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Abstract

Volume Local Binary Patterns are a well-known fea-
ture type to describe object characteristics in the spatio-
temporal domain. Apart from the computation of a binary
pattern further steps are required to create a discrimina-
tive feature. In this paper we propose different computation
methods for Volume Local Binary Patterns. These methods
are evaluated in detail and the best strategy is shown. A
Random Forest is used to find discriminative patterns. The
proposed methods are applied to the well-known and pub-
licly available KTH dataset and Weizman dataset for single-
view action recognition and to the IXMAS dataset for multi-
view action recognition. Furthermore, a comparison of the
proposed framework to state-of-the-art methods is given.

1. Introduction
A Volume Local Binary Pattern (VLBP) is famous for

describing characteristics in the spatio-temporal domain
and widely used in the computer vision community [14, 21,
29, 32]. VLBPs are easy to implement and efficient in their
computation. But in order to create a discriminative feature
for action recognition further steps are necessary.
In this work, different computation strategies for Volume
Local Binary Patterns are introduced:

• Two different neighborhoods in comparison

• Frame-by-Frame vs. Multi-Frame classification

• Influence by different histogram ranges

• Step size of the pattern

• Temporal shifting

⇤This work has been partially funded by the ERC within the starting
grant Dynamic MinVIP.

We compare a 4-value VLBP to an 8-value VLPB com-
putation. A Frame-by-Frame classification strategy to a
Multi-Frame classification and the influence by different
histogram ranges is exploited. Finally, several step sizes are
evaluated and in comparison to the computation of a VLBP
in three continuous frames we propose to incorporate a tem-
poral sliding window to describe fast and slow motions.
Related Work: Zhao et al. developed the first Local Bi-
nary Pattern on Three Orthogonal Planes (LBP-TOP) to
classify dynamic textures [32]. LBP-TOP were applied to
the task of human action recognition by Mattivi and Shao
[14, 21]. The authors reached 88.19% accuracy on the KTH
dataset. By combining LBP-TOP with Principal Compo-
nent Analysis in [14] they reached 91.25%. Best results
(92.69%) were achieved by combining Extended Gradient
LBP-TOP with Dollar’s detection method [21].
Yeffet et al. [29] developed Local Trinary Patterns and
achieved an average accuracy 90.16%. And most recently,
Kihl et al. [9] reached 93.4% with a series of local polyno-
mial approximation of Optical Flow (SoPAF).
In comparison to these methods we demonstrate several
computation strategies for binary patterns and show the
most promising one. The results from this paper can be
applied to all types of volumetric binary patterns.

2. Volume Local Binary Patterns
The Volume Local Binary Pattern (VLBP) was intro-

duced in [32] and is able to recognize dynamic textures.
In [32], the authors define a radius around the center point
within the space-time volume from three continuous frames
to get neighboring pixels rather than using a 3⇥ 3 cell from
one frame. Figure 1 illustrates how to compute a VLBP, the
final result is 3948094.
The computation of a VLBP is similar to the LBP: if the
gray value of neighboring voxels within the space-time vol-
ume is larger than that of the voxel’s center, the corre-
sponding position is assigned to 1, otherwise 0. By com-
puting a VLBP the codeword length is 24 bit, leading to
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24
= 16777216 different patterns. To overcome the prob-

lem of this huge feature pool Fehr et al. introduced an uni-
form LBP and demonstrate that the overall amount of LBPs
can be reduced to a small subset [5, 23]. Experiments on
images show that 90% of all possible patterns belong to this
subset. In our opinion, for the task of action recognition the
number of uLBPs is insufficient.
Temporal Variations In order to learn features from fast
and slow motions, VLBPs are not only computed from three
continuous frames. Obviously only fast actions could be
recognized by deriving features from continuous frames. In
addition, four spatial scale steps are defined and VLBPs
are computed by incorporating these steps for shifting the
pattern through the space-time volume. A time step of
t

s

= 1, 2, 3, 4 was empirically chosen. For the case of
t

s

= 1, a VLBP is computed from three continuous frames.
Every second frame is collected for t

s

= 2. Respectively,
for t

s

= 3, 4 every third or fourth frame was chosen.
Instead of creating a single histogram that can describe fast
motions, four histograms are created to characterize differ-
ent kind of motions. These histograms are concatenated and
directly used to learn a Random Forest classifier.

