel
n to the assigned superpixels color center and spatial center in frame t.

The minimization of (3) is done by utilizing an EM-framework. In the Ex-
pectation step the assignment of the pixels at the superpixel contours is updated
by assigning the pixels to the neighboring superpixel for which the lowest en-
ergy E(n; �n; t) is generated. An assignment is only changed if the 4-connected
topology of each superpixel is preserved. In the Maximization step the cluster
centers are updated by calculating the mean color and spatial values of the as-
signed pixels. To allow gradual changes in illumination and to enable streaming
capability the clustering is only updated inside an observation window spanning
multiple frames. The observation window is shifted in overlapping intervals over
the video volume. New frames entering the window are initialized by utilizing
the optical backward ow. By �xing the cluster assignment on the older frames
the temporally coherent superpixels will eventually stick on the image region on
which they were initialized. The number of superpixels is balanced to a �xed
number by splitting and terminating superpixels that are too big or too small.

Online Video Seeds The algorithm proposed by Bergh et al. [14] works on
a per-frame basis like the one of [13]. It de�nes an energy function H(z) as
written in (5) where z is again the pixel assignment to the superpixels and cAt:0

k

is the histogram of the set of pixels At:0
k belonging to the temporally coherent

superpixel k in frames 0 to t.

H(z) =
X
k

X
fHjg

(cAt:0
k
(j))2 (5)

The set of superpixels is denoted by k and fHjg is the color subspace covered for
collecting the values for the histogram bin j. An iterative hill climbing algorithm
is used to maximize the energy term using a hierarchical approach. The pixels
are grouped in blocks of 2 � 2 pixels which are merged again to form 4 � 4
pixel blocks. The merging is done several times and the optimization for one
frame is done by �rst swapping blocks at the highest level between neighboring
superpixels and then going down the hierarchy until pixel-level is reached.

To avoid the costly calculation of histograms to evaluate the complete energy
term (5) an approximation is introduced to accelerate the optimization. A pixel
or block Btn is only swapped from superpixel n to m if the following inequation
is ful�lled

int(cBtn ; cAt:0
m
) � int(cBtn ; cAt:0

n nBtn
): (6)

Here int(�; �) denotes the intersection between two histograms and At:0
n nBtn is

the set of pixels of the temporally coherent superpixel without the pixel or
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Table 2. Segmentation error for the individual sequences. Each sequence was initialized
with user strokes on a single frame

Sequence

Algorithm gokart harley baldwin squirrel kia lion turtle dog zoo

Pixel-level graph cut 5.58 15.27 9.02 16.78 10.99 18.90 5.06 13.47 33.38

Graph cut + meanshift 4.40 18.70 5.32 15.90 7.08 18.39 4.56 11.38 28.76

Graph cut + TSP [13] 4.51 12.79 4.76 16.11 6.27 18.64 5.23 12.32 5.76

Graph cut + TCS [24] 4.91 13.04 4.99 16.17 6.54 18.40 5.01 12.36 3.68

Graph cut + OVS [14] 4.55 12.52 5.29 16.68 7.22 18.48 4.90 12.47 3.78

block of pixels Btn. The assumption only holds if the size of the superpixels is
approximately the same and Btn � At:0

n . The algorithm terminates a temporally
coherent superpixel if this maximizes the energy term (5). In order to hold the
number of superpixels per frame constant for each terminated superpixel a new
superpixel is created. After the optimization of (5) on one frame is �nished the
subsequent frame is initialized by copying an intermediate block level of the
block-hierarchy on the new frame. The optimization then starts again from the
highest hierarchy level.

3.2 Graph Cut Framework

The problem of binary segmentation is modeled using a discrete energy E :
Ln ! R. As shown by Boykov et al. [5, 25], the energy can be represented by a
graph and minimized using the max-ow/min-cut theorem. The energy function
is represented as the sum of unary potentials 'i, for each individual pixel, and
pairwise potentials 'i;j for neighboring pixels:

E(y) =
X
i2V

'i(yi) +
X

(i;j)2E

'i;j(yi; yj) ; (7)

where y is a labeling, V is the set of pixels and E corresponds to the set of
neighboring pixels. In our work, we use the neighborhood system N6 where each
pixel is connected to four pixels in its own frame and one adjacent pixel in the
frames immediately preceding and following it. For our problem of binary video
segmentation, the label set L consists of a foreground (fg) and a background (bg)
label.

The unary potential 'i is de�ned as the negative log-likelihood using a gaus-

sian mixture model (GMM) [6] with �ve kernels:

'i(yi) = � log p(�cijyi = l) ; (8)

where here �ci is the color value of pixel i in RGB color space and l is either (fg)
or (bg). In our work, the likelihoods are directly learned from user labeled pixels,
so-called seeds. The pairwise potential 'i;j is de�ned as follows:

'i;j(yi; yj) =  � exp(��j�ci � �cj j) ; (9)



8 M. Reso et al.

O
ri

g
in

al

P
ix

el
-l

ev
el

g
ra

p
h

 c
u

t

T
C

S
 +

g
ra

p
h

 c
u

t

frame 1 frame 40 frame 105 frame 125

M
ea

n
sh

if
t 

+

g
ra

p
h

 c
u

t

T
S

P
 +

g
ra

p
h

 c
u

t

O
V

S
 +

g
ra

p
h

 c
u

t

Fig. 3. Further example segmentations for the sequences harley and gokart. User
strokes for the sequences can be found in Fig. 2. Note that the shadow of the motorcy-
cle is segmented correctly by the temporally coherent superpixel approaches while the
pixel-level and meanshift based approach fail.

where the parameter  weights the inuence of the pairwise term and � includes
the feature variance of the image and is just as de�ned in [6].

