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ABSTRACT

We introduce an efficient algorithm for real-time compression of
temporally consistent dynamic 3D meshes. The algorithm uses mesh
connectivity to determine the order of compression of vertex locati-
ons within a frame. Compression is performed in a frame to frame
fashion using only the last decoded frame and the partly decoded
current frame for prediction. Following the predictive coding para-
digm, local temporal and local spatial dependencies between vertex
locations are exploited. In this framework we present a novel angle
preserving predictor and evaluate its performance against other state
of the art predictors. It is shown that the proposed algorithm impro-
ves up to 25% upon the current state of the art for compression of
temporally consistent dynamic 3D meshes.

Index Terms— Mesh compression, dynamic 3D mesh coding,
animation compression, prediction methods, linear predictive coding,
non-linear predictive coding.

1. INTRODUCTION

Dynamic 3D meshes are more and more used to represent realistic
3D visual data. Applications can be found in computer games, cha-
racter animations, avatars, physical simulations, etc. Dynamic me-
shes are usually represented as a series of static meshes called fra-
mes. Frames consist of two types of data: connectivity and 3D locati-
ons. In this paper we assume that we are dealing with frames that ha-
ve constant connectivity throughout time, i.e. temporally consistent
dynamic meshes consisting of F frames and V vertices per frame.
Each vertex v in frame f is associated with a location in 3D space de-
noted by pf

v for 1 ≤ v ≤ V and 1 ≤ f ≤ F . Since connectivity does
not change throughout the entire mesh sequence, it has to be enco-
ded only once. We assume that connectivity is compressed by one of
the nearly optimal connectivity compression techniques [1, 2, 3, 4].
However, in contrast to connectivity, vertices change their location
in time. Therefore, the major part of an encoded mesh sequence ge-
nerally consists of vertex locations. For this reason, in this paper we
concentrate on compression of vertex locations of temporally consi-
stent dynamic meshes.

Recently, several approaches for compression of dynamic 3D
meshes have been presented. Karni and Gotsman [5] and Sattler et
al. [6] represent dynamic meshes using principal component analysis
(PCA) to reduce the amount of data. In this mesh representation, the
first approach uses linear prediction to exploit remaining temporal
coherence, while in the second paper mesh segmentation is applied
in order to exploit the coherence of rigid body parts. Guskov et al. [7]
and Payan et al. [8] propose wavelet-based approaches for compres-
sion. While Guskov et al. apply the wavelet transform for each frame
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separately, exploiting later the temporal coherence between wavelet
coefficients, Payan et al. apply the wavelet transform in temporal di-
rection on vertex trajectories and use a model-based entropy coder
for compression. Recently, Müller et al. [9] presented an approach
which exploits the coherence of motion vectors between consecuti-
ve frames, using a clustering algorithm based on octrees. A method
for error resilient streaming of dynamic 3D meshes, that minimizes
the perceptual effect of data loss, was introduced by Varakliotis et
al. [10]. Yang et al. [11] and Ibarria and Rossignac [12] presented
vertex traversal based compression algorithms. In the first paper a
parallelogram-like prediction rule is applied, while in the second pa-
per motion vector averaging is employed to exploit local inter and
intra frame coherence between vertex locations. With the exception
of the two last approaches, all other approaches can not be used for
real-time compression. Our algorithm is closely related to the last
two approaches.

The rest of the paper is organized as follows. Section 2 gives an
overview of the proposed compression algorithm, describing in de-
tail different realizations of predictors, performed quantization, and
entropy coding. In section 3, compression results are evaluated and
discussed. The influence of quantization errors to the prediction error
is analyzed in section 4. Finally, we end with a conclusion in section
5.

2. ALGORITHM OVERVIEW

The algorithm follows the predictive coding paradigm. All vertices
are traversed and encoded in order
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traversing first all vertices within frame f , before traversing vertices
of the next frame f + 1. The order of traversal and encoding within
a frame f is performed in a breath-first region growing order [13],
which is realized as follows. The traversal of each frame f starts with
an arbitrarily chosen, initial, seed triangle PCM-encoding its incident
vertex locations pf

1 , pf
2 , pf

3 . The growing region is initialized by this
seed triangle. The corresponding three triangle edges are enqueued
into a FIFO. Obviously, each edge in the FIFO always has two inci-
dent triangles and one of these triangles always lies in the growing
region. In the traversal loop, the first edge of the FIFO is dequeued.
If there is an incident triangle to this edge which is not yet part of
the region, it is added to the region and its edges are enqueued into
the FIFO. Every time a new vertex is encountered during traversal,
its location pf

v is predicted from so far encoded vertex locations of
the current frame f and the previous frame f − 1. Only prediction
error vectors

δf
v := pf

v − pred(v, f)

between the original location pf
v and the predicted location pred(v, f)

are encoded, after previously having quantized them. Since a pre-
vious frame for frame f = 1 does not exist, it is encoded using a
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Fig. 1. Linear predictors

predictor which predicts p1
v based only on already encoded vertices

of this frame. The traversal loop is iterated until the FIFO is empty
and all vertices of frame f are encoded. Iterating this process for all
frames f in ascending order from 1 to F , all the vertex locations pf

v

of the mesh sequence are encoded. While decoding, the same traver-
sal and the same prediction is performed, but now the delta vectors
are decoded to δ

′f
v distorted by the quantization error εf

v = δf
v − δ

′f
v .

