
ROBUST RIGID HEAD MOTION ESTIMATION BASED ON DIFFERENTIAL EVOLUTION

Axel Weissenfeld, Onay Urfalioglu, Kang Liu and Joern Ostermann

Institut für Informationsverarbeitung
University of Hannover

Appelstr. 9A, 30167 Hannover, Germany
aweissen@tnt.uni-hannover.de

ABSTRACT

In this paper we present a system to robustly estimate the 3D

position of a human head. Before the face model is positio-

ned in the initial frame, it is adapted to the 3D scan of the

tracked human head. Head tracking is achieved by minimi-

zing a robust cost function with a stochastic optimization al-

gorithm called Differential Evolution. This approach enables

the estimation of large motions between consecutive frames.

Furthermore, the algorithm can even handle a large number of

outliers e.g. caused by occlusion and still estimate the precise

position.

1. INTRODUCTION

A head tracking system estimates the rigid motion of the hu-

man face throughout an image sequence. Head tracking sy-

stems are important for many applications in computer vision

like expression analysis, face identification, and 3D facial ani-

mation systems. Head motion can be used to recognize simple

gestures, like head shaking or nodding, or for capturing a per-

son’s focus of attention, providing a natural clue for human

machine interfaces.

Existing approaches can be divided in motion-based and

model-based systems. In the first approach, distinct facial fea-

tures, such as eye corners or nostrils, are tracked throughout

the image sequence [1]. The displacements between corre-

sponding feature points can be estimated using optical flow

or block-based motion estimation methods. In this way, a 2D

motion field is estimated in order to calculate the motion of

the object model. The object model is only used to transform

2D motion vectors into object model motion vectors. One pro-

blem with methods based on this approach, as shown by Li et

al. [2], is the accumulation of motion estimation errors.

A model-based tracker stores texture information of the

object and tries to adapt the object model’s position to fit the

new frame. Therefore, the motion estimation is dependent on

the texture information of the initial and current frame and on
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the object model. Model-based motion estimation can be ac-

complished by optical flow [3] or image registration in texture

space [4]. The latter can be accomplished by a stochastic op-

timization algorithm. Many variations of motion estimation

algorithms have been proposed in the literature. Differences

can be noticed in the boundary conditions, like the use of ca-

librated or uncalibrated image sequences or the used motion

model.

In this paper we estimate the rigid motion of fast moving

human faces and of a human face in temporally downsampled

sequences, sequences in which a larger number of consecuti-

ve images is lost, e.g. during transmission. Therefore head

motion may appear jerky instead of continuous. Hence, op-

tical flow presuming a linear signal model is not suitable for

tracking. However, image registration in texture space with a

stochastic optimization algorithm is suitable. While being ve-

ry robust, stochastic optimization algorithms require a higher

computational effort than optical flow.

In [5] a stochastic algorithm based on the particle filte-

ring approach is proposed for estimating the 3D pose of the

head. This algorithm utilizes the Condensation algorithm [6],

which assumes smooth state transitions related to consecutive

frames, in order to effectively estimate motion. However, the

head motion in the sequences we are analyzing is not expec-

ted to be continuous. This would lead to an enlargement of

the sampling intervals, defining the bounds of the probability

density functions and therefore disable a reasonable realizati-

on of the Condensation algorithm. To overcome this problem,

we replace the Condensation algorithm with a different sto-

chastic optimization algorithm called Differential Evolution

(DE), which was initially proposed in [7]. The DE algorithm

performs a global search in parameter space leading to the

global minimum of a cost function without the knowledge of

the former motion trajectory. Being a very robust algorithm,

DE enables the estimation of large motions between consecu-

tive frames. Furthermore, a robust cost function [8] is intro-

duced which makes the optimization invariant against outliers

that are generally caused by occlusions or noise.

In the remainder of this paper, we describe the motion

estimation (Section 2) and Differential Evolution algorithm
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Fig. 1. Motion of a 2D feature point from F (u,0) in the refe-

rence image I(t0) to F (u, λ) in image I(t), while the corre-

sponding 3D feature point moves from U to U′.

