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ABSTRACT

The RPSO algorithm was introduced in a previous paper as an
application for robust estimation of epipolar geometry and focal
length from point correspondence sets with high outlier rates. It
was shown that using RPSO and an appropriate cost function the
number of required iterations was significantly reduced at high
outlier rates, compared to RANSAC based robust estimation. In
this paper a new global optimization algorithm called Non Lin-
ear Repulsive Particle Swarm Optimization (NLRPSO) is pro-
posed showing significant improvements compared to RPSO.
NLRPSO is tested on robust estimation of epipolar geometry and
focal length where the form of the utilized cost function are de-
rived analytically.

1. INTRODUCTION

Estimation algorithms are based on a model which de-
scribes the parameters of the entity which is supposed to
be estimated. Having some kind of data, it is the task of
the algorithm to find a set of parameters which fits to the
model optimally. However, often the data set is contam-
inated with data, also called outlier, which does not con-
form to the model at all. An estimation which takes into
account the contamination of the data set is calledRobust
Estimation(RE). Many conventional approaches for RE
are based on the RANSAC [3] algorithm. There have been
several enhancements and modifications of RANSAC [11,
1, 2, 10, 7, 6] which are all based on the common ran-
dom sampling scheme. One disadvantage of random sam-
pling based algorithms is the computational expense at
high outlier rates because the number of required itera-
tions increases very rapidly with the rate of outliers. This
increase makes the use of RANSAC unpractical at high
outlier rates.

This paper presents a global optimization algorithm called
Non Linear Repulsive Particle Swarm Optimization (NL-
RPSO). It is tested as a robust estimator for epipolar ge-
ometry and focal length.

In the following section the impact of outliers on an er-
ror model is discussed. Section 3 introduces an approach
for the robust estimation of epipolar geometry and fo-
cal length with data sets containing outliers. Section 4
presents the proposed NLRPSO algorithm. In section 5
results of the experiments are shown and in the last sec-
tion the paper is concluded.

2. ERROR MODELS

Often, there is a given data set which has to be processed
somehow in order to estimate any entity. As an example,
line estimation in 2D is considered. We assume that some
points are detected which are known to lie on a certain
line. Furthermore, we assume that the points are noisy
and the error probability distribution is known enabling
Maximum Likelihood Estimation(MLE).

2.1. The error model for inliers

With px̂i
being the errorProbability Density Function(PDF)

for the position of the estimated pointx̂i we have to opti-
mize the following term:

L = Πi px̂i
(x̂i|xi) (1)

wherexi is the corresponding measured point. The like-
lihood L can be interpreted as a cost function and the task
of the estimation is to find the global optimum. In our ex-
ample we assume that the PDF of the points is Gaussian
with varianceσ2:

px̂i
(x̂i|xi) =

1√
2πσ

exp(−|x̂i − xi|2

2σ2
) (2)

so the likelihood is:

L = Πi
1√
2πσ

exp(−|x̂i − xi|2

2σ2
). (3)



Estimating the linêl, we need to express the PDF using
the distance tôl:

pd =
2√
2πσ

exp(−d(̂l,xi)2

2σ2
). (4)

The likelihood becomes

L = Πi
2√
2πσ

exp(−d(̂l,xi)2

2σ2
) (5)

utilizing the distanced(̂l,xi) of the pointxi to the es-
timated line. It should be mentioned that the variance
changes:

E[d] =
∫ ∞

0

2e−
t2

2σ2

√
2πσ

t dt =
√

2
π

σ

E[(d− E[d])2] =
∫ ∞

0

2e−
t2

2σ2

√
2πσ

(t− E[d])2 dt

= σ2 π − 2
π

(6)

This means that by describing the PDF by the distance the
variance becomes

σ2 → σ2
d = σ2 π − 2

π
. (7)

What happens when we encounter data which is not com-
patible to our model? In this case any pointxo which
suffices the condition

distance(l,xo) � σ (8)

may be considered as an outlier and the estimation of the
line will fail with the cost function (3) because it is based
on a wrong PDF in that particular case.

l̂

Outlier
l̂

Figure 1: Left: estimation succeeds without outliers.
Right: estimation fails due to outliers.

The next section describes how to make cost functions ro-
bust for a data set which is contaminated with outliers.