3. Computation Strategies

This Section explains several computation methods after
extracting a VLBP in the spatio-temporal domain. We com-
pare the difference between an 8-value and a 4-value com-
putation, the difference between Frame-by-Frame learn-
ing and Multi-Frame learning, the influence of several
histogram ranges as well as an overlapping vs. non-
overlapping computation of a VLBP. For each comparison
pair, all other conditions except the compared one were
fixed. Finally, a general conclusion of all these methods
is given.
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Figure 1. Procedure of computing an 8-value VLBP in three con-
tinuous frames.
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Figure 2. For the Frame-by-Frame learning approach a histogram
is computed for three frames. Feature vectors are constructed by
using each single histogram. All histograms of a video are com-
bined into a single histogram for the Multi-Frame learning ap-
proach.

3.1. 8-value VLBP vs 4-value VLBP
The computation of a VLBP is explained in Figure 1. By

computing a 4-value VLBP only four neighbors are taken
into consideration. The 8-value VLBP computation uses all
neighboring pixels to create the binary word.

3.2. Frame-by-Frame vs. Multi-Frame
Frame-by-Frame learning also called One-Shot Learning

[15, 20] is a method that achieves a classification result by
deriving features from one frame. A Multi-Frame classi-
fication takes several frames or the whole video into con-
sideration for deriving a feature. Generally, a Multi-Frame
classification is more discriminative leading to a global pre-
sentation.
Multi-Frame: To create a global feature, a VLBP is com-
puted in three continuous frames. This process is done for
the whole video until the last three frames are reached. Fi-
nally, a combined histogram that represents all motions of
the video is created. This histogram is interpreted as a fea-
ture vector and directly used to learn a Random Forest clas-
sifier.
Frame-by-Frame: Similar to the Multi-Frame method a
VLBP histogram is computed from three continuous frames
until the last three frames are reached. In comparison to the
Multi-Frame approach, each histogram is interpreted as a
feature vector and directly used for learning a Random For-
est classifier. Thus, the Random Forest is built from mo-
tions of single frames. But additionally for classification,
the Frame-by-Frame learning approach requires a step of
fusing the decisions of each frame to the final decision. In-
spired by the majority voting of the Random Forest we are
taking the class which gains the most votes.
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Figure 3. Example for mapping the original histogram to a range.
In this example, the values are mapped to a range of 0 and 255.

Figure 2 presents both methods for a video with five frames.
For the Multi-Frame method all histograms are combined to
one histogram and for the Frame-by-Frame method several
histograms are used to learn a Random Forest classifier.

3.3. Influence by different histogram ranges

As discussed in Section 2, the 8-value VLBP values can
be as large as 2

24
= 16777216 and for the 4-value VLBP

2

12
= 4096 values, leading to many ambiguities and much

useless information. To deal with this issue, we propose
to map the histogram to a range. We map the histogram
to several ranges between [0, 127] and [0, 8191]. Figure 3
gives an explanation of how to map the original histogram
to a range of [0, 255].

3.4. Overlap vs. Non-overlap

The step size indicates the overlap of a VLBP in the
spatio-temporal domain and specifies how accurate an ac-
tion should be described. A step size of x = 1, y = 1

results in a pixel-wise shifting of the VLBP. A step size
of x = 9, y = 9 is leading to the computation of non-
overlapping VLBPs.

4. Random Forest
Random Forests were introduced by Leo Breiman [4]

and bases on the idea of bagging [3] with a random fea-
ture selection proposed by Ho [7] and Amit [1]. A Ran-
dom Forest consists of several CART-like decision trees h

t

,
1  t  T :

{h(~x,⇥
t

)

t=1,...T }

where {⇥
k

} is a bootstrap sample from the training data.
Each tree casts a vote on a class for the input ~x. The class
probabilities are estimated by majority voting and used to
calculate the sample’s label y(~x) with respect to a given

feature vector ~x:

y(~x) = argmax

c

 
1

T

TX

t=1

F

ht(~x)=c

!
(1)

The decision function h

t

(~x) returns the result class c of one
tree with the indicator function F :

F

ht(~x)=c

=

(
1, h

t

(~x) = c,

0, otherwise.
(2)

Random Forest has a high classification accuracy and can
deal with large data sets and multiple classes with outstand-
ing time efficiency.
Classification Images are classified by passing them down
each tree until a leaf node is reached. The result class is
assigned to each leaf node and the final decision is deter-
mined by taking the class having the most votes (majority
vote), see Equation (1).

