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Abstract. We compare the performance of an intensity based nonpara-
metric image registration algorithm and extensions applied to frame in-
terpolation of mouth images. The mouth exhibits large deformations due
to different shapes, additionally some facial features occlude others, e.g.
the lips cover the teeth. The closures and disclosures represent a challeng-
ing problem, which cannot be solved by the traditional image registration
algorithms.
The tested extensions include local regularizer weight adaptation, incor-
poration of landmarks, self-occlusion handling and penalization of folds,
which have all been examined with different weight parameters.
Since the performance of these algorithms and extensions turns out to
be superior in case of mouth closures, we provide an algorithm for the
automatic selection of deformable template and static reference image
for the registration procedure. Subjective tests show that the quality of
results for interpolation of mouth images is enhanced by this proposal.

Keywords: frame interpolation, facial motion, nonparametric image
registration, variational, optical flow, numeric optimization

1 Introduction and Motivation

The mouth is the most deformable part of the human face, which requires a
very flexible setting to rebuild realistic animations of human faces. Additionally
humans are very sensitive to unnatural facial movements especially at the mouth
part. This implies that the standard error measures and training sets of the
optical flow community is not well suited, as they tolerate local deviations of
the warp. These pixelwise errors might already lead to very disturbing results
if observed by a human which makes subjective evaluation inevitable in the
field of facial animation. The challenge in facial motion is to cover large local
deformations as well as incorporating occlusions and disclosures which occur due
to mouth closing and opening in a sequence.

Several parametric models have been introduced to model the facial move-
ments and rebuild them. One well known model with good performance is the
AAM (Active Appearance Models), in [1] the authors take advantage of the
asymmetry of image registration and apply an AAM for face tracking, success-
fully. However one drawback of the AAM model is that it needs manual work to
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set some features points in a training set. Additionally it has been shown that
it is not scale invariant.

In [2] the authors introduce an image based facial animation system which
creates an animation by concatenation of given image sequences. At transitions
there might occur large visual differences, which are overcome by the use of
morphing, which requires feature points for each mouth image.

Our goal is to improve facial motion interpolation to obtain intermediate
frames of a sequence with no feature points and by applying as few manual tasks
as possible, but still allow for large local deformations. We focus on nonpara-
metric image registration with an intensity based variational framework for the
estimation of deformations which will transform one image completely towards
a second one. No parametrization of our deformation function will be assumed,
to allow for a high degree of flexibility. We then estimate one two-dimensional
vector for each pixel position.

We explore the standard nonparametric intensity based image registration
techniques for our application and then introduce extensions to fit the specific
task, which then are compared to the baseline methods. We then introduce an
automatic choice of deformable and static image for the image registration pro-
cess which takes advantage of the apparent asymmetry included in the algorithm
and thus improves the results.

The paper is structured as follows: In section 2 we introduce the basics of
nonparametric intensity based image registration. In section 3 we then describe
how it can be used to estimate intermediate frames. We present some extensions
in section 4 followed by their experimental evaluation in section 6, which are
then discussed in 7.

2 Image Registration

In this section we will give a very brief introduction to the general image regis-
tration framework, which we later refer to for our applied adaptations. We used
the approaches described in [3, 4] and refer to this books for more details.

Given two gray-scale images, the traditional image registration task is to find
a deformation ϕ such that one image becomes as similar as possible to the other.
This problem statement incorporates one image to be a static reference image
R, while the other will be a deformable template T to match the reference. For
our application this means that we want to transform one frame T towards the
next known frame R. This is a very imprecise formulation which will be refined
in the following to introduce our mathematical framework.

Generally the images are modeled as functions, which assign one scalar, pos-
itive gray-value to each location in the twodimensional space: R, T : R2 → R.
Additionally we define the images to be greater than zero on a predefined image
domain Ω ⊂ R2 and zero elsewhere. To obtain these functions from the provided
pixel images, we used a cubic BSpline interpolation, such that the images can
be valuated at any position rather than only their pixel positions itself.
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To quantify the similarity of two images the sum of squared pixelwise differ-
ences (sum of squared differences) is used.