The energy function E0 based on temporally coherent superpixels is de�ned
by a surjective map m : V ! V 0 that maps each pixel to its corresponding
superpixel. Thus, the energy function for superpixels read:

E0(y) =
X
i2V

'i(ŷm(i)) +
X

(i;j)2E

'i;j(ŷm(i); ŷm(j)) ; (10)

where ŷ is the labeling of the superpixels. Solving the energy minimization on the
superpixels dramatically reduces the number of variables and thus the processing
time.
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Table 3. Average processing time to �nd the minimal cut of the graph.

Algorithm Average timing

Graph cut [5] 26.45 min

Graph cut + meanshift 0.51 sec

Graph cut + TSP [13] 0.02 sec

Graph cut + TCS [24] 0.0071 sec

Graph cut + OVS [14] 0.0017 sec

4 Experimental Results

The usual way to benchmark interactive video segmentation frameworks as e.g.
done in [19] is to let user segment video sequences and measure the time they
need to reach a satisfying segmentation result. As the purpose of this paper is
not to propose an all new interactive video segmentation framework we did not
perform a user study for benchmarking. Instead we compare the segmentation
results of video sequences which are produced when user strokes are placed on
one frame only. This implicitly assumes that by generating a better segmentation
quality with the �rst strokes, we can expect an equivalent segmentation quality
as produced by previous approaches with less user e�ort in total.

To compare the performance we used nine video sequences from the Berkeley
Video Dataset provided by [26]. The videos have a HD-ready resolution and a
length of around 120 frames each. For the evaluation we utilized the multi-label
ground-truth data of [27] which provides ground-truth segmentations produced
by four di�erent persons for every twentieth frame of the sequences. We converted
the multi-label ground-truth into binary segmentations by manually selecting the
labels representing the object selected for segmentation.

For comparison with previous techniques we segmented the video sequences
concurrently with the same input data using a pixel-level graph like proposed
in [5] using the energy function (7) and additionally on a superpixel graph built
up from frame-wise generated superpixels using meanshift [28] using the energy
function (10). The implementations of the temporally coherent superpixel algo-
rithms were downloaded from the authors website. We kept the standard settings
and chose 3000 superpixels per frame to be produced by TSP and TCS. Due to
the implementation OVS produced only 1600 superpixels per frame.

The algorithms were initialized by user strokes which were manually created
for one frame of each sequence without having insight into any resulting segmen-
tation. The strokes were placed such as to select the main object (as seen by the
user). Examples of the initializations can be seen in Fig. 1 and 2.

For a quantitative analysis we adopt the segmentation error � as proposed
in [29] and extend it to video by considering all pixels of frames with available
ground-truth data

� =
no. missclassi�ed pixels

no. pixels in unclassi�ed regions
: (11)
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Note that in our setup user classi�ed regions only occur on one frame per se-
quence. As we have four ground-truth segmentation per sequence we calculate
the mean error rate for each sequence. By calculating the mean value over all
sequences we show the overall performance of the temporally coherent superpixel
approach in Table 1. It can be seen that the overall segmentation performance in-
creases signi�cantly by using the temporally coherent over-segmented video data
as input for the graph cut algorithm. Among the temporally coherent superpixel
approaches the algorithm proposed in [24] produced slightly better results then
the other approaches. In Table 2 the mean segmentation error for each individual
sequence is shown.
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Fig. 4. Further example segmentations for the sequences kia and baldwin. First row:
Strokes and original images of frame 50 and 120, respectively. Second and below: Fur-
ther frames and their segmentation results. While meanshift performs visually well on
the baldwin sequence it fails to assign the background label to the shadow of the car.
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To show that the spatio-temporal over-segmentation not only increases the
segmentation quality but also boosts the processing time required to �nd the
minimal-cut in the graph we give the average processing time needed to �nd the
optimal cut in Table 3. The benchmark was performed on an Intel Xeon E5-2690
with 132 GB of memory. Of course the processing time of the over-segmentation
will need to be considered as well when being integrated into an application.
But as stated by Wang et al. [16] the preprocessing can be done overnight as the
critical phase is when the user has painted his or her stroke and waits for the
new segmentation results. Additionally a fair comparison from our side would
not be possible due to the diverse type of implementations (MATLAB/C/C++).
The processing time of the combination of graph cut and OVS [14] is lower than
the ones with TSP [13] and TCS [24]. This is due to the smaller amount of
superpixels the implementation of [14] produced. The di�erence between TCS
and TSP comes from the longer temporal segments produced by TCS resulting
in a smaller graph.

5 Conclusions

We extended the pixel based graph cut approach for interactive video segmenta-
tion by using temporally coherent superpixels instead of single pixels. By group-
ing similar pixels to temporally coherent superpixels we overcome the problem
of high memory requirements since the number of variables in the optimization
framework is reduced dramatically. In experiments on high-resolution video se-
quences we analyze three di�erent temporally coherent superpixel approaches
and show that the spatio-temporal over-segmentation increases the segmenta-
tion quality and reduces the processing time required to optimize the energy
function. Using TCS [24], the segmentation quality increases by 5.62% while
the execution time of the graph cut framework is reduced from 26 minutes to
7.1 milliseconds. An even faster run-time can be achieved, while segmentation
quality is a little decreased, by using OVS [14].
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