5. Experimental Results
The results obtained in this paper base on the well-

known KTH dataset [19], Weizman dataset [2, 6] and IX-
MAS for multi-view recognition [27, 26].
The KTH dataset contains six classes of actions: boxing,
walking, jogging, running, hand-waving, hand-clapping,
respectively each action is acted by 25 persons in 4 dif-
ferent scenarios: outdoors, outdoors with scale variations,
outdoors with different clothes and indoors. There are to-
tally 599 videos. Similar to [16], a fixed position bounding
box with a temporal window of 32 frames is selected, based
on annotations by Lui [13]. Presumably, a smaller number
of frames is sufficient [18]. Furthermore, the original train-
ing/testing splits from [19] as well as a 5-fold cross valida-
tion strategy are used.
In a second experiment we evaluate our approach on the
Weizman dataset [2, 6]. In our opinion, the Weizman
dataset is already solved since many researchers report ac-
curacies of 100%. However, in recent publications [11, 22,
30] this dataset is still used to evaluate the corresponding
methods. In order to allow a comparison to recent works
and to show the benefit of our proposed method we evaluate
VLBPs on this dataset too. The Weizman dataset consists of
nine actions while each action is performed by nine differ-
ent persons. We manually labeled the dataset and used the
bounding boxes for the classification. The bounding boxes
are available for download at our homepage1.
Additionally, we evaluate the VLBPs on the IXMAS
dataset for multi-view action recognition [27, 26]. The IX-
MAS dataset consists of 12 classes of actions. Each action
is performed three times by 12 persons while the body po-
sition and orientation was freely chosen by the actor. The
IXMAS dataset consists of 1800 videos.

1http://www.tnt.uni-hannover.de/staff/baumann/
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Figure 4. (a): Confusion matrix of 4-value VLBP, with 91.83%
average accuracy. (b) Confusion matrix of 8-value VLBP, with
87.00% average accuracy.

5.1. Influence of neighborhoods
In this experiment, we show results of taking a neigh-

borhood of four and eight values into consideration. The
histogram range is fixed to 512 bins while one histogram
for all frames of a video is computed with a step size of
x = 1, y = 1.
Figure 4(a) shows a confusion matrix for a 4-value VLBP
computation with an average accuracy of 91.83% while Fig-
ure 4(b) shows an 8-value VLBP computation with an av-
erage accuracy of 87,00%. The result of 4-value VLBP is
better than the 8-value VLBP. Presumably, the amount of
2

24
= 16777216 patterns for the 8-value computation re-

sults in ambiguities (every noisy pixel results in another pat-
tern).

5.2. Frame-by-Frame vs. Multi-Frame
For the evaluation of Frame-by-Frame vs. Multi-Frame

the range was fixed to 512 while a neighborhood of four and
eight values was used with a step size of x = 1, y = 1. Ta-
ble 1 presents the results of comparing the Frame-by-Frame
learning approach to the Multi-Frame learning. Multi-
Frame learning obtains better results. It can be observed
that the 4-value VLBP outperforms the 8-value VLBP.

5.3. Influence by different histogram ranges
Different ranges cause different influence on the fi-

nal result. In this experiment we show results how
the accuracy is influenced by different histogram ranges

Type 4-value VLBP 8-value VLBP

Frame-by-Frame 86.29% 82.96%
Multi-Frame 90.55% 88.24%

Table 1. Comparison of the Frame-by-Frame learning approach to
the Multi-Frame learning. The Multi-Frame learning outperforms
the Frame-by-Frame learning.
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Figure 5. Influence of different ranges to the accuracy of 4-value
and 8-value VLBP. Increasing the range is leading to better accura-
cies. It is also evident that the 4-value VLBP clearly outperforms
the 8-value VLBP.

[128, 256, 512, 1024, 2048, 4096, 8192]. A neighborhood
of four and eight values for the VLBP computation is taken
into consideration. One histogram for all frames of a video
is computed with a step size of x = 1, y = 1. A 5-fold
cross-validation was used to get the results.
As showed in Figure 5, the accuracies of 4-value and 8-
value VLBP increase with rising the histogram range. It
also shows that the 4-value VLBP clearly outperforms the
8-value VLBP for all ranges.

