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Abstract

Unsupervised video object segmentation is a challeng-

ing problem because it involves a large amount of data and

object appearance may significantly change over time. In

this paper, we propose a bottom-up approach for the com-

bination of object segmentation and motion segmentation

using a novel graphical model, which is formulated as in-

ference in a conditional random field (CRF) model. This

model combines object labeling and trajectory clustering in

a unified probabilistic framework. The CRF contains bi-

nary variables representing the class labels of image pix-

els as well as binary variables indicating the correctness of

trajectory clustering, which integrates dense local interac-

tion and sparse global constraint. An optimization scheme

based on a coordinate ascent style procedure is proposed

to solve the inference problem. We evaluate our proposed

framework by comparing it to other video and motion seg-

mentation algorithms. Our method achieves improved per-

formance on state-of-the-art benchmark datasets.

1. Introduction

One of the great challenges in computer vision is auto-

matic segmentation of complex dynamic content in videos,

so called object segmentation, which is to produce a bi-

nary segmentation, separating foreground objects from their

background in an unannotated video. This is a challeng-

ing task, as local image measurements often provide only

a weak cue. Object appearance may significantly change

over the frames of the video due to changes in the cam-

era viewpoint, scene illumination or object deformation. In

general, segmentation must capture both short range corre-

lations (within a frame and between successive frames) and

long range correlations (across many frames) in the video.

Object segmentation is the basis for many potential appli-

cations including object tracking, object recognition, 3D re-

construction, activity recognition, and video retrieval. Due

to its potential applications, there is increasing number of

works [17, 20] addressing the problem of video object seg-

mentation in recent years. Many approaches extend single

image segmentation techniques to multiple frames, exploit-

ing the fact that there is redundancy along the time axis and

that the motion field is smooth. The problems associated

with these methods include drift, occlusion, and appearance

adaption. Integrating long-term cues in the segmentation

process might help solve these problems. In fact, video pro-

vides rich additional cues beyond a single image. These

cues include object motion, temporal continuity, and long-

range temporal object interactions, etc. Motion segmenta-

tion exploits these cues, which formulates clustering objec-

tives to group pixels from all frames. However, motion seg-

mentation results are only in discrete and sparse positions

available [9].

In this paper, we overcome aforementioned problems by

merging image segmentation and motion segmentation. We

propose a method to obtain a spatio-temporal foreground

segmentation of a video that respects object boundaries, as

shown in Fig. 1, and at the same time perform trajectory

labeling. Different from previous approaches, we address

Figure 1. Video object segmentation. Input: unannotated video.

Output: Foreground object in each frame.

the foreground segmentation by partitioning frames using

a novel graphical model on pixel level, which is dense in

spatial domain, yet sparse in temporal domain. We formu-

late the problem as inference in a conditional random field

(CRF). We make use of point trajectories, which have rich

grouping information in their motion differences. The CRF
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Figure 2. Video segmentation overview. Input: unannotated video. Output: Foreground object segments for all frames (the green boundary

overlays with each frame for visualization), and trajectory labeling results. We optimize over pixels and trajectories in the joint space via

a space-time CRF: both foreground estimation and trajectory clustering are modeled as energy potentials in the model. Here, the black

trajectories are classified as background while the green ones are foreground.

contains binary variables representing the class labels of im-

age pixels as well as binary variables indicating the correct-

ness of trajectory clustering. Joint object and trajectory seg-

mentation is formulated as a pixel and trajectory labeling

problem of assigning each pixel and trajectory with either

foreground or background. An overview of our proposed

method is given in Fig. 2.

Contributions Our main contribution is a fully automatic

and unsupervised bottom-up approach for the combination

of object segmentation and motion segmentation, which is

formulated as inference in a unified CRF model. The CRF

contains pixel labeling and trajectory clustering in a sin-

gle energy function, which integrates dense local interaction

and sparse global constraints. We optimize over pixels and

trajectories in the joint space via a space-time CRF: both

foreground estimation and trajectory clustering are modeled

as energy potentials. An optimization scheme based on a

coordinate ascent style procedure is proposed to solve the

inference problem. To the best of our knowledge, this pa-

per is the first one to combine object labeling and trajectory

clustering in a unified probabilistic framework.