The deformation ϕ is defined as a vectorfield, mapping one location x =
(x1, x2) in the deformed template image Tϕ to a position ϕ(x) in T

ϕ : R2 → R2, ϕ(x1, x2) =
(
ϕ1(x1, x2), ϕ2(x1, x2)

)
(1)

The grayvalue of the deformed template image Tϕ at the position x is determined
by evaluation of the template image T at the position ϕ(x):

Tϕ (x1, x2) = T (ϕ(x1, x2)) (2)

This approach is known as backwards transformation with Euler coordinates,
while the opposite direction is known as Lagrange (see [3] for details). Now that
all parts of the introduced problem have been defined, it can be described as the
following minimization task:

min
ϕ

1

2

∫
Ω

(
T
(
ϕ(x)

)
−R(x)

)2
dx (3)

Due to the fact that the deformation ϕ is not restricted, it could simply
be any function, which makes (3) an ill-posed problem which is not solvable
uniquely. Therefore at least one penalty term is included which restricts the
deformation ϕ to have certain properties, e.g. penalizing large values in the
derivatives of the deformation, to ensure the estimated function ϕ will be smooth.
These smoothers are added with an additional positive weighting parameter to
the distance measure:

min
ϕ

1

2

∫
Ω

(
T
(
ϕ(x)

)
−R(x)

)2
dx+ α S (u) , α ∈ R+, u(x) = ϕ(x)− x (4)

For our tests we choose the well known, simple diffusive regularizer, which is
defined as

S(u) :=
1

2

2∑
k,l=1

∫
Ω

(
∂xk

ul(x)
)2
dx =

1

2

2∑
k=1

∫
Ω

‖∇uk(x)‖22 dx (5)

For our application we also tested the curvature regularizer (penalizing large
values of the second derivatives) [3, 4], but found the differences to be negligible
in our experiments.

2.1 Numeric Optimization Framework

Since there is no analytical solution to (4), we apply the well-known first-
discretize-then-optimize framework [3]. To discretize the functions involved in
(4) we use a cell-centered grid xc, with grid points centered at the pixel posi-
tions, on the image domain Ω. We use finite differences to estimate the involved
derivatives.
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The discretized optimization function (4) is formulated as a least squares
problem, which favors the use of the Gauss-Newton method to iteratively de-
termine an estimate for the unknown deformation ϕ [5]. This also holds for the
extensions which we introduce later.

In each optimization step the new estimate of the deformation field is calcu-
lated by a linesearch procedure, which makes use of the preceding estimate and
adds a new direction, weighted by a specific stepsize. While the Gauss-Newton
Algorithm gives the direction, we apply the Armijo Algorithm to determine the
stepsize.

The optimization procedure delivers the transformation ϕ evaluated at the
initial grid points xc, which were chosen to be the pixel positions. The advantage
of this procedure is that we receive an intensity value for each pixel position of
the deformed image Tϕ, such that no further interpolation tasks have to be
performed on Tϕ to obtain one grayvalue for each pixel position.

3 Using Image Registration for Frame Interpolation

Image registration has been introduced as finding a one-way deformation, which
fully deforms one image to match another one. On the other hand frame interpo-
lation tasks need intermediate images and therefore an intermediate deformation
estimate. In a frame interpolation setting the assumption that one pixel performs
a linear movement between two frames is common and reasonable, which means
the positional change from x to ϕ(x) is expected to be linear. We therefore in-
troduce the displacement vector u corresponding to a given transformation ϕ as
in (4)1

uϕ(x) = ϕ(x)− x (6)

Assuming the transformation ϕ to deform T to R completely, the corresponding
displacement uϕ describes the full motion. If we desire to compute half of the
motion from T to R we get

uϕhalf
(x) =

uϕ(x)

2
=
ϕ(x)− x

2
(7)

The corresponding deformation is determined by

ϕhalf(x) = uϕhalf
(x) + x =

1

2

(
ϕ(x) + x

)
(8)

We are now able to define intermediate deformations by adapting the de-
nominator in (8) to the specific task.