Vertex locations p
′f
v = pred(v, f) + δ

′f
v , distorted by quantization,

are then reconstructed.

2.1. Predictors

In general, vertex locations of meshes representing real objects, show
correlations. Predictors are used in order to exploit this geometric
coherence between vertex locations for compression. The parallelo-
gram predictor (Fig. 1a) predicts a location based on one incident
triangle, which is part of the gray growing region, by creating a par-
allelogram. The averaging predictor, illustrated in Figure 1b, calcu-
lates the average of all neighboring vertex locations, which are part
of the growing region. Both predictors are using already encoded
vertex locations of the current frame only. Variants of these predic-
tors are also used for compression of dynamic meshes. Ibarria and
Rossignac proposed the extended Lorenzo predictor (ELP) for vertex
traversal based compression of dynamic meshes [12]

predELP(v, f) := predparal(v, f) − predparal(v, f − 1) + pf−1
v .

Yang et al. [11] employed a motion vector averaging predictor

predmvavg(v, f) := predavg(v, f) − predavg(v, f − 1) + pf−1
v .

These all are linear predictors of the type
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Fig. 2. A non-linear angle preserving predictor

with side condition
P

cf ′

v′ = 1 while N(v, f) being the set of indi-
ces of already encoded vertex locations. In all presented predictors
almost all coefficients cf ′

v′ are zero, since they are working in a local
temporal and spatial neighborhood of vertex v in frame f .

We propose a new non-linear predictor with angle preserving
properties (Fig. 2). The predictor predicts the location predangle(v, f),
preserving the angle between plane (pf−1

v′ , pf−1
v′′ , pf−1

v′′′ ) and plane
(pf−1

v′ , pf−1
v′′ , pf−1

v ) in frame f . Calculation of predangle(v, f) is per-
formed using orthonormal local coordinate frames (xf−1,yf−1, zf−1)
and (xf ,yf , zf ) in frame f − 1 and f , respectively. These are atta-
ched in the corresponding edge centers mf−1 and mf . Their y-axis
is aligned with edge (pf−1

v′ , pf−1
v′′ ) and (pf

v′ , p
f
v′′), respectively. The

corresponding x-axis is lying in the plane of the supporting triangle.
Prediction is based on the coordinates (ax, ay, az)

T , which repre-
sent point pf−1

v − mf−1 relative to basis (xf−1,yf−1, zf−1) (see
Fig. 2). Thus, predangle(v, f) is a perfect predictor if only rigid mo-
tion is carried out from frame to frame, otherwise it preserves the
angle between planes.

2.2. Quantization

Prediction error vectors δf
v are quantized before entropy coding in

order to exploit statistical dependencies. This induces an irrever-
sible loss of information. We quantize each component of δf

v =
(δf

v,1, δ
f
v,2, δ

f
v,3)

T uniformly using a quantization bin with width ∆,
which controls the amount of information loss. Quantization is per-
formed for each component separately, according to
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for ∗ ∈ {1, 2, 3}. The inverse quantisation

r
“
ifv,∗

”
:= ifv,∗ · ∆ = δ

′f
v,∗

reconstructs distorted prediction error vectors δ
′f
v,∗.



2.3. Entropy Coding

We apply an adaptive order-0 arithmetic coder [14, 15] combined
with Golomb codes [15], in order to encode the quantized residu-
als ifv,∗. We encode all residuals ranging between −3, . . . , 3 using
arithmetic codes, adapting the probabilities to the residuals of the
previous frame. All values outside of this range are encoded using
Golomb codes, which are optimal Huffman codes for discrete pro-
bability distributions with exponential decay.

3. EXPERIMENTAL RESULTS AND DISCUSSION

For experimental evaluation, we used the mesh sequence Chicken
Crossing, consisting of 400 frames and 3030 vertices per frame.
Evaluation with other mesh sequences led to comparable results. The
evaluation was performed using a normalized vertex-wise L2 norm,
denoted here by da, which was proposed in [5]. Bit rate is given in
bits per vertex and frame (bpvf). We apply the same ∆ for quantizati-
on during compression, distributing the quantization error uniformly
throughout the mesh sequence.

In Fig. 3a, rate-distortion curves produced by varying ∆ using
different realizations of predictors, are shown. Besides already pre-
sented predictors, we also evaluated a combined predictor (angle +
mvavg). This predictor is realized by selecting for each frame sepa-
rately one of the predictors of predangle(v, f) or predmvavg(v, f). The
predictor leading to a lower prediction error is selected for compres-
sion. One additional bit of side information is encoded per frame, in
order to specify to the decoder which predictor is used.