The following sections are organized as follows. The re-

lated works are discussed in Sec. 2. Section 3 introduces

the CRF model for video segmentation and the trajectory

clustering. Our proposed approach is described in detail in

Sec. 4. In Sec. 5, experimental results are presented. Fi-

nally, this work is concluded and future work is discussed

in Sec. 6.

2. Related Work

Video object segmentation is often performed in an in-

teractive or supervised manner. Interactive methods re-

quire a user to perform object boundary annotation in some

key frames, which are then propagated to other frames

[24, 32, 31]. Tracking-based methods attempt to reduce the

supervision to a manual segmentation on only the first frame

[26, 11, 30]. However, all such methods demand user input

of drawing regions of interest, therefore not fully automatic,

and may suffer from sensitivity to a user’s annotation expe-

rience.

On the other hand, bottom-up approaches can segment

videos in a fully automatic manner, based on cues like mo-

tion and appearance. Motion segmentation methods cluster

pixels in video using bottom-up motion cues. Recent meth-

ods perform pixel-level segmentation in a spatio-temporal

video volume from scratch [17], begin with an image seg-

mentation per frame and then match segments across nearby

frames [25]. Without any top-down notion of objects, how-

ever, such methods tend to over-segment, yielding regions

that may lack semantic meaning. [8] attempt to segment

objects in video by tracking and splitting/merging image

regions. [25] extract multiple segmentation hypotheses in

each frame, and then search for a segmentation consis-

tent over multiple frames. Spatio-temporal segmentation

of video sequences into segments with coherent local prop-

erties has been also addressed by graph-based approaches

[17]. However, these methods are limited by the analysis

performed at a local level. [20] first discover key-segments

and group them to predict the foreground objects in a video.

[21] introduce maximum weight cliques with mutex con-

straints in the region graph to obtain reliable segmentations

of foreground object. In this work, we also conduct graph-

based segmentation. But additionally, we incorporate long-

range motion cues into the segmentation.

Similar to video segmentation, grouping point trajecto-

ries in video sequences based on independent motions, so

called motion segmentation, has received significant atten-



tion. Recently, impressive results in grouping point trajec-

tories were shown by Brox and Malik [9] who carefully an-

alyze motion differences between pairs of tracks and clus-

ter the resulting affinity matrix using normalized cuts [29].

These sparse trajectory clusters are used in [23] to obtain

dense object segmentation. Strong shape priors are derived

from a multi-level super-pixel segmentation [2], which pre-

serve the main borders between objects. Super-pixels are

labeled and merged using the motion segmentation tracks

and a multi-level variational approach. A tracking frame-

work for segmenting objects in crowded scenes is proposed

in [15], which mediates grouping cues from two levels of

tracking granularities, detection tracklets and point trajec-

tories. [14] propose detecting discontinuities of embedding

density between spatially neighboring trajectories. Then

Gabriel graph is used for converting trajectory clustering

to dense image segmentation. [12] present an approach for

motion segmentation using multi-scale clustering of frame-

to-frame keypoint correspondences instead of trajectories.

Another class of spatio-temporal techniques take advantage

of all the frames in a video. They treat the video as a 3D

space-time volume [19, 28]. Such large amount of data

usually results in expensive computational time. Instead of

processing all the frames simultaneously, we make use of

point trajectories to segment the successive frames, which

all together is dense in space, yet sparse in time. As will

be shown in this work, video segmentation benefits from

motion segmentation, and vice versa.

3. Preliminaries

We begin by describing the CRF model for video seg-

mentation. We then introduce the clustering technique for

point trajectories.

3.1. Video object segmentation

Given a video sequence I = {It}, we formulate video

segmentation as a pixel labelling problem of assigning each

pixel in frame It with either foreground or background.

Consider a set of the random variables {Xi, i ∈ V} de-

fined over an undirected graph H = (V, E), where Xi is

associated with a node i ∈ V = {1, . . . , n}. The CRF is

defined over H, so that each node i corresponds to a pixel

pi and an edge between two nodes corresponds to the cost

of a cut between two pixels. Let x = {xi} denote the la-

beling of the CRF which refers to any possible assignment

of labels to the random variables, and takes values from the

set L = {0, 1}
n

, where 0 corresponds to background and

1 corresponds to foreground. Its energy function E(x) can

be written as

E(x) =
∑

i∈V

φi(xi) + α
∑

{i,j}∈E

φij(xi, xj) (1)

where φi and φij are the unary and pairwise potentials re-

spectively, which both depend on the observed data I . α

is the weighting coefficient in the model. The edge set E
is commonly chosen to define a 6 neighborhood [25, 20],

which consists of 4 spatially neighboring pixels in the same

frame, and two temporally neighboring pixels in adjacent

frames. We assign a pixel’s temporal neighbor in the next

frame by its optical flow vector displacement [10]. This

energy function, Eq. (1), encourages spatial homogeneity

of contrast within each frame and temporal consistency be-

tween frames.