1 Please note that the definition of these terms differs in the literature.
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4 Extensions for Frame Interpolation for Facial Motion

In the application of facial motion interpolation, especially in the case of the
mouth, we face problems like large local deformations as well as occlusions and
disclosures which lead to discontinuities. In the traditional image registration
task the problem of disappearing and reappearing image parts is not modeled.
We therefore need to adapt the classic optimization function to better fit our
needs. In this section we describe some extensions for the basic image registration
framework. Their performance will be discussed in section 6.

Local regularizer weight adaptation We expect the deformations in the mouth
part to be larger than in the surrounding facial parts (e.g. chin, nose, cheeks),
so we propose to incorporate this knowledge by demanding lower smoothness
and setting lower regularizer weights in our region of interest to enable greater
movements, but still restrict the surrounding parts. Applied to the image regis-
tration problem in (4) we change the constant registration weight α to a position
dependent map α(x), which is then included in our smoother function (5)

S(u, α) =
1

2

2∑
k,l=1

∫
Ω

α(x)
(
∂xk

ul(x)
)2
dx (9)

In (4) the term α · S (u) is replaced by S(u, α) of (9).

Landmarks Though the use of landmarks has been proven to improve image reg-
istration results [6, 7], the issue remains that they must be provided with high
accuracy for each image and often need to be set manually. We additionally face
the problem that we choose to not imply any parametrical representation of our
transformation ϕ, which means that we only know the values of our transforma-
tion at the grid point positions. Inspired by [7] where the authors incorporate
an individual landmark inaccuracy for each landmark pair, we assume that the
landmarks are located at pixel positions (grid points), which avoids the inter-
polation of the deformation ϕ for subpixel locations. Landmarks allow us to
influence the direction of the deformation estimation process. Defining rk and
tk, k = 1, . . . , n as the corresponding twodimensional landmarks, i.e. specific
grid points, for reference and template image, we then introduce the landmark
penalty for any deformation ϕ as

L(ϕ) =
1

2

n∑
k=1

(
ϕ (rk)− tk

)2
(10)

For the experiments, this term is then added to (4) with an additional positive
weighting parameter.

Self-Occlusion Handling As a matter of fact transforming an open mouth with
teeth to a closed mouth without teeth implies occlusion of the teeth. Therefore
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a paper for Gay-Bellile [8] caught our attention as it deals with self-occlusion
estimation in a nonrigid image registration setting. The authors propose a binary
self-occlusion map, by defining a pixel as occluded if the minimum of the squared
directional derivative of the deformation ϕ is below a certain threshold, i.e. if
two gridpoints are mapped onto one another. Each occluded pixel will be ignored
in the distance measure. Additionally a folding penalty is introduced with the
goal to favor shrinkage at the self-occlusion boundaries. The corresponding term
is based on the observation that the sign of left and right derivative of the
transformation ϕ differs at these places.

The performance of the introduced algorithm is demonstrated on image se-
quences of deformed surfaces, where the total transformations are of a more
global character than in our problem setting. In [9] the authors point out the
limits of their work are reached by deformations which violate the smoothness
constraint. Occlusions of teeth in a sequence of opening and closing mouth move-
ments will lead to nonsmooth deformations.