5.4. Step size of shifting VLBPs
In this section we evaluate the influence of the step size

to the accuracy. For this experiment one histogram for all
frames of a video is computed. Also, a 5-fold cross valida-
tion was used to get the results. Table 2 presents the results
of changing the step size from 1 to 9. The results demon-
strate that a step size of x = 1, y = 1 clearly outperforms.
The amount of information is higher leading to better accu-
racies for the 4-value and 8-value VLBP.

5.5. Conclusion of our proposed methods
We evaluated computation strategies for the 8-value

VLBP and for the 4-value VLBP. The results show that

Step size 4-value VLBP 8-value VLBP

x = 1, y = 1 90.92% 87.87%
x = 2, y = 2 90.46% 86.46%
x = 4, y = 4 90.18% 86.64%
x = 8, y = 8 79.62% 81.75%
x = 9, y = 9 78.98% 79.07%

Table 2. Different step sizes x, y for sliding the VLBP through
the x- and y- dimension of the space-time volume. A step size of
x = 1, y = 1 clearly outperforms.



Name Accuracy

Jhuang et al. [8] 98.80%
Lin et al. [12] 100.00%
Blank et al. [2] 100.00%
Gorelick et al. [6] 100.00%
Proposed method 100.00%
Schindler and Gool [18] 100.00%

Table 3. Average accuracy for VLBPs on the Weizman dataset in
comparison to single- and multi-feature methods.

the 4-value VLPB clearly outperforms the 8-value VLBP
in all experiments. The comparison between Frame-by-
Frame and Multi-Frame classifications reveals that the
Multi-Frame approach creates a more discriminative clas-
sifier, leading to better accuracies. The influence of differ-
ent histogram ranges shows that a range between 0, 512 and
0, 4096 is leading to highest accuracies. Finally, the com-
putation of VLBPs with a step size of x = 1 and y = 1

indicates the most promising step size.

5.6. Comparison to state-of-the-art methods
In this section we compare a 4-value VLBP with a range

of 512 bins, Multi-Frame classification and a step size of
x = 1 and y = 1 to state-of-the-art approaches.
For the KTH dataset we implemented a 5-fold cross valida-
tion and used original training/testing split for the compari-
son. Table 4 presents the results in comparison to recent ap-
proaches. For both validation strategies the VLBPs achieve
competing result.
Table 3 presents a comparison to single- and multi-feature
methods on the Weizman dataset. Several approaches re-
port perfect recognition accuracies.
For the IXMAS dataset we used a 5-fold cross validation.
Figure 6 shows the confusion matrix and Table 5 presents

Method Validation Accuracy

Schindler and Gool [18] 5-fold 87,98%
Proposed method 5-fold 91,94%
Zhang et al. [31] 5-fold 94,60%

Laptev et al. [19] Original split 91,80%
Zhang et al. [31] Original split 94,00%
Wang et al. [24] Original split 94,20%
Proposed method Original split 95,16%
O’Hara and Draper [16] Original split 97,90%
Sadanand and Corso [17] Original split 98,20%

Table 4. In comparison to state-of-the-art methods our proposed
method achieves competing accuracies. Results were conducted
on the KTH dataset [19].
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Figure 6. Confusion matrix for the VLBP on the IXMAS dataset
[27, 26]. A range of 512 bins was used, as well as the Multi-Frame
approach with a step size of x = 1, y = 1. The average accuracy
is 80.08%.

Name Average accuracy

STM+DBM [25] 76.50%
AFMKL [28] 78.02%
Proposed method 80.08%
Cross-View [10] 81.22%

Table 5. Average accuracy for VLBPs on the IXMAS dataset [27,
26] in comparison to other single- and multi-feature approaches
our proposed method achieves competing results.

results in comparison with other approaches. The results
show competing accuracies in comparison to more complex
state-of-the-art methods.

6. Conclusions
In this paper several post-processing strategies for Vol-

ume Local Binary Patterns (VLBP) are proposed. The ex-
periments reveal that a computation of a 4-value outper-
forms the 8-value VLBP. Furthermore, it is more conve-
nient to compute a histogram for a whole video than us-
ing a Frame-by-Frame learning approach. The optimal his-
togram range is 512 bins leading to highest accuracies. Our
proposed method was applied to the publicly available and
well-known KTH dataset, Weizman dataset and IXMAS
dataset for action recognition. We used a 5-fold cross val-
idation as well as the original training/testing split to com-
pare our proposed methods to state-of-the-art results. Fur-
thermore, the results of this paper can be applied to all
spatio-temporal features to enhance the accuracies.
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