The most probable or MAP labelling x∗ of the ran-

dom field can be found by minimizing the energy function

x∗ = argminx∈LE(x). While the exact minimization is

generally intractable on general CRF, a good approximation

can be found efficiently using graph cut based methods [7]

or belief propagation [22].

3.2. Trajectory clustering

Long-term motion can provide strong low-level cues for

many vision tasks. For example, two static objects can be

separated based on their past or future independent motion

if this motion evidence is propagated over time. Video seg-

mentation approaches segment objects following the Gestalt

principle of common fate, often enhanced by large temporal

context of point trajectories. We define a trajectory trr to be

a sequence of space-time points: trr = {(lxt
r, ly

t
r), t ∈ Tr},

where Tr is the frame span of trr, and (lx, ly) is the pixel lo-

cation. We obtain point trajectory by tracking pixels across

frames using the optical flow [10]. Point trajectories are

dense in space and can have various lengths.

Trajectories have rich grouping information in their mo-

tion differences. We define pairwise affinities between all

trajectories that share at least one frame, yielding the affin-

ity matrix W for the whole sequence. We set affinities

W (trr, trs) between trajectories trr and trs according to the

maximum velocity difference vrs computed during their

time overlap

W (trr, trs) = exp[−dstrs(dsp
v2rs
σ2
v

)] (2)

where dstrs denotes the maximum Euclidean distance be-

tween trr and trs, and σv is the normalization factor. Penal-

izing maximum velocity difference takes advantage of the

most informative frames in the time overlap between trr and

trs [9]. dsp denotes the average spatial Euclidean distance

of trr and trs in the common time window. Multiplying

with the spatial distance ensures that only proximate points

can generate high affinities. We then classify trajectories as

foreground or background by performing spectral cluster-

ing on the affinity matrix W [9]. An example is shown in

Fig. 3.



Figure 3. Left: an example video sequence. Right: corresponding

affinity matrix W .

4. Joint object and trajectory segmentation

In this section, we describe our approach to video seg-

mentation. We formulate the problem as inference in a CRF.

The random field contains binary variables representing the

class labels of image pixels as well as binary variables indi-

cating the correctness of trajectory clustering. The illustra-

tion in Fig. 2 gives an overview of our model.

4.1. Formulation

Joint object and trajectory segmentation is formulated as

a pixel and trajectory labeling problem of assigning each

pixel and trajectory with either foreground or background.

Formally, let xi ∈ {0, 1} be a random variable represent-

ing the class label of the i-th pixel, while yr ∈ {0, 1} is

a random variable associated with the class label of the r-

th trajectory. Similar to Eq. (1), the total energy function

E(x,y) for joint segmentation can be written as

E(x,y) =
∑

i∈V

φi(xi) + α
∑

{i,j}∈E

φij(xi, xj) (3)

+ β
∑

{i,r}∈η

φir(xi, yr) + γ
∑

{r,s}∈δ

φrs(yr, ys)

where V and E are the sets of nodes and edges in the video

frames respectively. η contains all pixel and trajectory pairs

that are in correspondence, while the set δ contains all the

pairs of trajectories. α, β, γ are the weighting coefficients

in the model. φi is the unary potential encoding the likeli-

hood of pixels belonging to foreground or background. φij

is the pairwise potential, which enforces spatial and tempo-

ral consistency between pixels. φir is the pixel-trajectory

compatibility potential, which ensures the corresponding

pixel and trajectory take the same label. φrs is the trajec-

tory clustering potential, which encourages foreground and

background separation between trajectories. The formula-

tion of these terms will be presented in the remainder of this

section.

4.2. Potentials

Unary potentials The unary potential φi(xi) indepen-

dently predicts the label xi based on the frame It. The la-

bel distribution φi(xi) is usually calculated by using a clas-

sifier. In this paper, we use the Gaussian mixture model

(GMM) (i.e. Boykov-Jolly model [5, 27]). GMM is a

popular appearance model in object segmentation [3, 16].