Penalizing Folds We observed that at places where folds are

ϕ1(xi1, x
j
2) > ϕ1(xl1, x

j
2), xi1 < xl1, ϕ2(xi1, x

j
2) > ϕ2(xi1, x

l
2), xj2 < xl2

The condition for no folds is defined as

ϕ1(xi1, x
j
2) < ϕ1(xl1, x

j
2), ∀xi1 < xl1, ϕ2(xi1, x

j
2) < ϕ2(xi1, x

l
2), ∀xj2 < xl2

(11)

This might include the equal sign for the case of shrinkage. It basically means
that the deformation ϕ must preserve the relative neighborhood of the original
grid to avoid folds. Assuming that no global deformations (e.g. rotations) occur,
we therefore claim ϕk to increase monotonously in it’s kth component, to not
contain folds. We therefore agree with [8] here that the deformation is not in-
jective at places where folds occur. But instead of only focusing on boundaries
of these areas, we propose to penalize the entire area of the fold by it’s current
extent. We therefore define our folding penalty as

F(ϕ) =
1

2

2∑
k=1

∫
Ω

g(x) ·
(
∂kϕk(x)

)2
dx, g(x) =

{
1 , if ∂kϕk(x) < 0

0 , else
(12)

In contrast to (5), we do not require mixed derivatives. The incorporated
threshold inside of the function g of (12) might be altered.

We have proposed adaptations for the traditional image registration opti-
mization function itself. We now propose to incorporate former knowledge of
the two involved images by automatically choosing template T and reference
image R to benefit from the asymmetry of image registration.
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5 The Automatic Choice of Deformable Template and
Static Reference Image

Within a frame interpolation task the intuitive approach to obtain an estimate
for frame i is to deform frame i − 1 towards i + 1 and then apply the interme-
diate transformation ϕhalf of (8) to frame i − 1, which is a highly asymmetric
procedure. We argue that the choice of deformable and static image should not
be arbitrary. On the other hand a symmetric treatment of the images would not
take advantage of the present asymmetry of known mouth movements. Compar-
ing two arbitrary images of a speaking mouth sequence, one is likely to behold
more information than the other, in terms of visibility of teeth and tongue.

We therefore aim to find a qualitative vote (weight) for the amount of in-
ner mouth pixels for each frame, to automatically choose deformable and static
image. The pixelwise, automatic segmentation of the lips is known to be very
complicated and error-prone, due to low color difference between lips, skin and
tongue, and the presence of facial hair.

We experimented with thresholds in the colorspaces RGB, YUV, HSV, CieLab
and combinations. In [10] the hue channel of the HSV colorspace is used to
roughly determine the lip region. The authors point out that gaps and noise is
visible, which we can confirm. We in contrast observed the a-channel of CieLab
to be more reliable and less noisy. To decide whether a pixel belongs to the inner
part of the mouth (if any), we use the following algorithm:

1. Choose bounding box of mouth area for one image of the sequence2

2. Determine CieLab and YUV colorspaces for each frame
3. Define pixel as lip pixel if a-channel (CieLab) is bigger than a threshold λa

3

4. Eliminate Outliers (only if the bounding box was too large or inaccurate)
5. Define convex hull of lip-pixels as mouth area
6. Define each pixel inside the mouth area as a inner mouth pixel if it is no lip

pixel (a-channel is below λa) and:
– L-channel of CieLab is below a threshold λL (allows detection of dark

areas) OR
– V-channel of YUV is below a threshold λv (Find low red values to obtain

teeth area, which is more reliable than looking for large values in the L-
channel)4

7. Define number of inner mouth part pixels as weight of this specific mouth
image

The drawback of this method is of course that the three thresholds λa, λL,
λv have to be chosen manually.The advantage of this algorithm is that it must

2 Our sequences have the mouth at the same positions for all frames already. But
for sequences where this is not the case this task could be easily replaced by an
automatic algorithm, e.g. OpenCV.

3 It should be preferred to underestimate the lips region rather than to overestimate
it.

4 Surprisingly we found teeth could not be detected well by selecting pixels over a
certain threshold for the L-channel.
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only be done once for each face model. Additionally we do not require the results
to be highly accurate because we do not use it for a segmentation tasks, which
would require higher precision, so this approach tolerates errors.