In the area of bit rates over 6.4 bpvf, the angle preserving predic-
tor achieves significant gains against the linear predictors predELP(v, f)
and predmvavg(v, f). This is because predangle(v, f) exploits not on-
ly linear dependencies, but also dependencies of higher order. Be-
low 6.4 bpvf, the performance of this predictor rapidly drops, due
to the dominating influence of the quantization error on the bit rate.
predmvavg(v, f) achieves significant gains at low bit rates because of
its property to reduce the influence of the quantization error through
averaging. The combined predictor shows the best performance de-
spite the additional side information. It prefers predangle(v, f) at bit
rates over 6.4 bpvf, while predangle(v, f) is more often applied at
lower bit rates.

In Fig. 3b, the proposed algorithm using the combined predic-
tor is evaluated against other state of the art compression algorithms.
Due to the usage of different error measures, we were not able to
compare against all algorithms mentioned in the introduction. We
compared against the algorithm Dynapack [12], which uses the pre-
dictor predELP(v, f), and the recently presented approaches of Payan
et al. [8] and Sattler et al. [6], based on wavelets and PCA. We achie-
ved significant gains in bit rate, especially in the area of errors below
0.03. Here we achieved gains of over 2 bpvf or over 25%. Obvious-
ly, exploitation of local spatio-temporal coherence of vertex locati-
ons using predictors of higher order can lead to significant gains, in
comparison to approaches exploiting long term dependencies within
vertex trajectories or aproaches based on PCA. Furthermore, most
of the approaches mentioned in the introduction are computationally
more demanding than our algorithm.

4. ANALYSIS

Our experiments showed that the probability distribution of δf
v,∗ can

be nicely fitted by a Laplacian distribution with zero mean. Hence,
the associated mean squared quantization error e2

q,∗ = E[(εf
v,∗)

2|δ
′f
v,∗]

is independent of δ
′f
v,∗, since quantization is performed uniformly.

Furthermore, we verified by experiment, that the resulting quantiza-
tion error εf

v,∗ can be regarded as a stationary, zero-mean white-noise
process with autocorrelation function

E
h
εf

v,∗ · εf−j
v−i,∗−k

i
=


e2

q,∗ : i = j = k = 0
0 : else

.

Therefore, the reconstructed vertex locations at the decoder side p
′f
v =

pf
v + εf

v can be considered statistically as original vertex locati-
ons pf

v distorted with additive, stationary, zero-mean white-noise
εf

v = (εf
v,1, ε

f
v,2, ε

f
v,3)

T .
The prediction error δf

v is calculated using a predictor which
works on the already reconstructed vertex location p

′f ′

v′ . Having this
in mind, we are evaluating in particular the influence of the quanti-
zation error εf

v to the prediction error δf
v . Without loss of generality

we calculate the mean squared prediction error of the first compo-
nent δf

v,1 = pf
v,1 − pred(v, f)1 for a linear predictor:
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The overall mean squared prediction error E is composed of two
types of errors. The first error Ep depends on the original vertex lo-
cations, while the latter error Eq depends on the mean squared quan-
tization error. Both errors are depending on the coefficients cf ′

v′ of the
used predictor. A careful selection of a predictor can reduce the over-
all error E . The suitability of a predictor depends on one hand on its
prediction accuracy based on original vertex locations (Ep) and on
the other hand on the applied level of quantization (Eq). Obviously,
Eq dominates the overall error E when performing coarse quantizati-
on. We obtain Eq

ELP = 7 e2
q,1 when using the predictor predELP(v, f)

for compression, while when using predmvavg(v, f) we get Eq
mvavg <

2 e2
q,1. Hence, the mean squared quantization error e2

q,1 is more am-
plified by predELP(v, f) than by predmvavg(v, f). This demonstrates
the superiority of predmvavg(v, f) over predELP(v, f) when perfor-
ming coarse quantization (cp. Fig. 3a). We showed experimentally
in section 3 that the combination of motion vector averaging and
non-linear angle preserving prediction can reduce the overall error,
leading even more to improved compression results.

5. CONCLUSION

In this paper, we presented a vertex traversal based compression al-
gorithm for compression of temporally consistent dynamic 3D me-
shes. We combined breath-first region growing vertex traversal with
a novel non-linear angle preserving predictor, exploiting local spatio-
temporal coherence between vertex locations. The advantage of this
approach is that due to its low computational cost (linear runtime in
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Fig. 3. Evaluation results

the number of vertices), it can be used for real-time compression.
Furthermore, we experimentally showed that significant compressi-
on gains (over 25%) can be achieved, using a combination of linear
and non-linear predictors. We showed that the proposed compression
approach outperformes state-of-the-art compression methods based
on wavelets or PCA.

One drawback of the proposed algorithm is its limited compres-
sion performance at very low bit rates (below 3 bpvf). This is because
of the dominating influence of the quantization error to the overall
prediction error, when performing coarse quantization (see section
4).
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