The GMM distributions are constructed with a set of sim-

ple features, which is a set of pixel colors. Assume a

Gaussian mixture with C components, the parameters θ ={
πf
c , µ

f
c , σ

f
c , π

b
c, µ

b
c, σ

b
c

}C

c=1
are the prior probability, mean,

and covariance of the model. Foreground and background

trajectories are used for learning these parameters. We

set φi(xi) to be the pixel likelihoods computed from the

learned GMM. A pixel that has similar color to the fore-

ground object will have high cost if labeled as background.

Pairwise potentials In segmentation algorithms, spatial

and temporal consistencies are usually enforced using pair-

wise terms based on color difference [27, 20]. φij is mod-

eled by a standard contrast-dependent function defined in

[5, 27], which favors assigning the same label to neighbor-

ing pixels with similar color. The edge set E consists of

4 spatially neighboring pixels in the same frame, and two

temporally neighboring pixels in adjacent frames.

Pixel-trajectory compatibility potentials We introduce

this pixel-trajectory compatibility term, which imposes a

penalty on corresponding pixel and trajectory with differ-

ent labels. It can be written as

φir = 1− δ(xi, yr) (4)

The corresponding pixel and trajectory pair is determined

by whether pixel pi belongs to trr, which defines the set η.

Trajectory clustering potentials We define the trajectory

clustering potentials φrs between two trajectories trr, trs as

φrs(yr, ys) = yrysLrs (5)

where L is the Laplacian matrix L = H−1/2WH−1/2 [29].

W is the affinity matrix for trajectories defined in Sec. 3.2.

H is the diagonal matrix composed of the row sums of W .

This term encourages coherent labeling of trajectories. This

is equivalent to spectral clustering for all the trajectories in

the sequence. Spectral clustering captures essential cluster

structure of a graph using the spectrum of the graph Lapla-

cian matrix [29].

4.3. Optimization

The video segmentation problem can be solved by find-

ing the least energy configuration of the CRF defined in



Eq. (3). In general, exact minimization of the energy func-

tion E is NP-hard. It is instead solved using approximate

algorithms. In our case, minimizing the complex energy

function given in Eq. (3), which involves two sets of ran-

dom variables, is also difficult to approximate. In this pa-

per, we present an optimization scheme based on a coordi-

nate ascent style procedure, alternating between minimizing

E(x,y) with respect to x for fixed y (1-step) and with re-

spect to y for fixed x (2-step). Convergence to a strong lo-

cal optimum is usually achieved in 3-4 cycles of iterations.

The algorithm is initialized by GMM for pixel labeling and

trajectory clustering for trajectory labeling.

1-step For a given binary trajectory labeling ŷ, minimiz-

ing the total energy function E(x,y) in terms of x leads

to

min
x

E(x, ŷ) = (6)

∑

i∈V

φi(xi) + α
∑

{i,j}∈E

φij(xi, xj) + β
∑

{i,r}∈η

φir(xi, ŷr)

When a trajectory labeling is given, the trajectory cluster-

ing potentials become constant, and therefore do not affect

energy minimization. Furthermore, pixel-trajectory com-

patibility potentials can effectively be merged to unary po-

tentials. As the pairwise potentials of the energy function

in Eq. (6) is a Potts model, it can be minimized using graph

cuts [7, 6].

In order to be robust to outliers that may occur due to

trajectory clustering errors, we map sparse trajectory points

to dense shape-location priors in the pixel-trajectory com-

patibility potentials. An estimate of the shape, location

and scale of the foreground is computed in every frame us-

ing a kernel density estimation (KDE) [18] based on the

sparse foreground points output by the binary trajectory la-

beling [13]. The 2D spatial distribution is estimated from

the sparse points labeled as foreground (background). The

KDE for the object is defined as

f̂h(l) =
1

Ω

∑

k∈Ω

Kh(l− lk) (7)

where lk is the pixel location, Ω is the set of points be-

longing to the object in that frame, and h is the bandwidth

parameter. We use a Gaussian kernel with an automatically

adapted bandwidth parameter [4]. This KDE is estimated on

sparse points and can be sampled densely to obtain a dense

confidence map ϕ as shown in Fig. 4. This model is highly

computationally efficient, similar to the shape priors in [20].