(Section 3). In Section 4 the robust cost function is described

and in Section 5 experimental results of the motion estimation

algorithm are presented.

2. MOTION ESTIMATION

Let I(u, t) be the brightness at the location u = (x, y)T in

the image I recorded at time t. The initial frame to which the

rigid face model is adapted is denoted as I(t0) and referred

to as reference image. The area in the reference image mar-

ked by the face model is called the reference template and it

is used for the motion estimation. In this area, a number of

feature points containing the texture information are defined

by u ∈ Ω. These points must have distinct visual characteri-

stics such as a high gradient. We use the Harris detector for

feature point detection. The feature points are tracked throug-

hout the image sequence. The 3D points corresponding to u
are denoted as U = (X, Y, Z)T . The rigid motion of 3D

points throughout the image sequence is described by a pa-

rametric motion model defined as F (u, λ), parameterized by

λ = (wx, wy, wz , tx, ty, tz) with F (u,0) = u.

The problem of motion estimation of a rigid face model

can be stated as (Fig. 1): In an image I(t) a 3D point U is

moved from its original position defined by the reference tem-

plate to a new position U′. Similarly, the point u on the ca-

mera target with the luminance value I(u, t0) in the reference

template, is moved from F (u,0) to the position F (u, λ) in

image I(t). Assuming diffuse illumination and diffuse reflec-

ting surfaces,

I(u, t0) = I(F (u, λ), t) for all u ∈ Ω (1)

holds. For motion estimation we minimize

C(λ) =
∑

u∈Ω

[I(F (u, λ), t) − I(u, t0)]
2

(2)

Utilizing a population of solution candidates, the DE-algorithm

calculates the cost C(λ) for each candidate and provides the

best solution after the convergence of the population.

2.1. Parametric motion model

The parametric motion model F describes the motion of a 2D

feature point u from F (u,0) to F (u, λ) by first moving U
to U′ and then projecting the 3D point onto the camera target

(Fig. 1). Motion in 3D consists of rotation R and translation

T with

U′ = RU + T (3)

2.2. Face model

The geometric shape of the subject’s head is approximated by

a three-dimensional face model, in order to be able to estima-

te spatial movements. Here we use the standard face model

Candide [9]. The mesh of the face model is defined by its 3D

vertices and connectivity describing the head’s surface. Initi-

ally the Candide mask is precisely adapted to a 3D scan of the

human head [10].

3. DIFFERENTIAL EVOLUTION OPTIMIZATION

We use the evolutionary optimizer called Differential Evo-

lution (DE) [7, 11], which is an efficient global optimizati-

on technique for continuous problem spaces used in many

applications. The optimization is based on a population of

n = 1, ..., N solution candidates sn,i � λ at iteration i whe-

re each candidate has a position in the 6-dimensional search

space. The population improves by generating new positions

iteratively for each candidate. The new positions for the itera-

tion step i + 1 are determined by

dn,i+1 = sk,i + F · (sl,i − sm,i) (4)

sn,i+1 = C (sn,i, dn,i+1) , (5)

where k, l, m are random integers from interval [1, N ], F is a

constant weighting scalar, dn,i+1 a displaced sk,i by a weigh-

ted difference vector and C() is a crossover operator. The

crossover operator intermixes the coordinates of sn,i and dn,i+1.

It is parameterized by a probability value to decide whether to

take the coordinate from sn,i or dn,i+1. For this case the resul-

ting sn,i+1 owns a lower cost and it replaces sn,i, or otherwise

it is discarded.

DE includes an adaptive range scaling for the generation of

solution candidates through the difference term in (4). This

enables global search in the case where the solution candi-

date vectors are spread in the search space and so the mean
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Fig. 2. Comparison between estimated poses and ground truth in a synthetic sequence. In each graph the blue solid curve

depicts the ground truth and the dashed green (σ=0), dashed-dotted red curve (σ=5) and dotted black curve (occlusion) depicts

the estimated via the described motion estimation algorithm.

difference vector is relatively large. On the other hand, in the

case of a converging population the mean difference vector

becomes small relatively enabling efficient fine tuning.