Now that a weight for each image is available, we choose the image of the two
as deformable template T , which has a higher weight (amount of inner mouth
pixels) compared to the second image.

6 Experimental Results

Our experiments focus on the evaluation of the introduced methods for large
local deformations of the mouth. Therefore we choose several sequences of two
speakers with a frontal viewpoint and low illumination changes. This results in
image sequences with low variation in mouth position, which enables to focus
on local deformations rather than global ones, which would be inevitable if head
movements were present in the sequence. We filmed the complete head including
the upper parts of the shoulders, though we will focus on the mouth parts in
the following. For testing a total of seven sequences from two individuals were
applied, which originally consist of 56 to 212 frames, where the mean frame
number is 116.5 frames.

Measuring Quality of Results How is an image registration result judged to have
a good quality if there is no ground truth? Of course the deformed template
image should match the reference image, because that was what the algorithm
was supposed to do, but additionally we desire the transformation to be as
smooth as possible. Searching for the smoothest transformations in the results
is not reasonable as it would naturally lead to the unity transform. On the other
hand focusing on the transformations with the lowest resulting distance measure,
we observed that noisy, erroneous grayvalues occur in the middle of the mouth
part. This happens due to local minima of the optimization function for small
weights α which lead to nonsmooth estimations results for the deformation ϕ.

Pixelwise errors will disturb the human observer even more than bigger, yet
more homogeneous deviations which affect the total mouth shape instead of only
isolated pixels. Unfortunately, these pixelwise errors are exactly what we obtain
if we focus on the minimum available optimization function value. With this
conclusion we realize that there is no objective measure available yet to value
the realism of a transformation applied to a mouth image. We therefore focus on
visual evaluation, which is a sufficient tool for now, as the presented results have
easily visible limitations. We tested different settings of weights for all extensions
introduced in section 4 and present the best results. The algorithms are applied
on grayscale images, but to make the errors apparent, we will show our results
of estimated deformations applied to color images.

Preprocessing It has been shown that a reasonable preprocessing of the input
images may influence the quality of the transformation result immensely. To in-
spect the effect of the preprocessing method on our estimations, we tested none,
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smoothing and bilateral filtering. We additionally checked the performance of
using the smoothed input images first, and then use this result as an initial-
ization for the original images registration process, which was meant to be an
alternative to the multiresolution framework, which we tested additionally. We
observerd that the latter serves the best results and leads to similar outputs as
the multiresolution framework.

Multiresolution A common and well known practice to estimate large deforma-
tions is to compute a transformation on lower resolutions, then upscale it and
use it as a starting value for the next higher resolution step. This is especially
effective for large deformations, for which the estimation procedure might be
trapped in local minima of the optimization function otherwise. We tested dif-
ferent resolutions and steps sizes, but found that the results are very similar and
that big deformations are still not recovered better than estimations which have
been done on the images with original size.

Local Regularizer Weight Adaptation As expected, we observe that weakening
the local weight adaptation leads to higher deformations in the desired areas,
which on the other hand leads to very unsmooth transformations with large local
deviations, causing noisy errors in the deformed images.

Landmarks Including the landmark penalty term (10), we expected the land-
marks to influence the direction estimation in our numeric optimization frame-
work positively. We observe that with increasing weighting parameter, the land-
marks will more probably overlap, but this on the other hand will harm the
smoothness of the total deformation. Vice versa a low landmark weighting pa-
rameter might lead to smoother deformations, but the overlap of the provided
landmarks will be weak, such that the use of the landmark penalty in the current
setting does not lead to a convincing improvement.

Self-Occlusion Handling We discovered that this framework does not estimate
the occluded areas of our deformed grids correctly. The shrinkage term has been
tested separately and additionally to the self-occlusion estimation, but both ap-
proaches do not improve our results compared to the simple image registration
setting. We assume this to be the effect of apparent discontinuities in the esti-
mated deformation ϕ.