2.2. The error model for outliers

Data sets containing outliers indicate that the error model
is not general enough. In order to generalize our model in
the case of line estimation it is required to determine the
PDF for the outliers. We assume that an outlier point has
constant PDF regarding itsposition:

qxo(xo) =
1
A

(9)

whereA is the area within the outlier point may be lo-
cated. In order to determine the PDF represented by the
distance we need to analyse all constellations of line - out-
lier point locations. We assume for symmetry reasons that
the area where all points may occur is bounded by a circle
with radiusR.
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Figure 2:Left column: location of the line relative to the
circle. Right column: the corresponding outlier point dis-
tance PDF.

In fig. 2 three examples for line locations and the corre-
sponding PDF are shown. The PDF for a tangential line is
given by:

qd(d) =
2

πR2

√
R2 − (d−R)2 rect(2R, d) d ∈ [0, 2R]

(10)
where

rect(a, x) =
{

1 for x ∈ [0, a]
0 else . (11)

Displacing the line parallelly byh towards the center of
the circle results in:

qh(d) = qd(d + h) + qd(−d + h). (12)

We need to determine the mean PDF considering all pos-
sible line locations due to the fact that we do not know the



real line:

qd(d) =
1

2R

∫ 2R

0

qh(d)dh

=
1

2R3π

[
(π + 2C)R2 + 2S(R

√
d−

√
d3)

]
(13)

where

S =
√

2R− d

C = arcsin(
R− d

R
).

(14)

Fig. 3 shows the plot ofqd(d).
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Figure 3:Mean PDFqd(d) for R = 1.

2.3. The generalized error model

The knowledge about the error model for inliers and out-
liers, respectively, enables to determine the error model
for the general case. With the inlier rate:

α =
I

N
(15)

whereI is the number of inliers andN is the number of
points, the generalized PDF is defined by [11]:

pg(d) = αpd(d) + (1− α)qd(d). (16)

In the next section we derive the generalized PDF for ro-
bust estimation of epipolar geometry and focal length in a
similar way.

3. ROBUST ESTIMATION OF EPIPOLAR
GEOMETRY AND FOCAL LENGTH

As in the case of line estimation, the estimation of epipo-
lar geometry also may have to deal with data containing

outliers due to a correspondence setC with wrong point
correspondences between two camera perspectives. The
outliers may be divided in two categories: random-outliers
and relative-motion-outliers. Random outliers are a re-
sult of total mismatches of the correspondence generation
algorithm where the feature points do not correspond to
each other. Relative motion outliers are a result of moving
objects in the scene. Though the correspondence gener-
ation succeeds for that kind of feature points the corre-
spondences do not fulfill the required rigidity constraint
of the scene and so are detected as outliers. Unlike ran-
dom outliers, relative motion outliers are grouped where
each group represents a moving rigid object and can be
described by a certain relative motion to the camera.
The epipolar geometry can be described by the F-matrix
F which encodes the intrinsic (e.g. focal length) and ex-
trinsic (translation and rotation) camera parameters:

F = K
′−1TRK−1 (17)

with K andK
′

describing camera intrinsics [4]:

K =


f
px

s cx

0 f
py

cy

0 0 1

 ,K′ =


f ′

px
s cx

0 f ′

py
cy

0 0 1

 (18)

wheref is the focal length of the camera generating frame
1, f ′ is the focal length of the camera generating frame
2, s is the skew of a pixel,cx, cy are coordinates of the
principal point andpx, py describe the pixel size. Except
f ′, all intrinsic parameters are assumed to be known.
R is the rotation matrix:

R =

 sϕsϑsρ + cϕcρ sϕsϑcρ − cϕsρ sϕcϑ

cϑsρ cϑcρ −sϑ

cϕsϑsρ − sϕcρ cϕsϑcρ + sϕsρ cϕcϑ


(19)

with ϕ, ϑ andρ rotation angles and

sϕ = sin(ϕ), sϑ = sin(ϑ) sρ = sin(ρ)
cϕ = cos(ϕ), cϑ = cos(ϑ) cρ = cos(ρ). (20)

The components of camera translation areT1, T2, T3 and
T is defined as:

T =

 0 T3 −T2

−T3 0 T1

T2 −T1 0

 . (21)

With a correct F-matrix the inlier point lies on the appro-
priate epipolar line as shown in fig. 4.
F fulfills the epipolar condition [4]:

x̄
′>
homF x̄hom = 0 (22)
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Figure 4:Epipolar lines and corresponding feature points
(inlier and outlier).

where

x̄′hom =

 x̄′

ȳ′

1

 and x̄hom =

 x̄
ȳ
1

 (23)

are noise free homogeneous feature points. Theepipolar
line l is defined by:

l′ = Fxhom. (24)

The epipolar condition (22) can also be described by:

distance(̄l′, x̄′hom) = 0. (25)

In the case where the points are noisy the distance between
the epipolar line and the appropriate point is not zero so it
can be used as an indicator for the correspondence being
an inlier or not.