4. ROBUST COST FUNCTION

As described in the introduction, a rigid head motion with dif-

fuse illumination without local deformations and occlusions,

is assumed for the initial cost function (2). However, in real

sequences these assumptions are usually not valid. Therefore,

a robust cost function is required, enabling motion estimati-

on in presence of outliers. We use the following robust cost

function [8]:

C(λ) =
∑

u∈Ω

−e(
−1
2κ [I(F (u,λ),t)−I(u,t0)]

2) (6)

The parameter κ is related to the outlier-rate and the ex-

pectation value σ of the inlier-error. The optimal value of κ
decreases with a decreasing inlier-rate. As a rule of thumb,

the setting

κ ≈ 10σ2 (7)

enables motion estimation from even highly contaminated ob-

servables.

5. EXPERIMENTAL RESULTS

We evaluated the described technique using synthetic and re-

al sequences. Different synthetic sequences are generated by

mapping a texture to the face model and then rendering the

face model in different positions. Since this paper focuses on

estimating the motion in temporally downsampled sequences,

a synthetic sequence of 240 frames is generated in which af-

ter each 20th image the position of the head is randomly mo-

ved. Hence, the position of the head strongly varies between

these jumps. This synthetic sequence is used to demonstrate

the robustness of the proposed motion estimation algorithm.

Camera noise is simulated by adding white noise with zero

mean and variance σ2, which is given in image intensity, to

the image sequence. The image intensity ranges from 0 to

255. Furthermore, occlusion consisting of a moving object in

front of the head is added to the synthetic sequence. In these

test sequences we can compare the true and estimated motion

in each frame. In the real sequences, the face model is adapted

to fit the geometric shape of the human head and is positioned

in the initial frame before the motion estimation is performed.

5.1. Synthetic sequences

In Fig. 2 the estimated and true motion parameters are pre-

sented. The estimated pitches, yaws, rolls and translations for

σ=0 , σ=5 and occlusion by the system are compared with

the ground truth. Their colors are green, red, black and blue

respectively. The horizontal axis describes the frame number

and the vertical axis means the pitch, yaw or roll in degrees.

The translation is described in millimeters. The motion para-

meters are estimated well throughout the noiseless synthetic

sequence, even the jumps do not significantly increase the er-
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Fig. 3. In the left and middle row the frames 36, 158, 240 and

322 of the first sequence are displayed. The frames between

36 to 158 and 240 to 322 were dropped before the estimation.

In the right row occlusion is present.

ror. The error standard deviation of the estimated pitches and

z-translations vary from ground truth by less than 0.33 de-

grees and 1.2mm, respectively. If noise is added to the syn-

thetic sequence, then the accuracy decreases. Especially the

error standard deviation, of the estimated z-translation, incre-

ases to 5.6mm (σ = 5) and 1.4mm (occlusion).

5.2. Real sequences

In order to show the performance of the described algorithm,

real sequences from a recorded human subject are analyzed.

The intrinsic camera parameters are determined by calibra-

tion. In Fig. 3 the motion estimation results, from two se-

quences, with over 800 images, are presented. In the first se-

quence several frames are dropped in order to simulate fast

motion. The presented algorithm has the capability of estima-

ting large motions, so that the algorithm still tracks the human

head. In the second sequence occlusion is present. Neverthe-

less the face model seems to be glued to the head due to pre-

cisely estimated motion parameters.

6. CONCLUSIONS

We developed a model-based motion estimation algorithm for

full head motion recovery. The algorithm is based on minimi-

zing a robust cost function with the stochastic optimization al-

gorithm called Differential Evolution. This algorithm is very

robust with respect to outliers and even large motions between

consecutive frames are precisely estimated. Furthermore, we

tested the algorithm on synthetic and real sequences and esti-

mated precise 3D motion parameters.
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