Integrating the confidence map into the energy function in

Eq. (6) leads to

min
x

E(x, ŷ) =
∑

i∈V

(φi(xi) + βϕi(xi))+α
∑

{i,j}∈E

φij(xi, xj)

(8)

Figure 4. Shape-location prior likelihood. Left: sparse label from

trajectory clustering [9], Middle: foreground confidence map,

Right: background confidence map.

2-step For a given pixel labeling x̂, minimizing the total

energy function E(x,y) in terms of y leads to

min
y

E(x̂,y) = β
∑

{i,r}∈η

φir(x̂i, yr) + γ
∑

{r,s}∈δ

φrs(yr, ys)

= β
∑

r∈R

φr(yr) + γ
∑

{r,s}∈δ

φrs(yr, ys) (9)

where R is the set of nodes for the point trajectories. When

a pixel labeling is given, the unary and pairwise potentials

(first 2 terms in Eq. (3)) become constant. Note that it some-

times happens that the pixel labels xk along the trajectory

trr are not consistent. For example, a trajectory consisting

of 8 pixel points, which the first 6 are labeled as foreground

(1) and the last 2 as background (0). The simple Potts model

in Eq. (4) is not a good representative model anymore. We

propose the following potentials instead

φr(yr) =





Nxk=1

|xk|
, when yr = 1

1−
Nxk=1

|xk|
, otherwise

where Nxk=1 is the number of times that the element of xk

is labeled as 1, and |xk| is the number of elements in xk.

As the trajectory clustering potentials φrs are in the forms

of Eq. (5), Eq. (9) can also be minimized using graph cuts

[7, 6].

5. Experimental Results

5.1. Datasets and implementation details

We present experiments on a number of benchmark se-

quences, from SegTrack dataset [30] and Berkeley Motion

Segmentation Dataset [9], with focus on the parachute and

marple3 sequences. The parachute sequence from [30]

has a spatial resolution of 414 px × 352 px, consists of 51

frames, and per frame pixel-level ground-truth for the pri-

mary foreground object. The marple3 sequence from [9]

has a spatial resolution of 350 px× 288 px, consists of 323

frames, and sparse pixel-level ground-truth for the fore-

ground object. The videos span a wide degree of difficulty

with challenges such as illumination changes, fg/bg color

overlap, large shape deformation, and large camera motion.



Implementation details We use Lab color space his-

tograms with 23 bins per channel, and C = 5 component

GMMs. To describe motion, we use optical flow histograms

with 61 bins per x and y direction, using [10]. For all se-

quences, point trajectories are obtained by [9], for which

there is binary code available. [9] also yields trajectory clus-

ters that look very appealing but are sparse (see Fig. 8 bot-

tom row), for which we use for learning the GMM parame-

ters. For the optimization, we set α = 5 for pairwise poten-

tials, β = 0.5 for pixel-trajectory compatibility potentials,

and γ = 5 for the trajectory clustering potentials. These

parameters are fixed for the inference of all sequences. The

optimization typically converges in 3 to 4 iterations.

5.2. Results

To quantify segmentation accuracy, we use the average

per-frame pixel error rate [30], ε(S) = XOR(S,GT )
F , where

S is each method’s foreground labeling, GT is the ground-

truth foreground segmentation, and F is the total num-

ber of frames. This score penalizes both over- and under-

segmentation. We compare against three state-of-the-art

methods: (1) the motion coherence segmentation method

[30], (2) the level-set based tracker [11], and (3) the multi-

level variational method [23]. First two methods require

human labeling of the object boundary in the first frame.

Last method requires multi-level superpixel extraction. In

contrast, our method requires no hand drawn supervision

and no superpixel to guide the segmentation. Table 1 shows

the results. Note that segmentation error for the marple3

sequence is evaluated on the first 50 frames and calculated

using the frames where pixel-level ground-truths are avail-

able. Our method achieves state-of-the-art results on these

sequences. Per-10th-frame pixel label error rate is shown

Table 1. Segmentation error as measured by the average number of

incorrect pixels per frame. Lower values are better. We compare

our method with three state-of-the-art methods [11, 23, 30].