Folding Penalty Our folding penalty (12) leads to smoother deformations with
increasing weight parameter. The drawback is that it thus weakens the total
amount of deformation, meaning that the estimated transformation ϕ becomes
similar to the identity transform with increasing weight parameter. This will
diminish areas of shrinkage which might have been desired. We state that the
penalty punishes folds without explicitly punishing or favoring shrinkage, though
the latter might be a desirable feature.

We tested our folding penalty on deformations ϕ which induce folds in the
deformed grid and observed that it can detect folds successfully and robust



10

frame i− 1 frame i frame i + 1

estimated frame i− 1 estimated frame i

estimated frame i estimated frame i + 1

frame i− 1 frame i frame i + 1

estimated frame i− 1 estimated frame i

estimated frame i estimated frame i + 1

Fig. 1: Illustration of direction dependency for deformations, showing that the
wrong direction choice leads to pink teeth for two examples taken from a total
of seven different sequences. Top row shows three consecutive original frames.
The second row shows the result if the deformation ϕ is estimated by using i+ 1
as template and i− 1 as reference image. For the bottom row the choice was the
other way around, i.e. from open mouth i− 1 to closed mouth i+ 1.
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Fig. 2: Deformed grids corresponding to the results, displayed in the upper part
of figure 1. The left image shows the deformation resulting from estimating the
transformation from a closed to an open mouth, while the right image displays
the result of applying the other direction.

without inclusion of areas with shrinkage. This might serve as an advantage for
other applications.

Automatic Choice of Deformation Direction Our results verify the expectation
formulated in section 5 that the result is improved by the choice of a reasonable
transformation direction. Figure 1 shows the original consecutive frames at the
top row. To enable the calculation of the intermediate image and images in
between, we performed the image registration task from frame i − 1 to frame
i + 1 (second row) and vice versa (third row). The resulting fully transformed
template images are displayed below the corresponding original reference image.
The third row contains the results obtained by automatically choosing template
T and reference R and matches the corresponding original frames at the top
better than the second row for both sequences. The second row contains the
results of image registration from a closed to an open mouth, which then results
in pink teeth rather than white. This effect is hardly noticeable in grayscale
images. It occurs because the color information which is needed for the teeth is
not available in the chosen template image for 1, as it only holds colors for skin
and lips. In bottom example of figure 1 the difference between the original frames
i− 1 and i+ 1 is less than in the upper example, but the reasonable registration
direction leads still to a better result. Figure 2 shows the corresponding deformed
grids for the upper case of image 1. It can be seen that the grid for the worse
estimate on the left contains folds, which shows that the estimated deformation
has not the smooth character which we desire.

7 Discussion

We applied nonparametric image registration techniques to frame interpolation
tasks of mouth images and tested different methods on seven sequences of two
individuals. Given two images, known methods did not lead to satisfying re-
sults, however we showed that the right choice of deformable template image
T and static reference image R is able to increase the quality of the results by
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taking advantage of known asymmetry of image contents during the process of
opening and closing of mouths. Our introduced simple method for automatic
image selection is able to decrease the necessary manual work considerably, as
only three color thresholds have to be selected for each individual rather than
several landmarks for at least 20 mouth images, which was the case before. Our
proposed automatic direction selection was also applied to interpolate a 25Hz
mouth sequence to 50Hz by estimating intermediate frames. In contrast to one-
directional estimates, we obtain a fluid animation of a speaking mouth, which
was confirmed by subjective tests.

One general drawback remains the manual evaluation of results, because
there is no objective measurement available yet which serves the human sense
of visual disagreement and realism in mouth sequences and their comparison,
which can be seen as a possible future work task.

Additionally the different types of deformations for lips and teeth are not
yet incorporated. It might be useful to incorporate a rigidity constraint for the
teeth only and allow for more freedom in the surrounding.
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