Our method [30] [11] [23]

parachute 238 235 502 463

marple3 1610 - - 2092

Manual seg no yes yes no

for the marple3 sequence in Fig. 5. When the parame-

ters (α, β, γ) are set as (5, 0.7, 5), the segmentation error

is 1962 for the marple3 sequence. We also test other pa-

rameter combination for the parachute sequence, e.g. the

segmentation errors are 308 (1, 0.7, 5), 247 (5, 0.7, 5), 270

(5, 0.6, 5), 263 (5, 0.3, 5) respectively, where (α, β, γ) are

the different parameter setting. As we use iterative opti-

mization, parameter selection is not critical for the final seg-

mentation results.

Figure 6 and Figure 7 show qualitative segmentation ex-

Figure 5. Per-10th-frame pixel label error rate of our approach and

[23] for the marple3 sequence.

amples 1. Our method produces high quality segmentations

of the foreground object. Fine details and object bound-

aries are comparable to Ochs and Brox [23]. Furthermore,

the stability of the joint object and trajectory segmentation

is demonstrated by the improved segmentation over [23].

Ochs and Brox [23] produces only part of the parachute seg-

ment from frames 45 to 50 in Fig. 6. While [23] sometimes

results in an over-segmentation of an object, our method

produces a foreground segmentation at the object-level.

As our method jointly optimizes over object pixels and

trajectories, we also present the comparison of our trajec-

tory labeling and the trajectory clustering approach [9] in

Table 2 in terms of overall clustering error [9]. The overall

clustering error is the number of bad labels over the total

number of labels on a per-pixel basis. The tool provided by

[9] optimally assigns clusters to ground truth regions. The

results of our method are consistently better. Motion seg-

Table 2. Overall clustering error. We compare our method with

[9]. Note that we randomly sample ground truth frames of the

parachute sequence.

#GT frames Our method [9]

marple3 6 1.14 1.18

parachute

6 0.70 0.86

12 0.70 0.88

18 0.67 0.85

24 0.67 0.86

mentation on sample frames of the parachute sequence is

illustrated in Fig. 8. Note that skater was assigned as fore-

ground in trajectory clustering results from [9] (see skater in

Fig. 8 2nd and 3rd columns). For our method, during opti-

mization iteration, point trajectories which do not belong to

the foreground object has been reassigned as background.

1Video sequences are provided at http://www.tnt.

uni-hannover.de/project/michael_yang_project.



Figure 6. Comparison of our approach and the variational approach [23] on frames 1, 15, 30, 45 and 50 of the parachute sequence from the

SegTrack dataset [30] (The green boundary overlays with the original image for visualization.). Top row: our results, Bottom row: Ochs &

Brox [23].

Figure 7. Comparison of our approach and the variational approach [23] on frames 1, 10, 20, 30, 40 and 50 of the marple3 sequence from

the Berkeley Motion Segmentation Dataset [9] (The green boundary overlays with the original image for visualization.). Top row: our

results, Middle row: Ochs & Brox [23], Bottom row: motion segmentation results [9].

Figure 9 shows some additional examples that illustrate

the final segmentation results of our method on video se-

quences. The typical failure cases are shown in Fig. 9 bot-

tom row. The failure is usually caused by very bad sparse

labeling for GMM initialization. The limitation of our cur-

rent method is that it relies on good point trajectory clus-

tering results from [9]. This could be alleviated by using

objectness measure [1] or key-segments [20] for GMM ini-

tialization.

6. Conclusion

We presented a bottom-up approach for the combina-

tion of object segmentation and motion segmentation using

a novel CRF model. The CRF contains binary variables

representing the class labels of image pixels as well as bi-

nary variables indicating the correctness of trajectory clus-

tering, which integrates dense local interaction and sparse

global constraints. Hereby, we overcome the limitations of

previous bottom-up unsupervised methods that often over-

segment an object, and is, to the best of our knowledge,

the first approach to combine object labeling and trajec-

tory clustering in a unified probabilistic framework. Our

method is fully automatic and unsupervised. The experi-

ments demonstrate the high performance of our approach

on benchmark datasets. In our ongoing work, we aim to in-

tegrate the proposed model into a system for multi-modal

video cosegmentation.



Figure 8. Comparison of our trajectory labeling and the trajec-

tory clustering approach [9] on sample frames of the parachute

sequence from the SegTrack dataset [30] (see the differences in

red circles). Top row: our trajectory labeling results, Bottom row:

trajectory labeling results from [9].

Figure 9. Additional segmentation results.
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