3.1. RANSAC

The RANSAC based approach utilizes the 7-point algo-
rithm [4]. The 7-point algorithm may have 1 or 3 solution
candidates per iteration where all candidates are tested on
the correspondence set. Therefore, the required number
of iterations can be multiplied by an average factor of2.
RANSAC is an iterative algorithm and the number of iter-
ationsr required to find a correct sample of 7 correspon-
dences depends on the number of inliers, the number of
correspondences and the desired success probabilityPs:

r = 2
ln(1− Ps)

ln(1− (1− P7))
(26)

where

P7 =
k

N
· k − 1
N − 1

· · · k − 6
N − 6

. (27)

3.2. Error model for epipolar line - point distance

We assume that the points in frame 1 are noise free and the
points in frame 2 have Gaussian PDF. This assumption
is sustainable for the KLT tracker [9]. We identify the

diameter of the frame by2R. Assuming that the PDF of
the position of an outlier pointxo is constant:

qxo(xo) =
1
A

(28)

we face the same situation as in section (2.3). The gener-
alized PDFpF (d) for the distance is:

pF (d) = α
2e−

d2

2σ2

√
2πσ

+ (1− α)qd(d) (29)

whered = d(l,x) is now defined as the distance between
the epipolar line and the appropriate point in the current
frame.

3.3. Cost function

In order to determine the cost function for the robust esti-
mation we take a closer look at the PDFqd(d) defined in
(13) and calculate the expected valueEqd(d)[d]:

Eqd(d)[d] =
∫ 2R

0

qd(t) t dt =
5
8
R (30)

For simplicity and performance reasons, we approximate
qd(d) by a Gaussian PDFgo(d) with the same expected
value. The expected value for a generic Gaussian PDF
defined whithin[0, 2R] is:

EGaussian[d] =
1

erf(R
√

2
σo

)

∫ 2R

0

2e
− t2

2σ2
o

√
2πσo

t dt

=
1

erf(R
√

2
σo

)

√
2
π

σo

[
1− exp(−2

R2

σ2
o

)
]

(31)

The equation

Eqd(d)[d] != EGaussian[d] (32)

is used to determine the parameterσo of the approximated
Gaussian PDF. The result is obtained numerically:

σo = γ R, γ = 0.811511153. (33)

With this result, the approximated Gaussian PDF is fully
determined:

go(d) =
1

erf(
√

2
γ )

2e
− d2

2σ2
o

√
2πσo

. (34)

Fig. 5 shows the plots ofgo(d) andqd(d) for R = 1. After
all, our PDFpF (d) becomes:

pF (d) = α
2e−

d2

2σ2

√
2πσ

+ (1− α) B
2e
− d2

2σ2
o

√
2πσo

(35)
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Figure 5: Mean PDFqd(d) and the approximated PDF
go(d) for R = 1.

where

B =
1

erf(
√

2
γ )

. (36)

Having N point correspondences, which are assumed to
be statistically independent, the compound PDF which we
need for the construction of our cost function is:

L = ΠN
i=1pF (di) (37)

where
di = distance(̂li,xi) (38)

is the distance of the i-th point to its corresponding es-
timated epipolar line for a particular estimated F-matrix.
The estimation of the F-matrix requires a maximization of
L:

L = ΠN
i=1pF (di) → max (39)

In order to ease the numerical computation we utilize the
logarithmic likelihood:

log(L)
= log

[
ΠN

i=1pF (di)
]

=
N∑

i=1

log [pF (di)]

=
N∑

i=1

log

 2√
2π

α
e−

d2
i

2σ2

σ
+ (1− α)B

e
− d2

i
2σ2

o

σo




=
N∑

i=1

log
[

2√
2π

]
+log

α
e−

d2
i

2σ2

σ
+ (1− α)B

e
− d2

i
2σ2

o

σo


=

N∑
i=1

log
[

2√
2π

]
+SF (di)

(40)

where

SF (di) = log

α
e−

d2
i

2σ2

σ
+ (1− α)B

e
− d2

i
2σ2

o

σo

 . (41)

The termlog
[

2√
2π

]
is constant and can be discarded. We

are interested in efficient computation so we try to find an
approximation forSF (di) which can be calculated more
efficiently. The Taylor series developed atd = 0 of the
termSF (d) is:

SF (d) = log
[
ασo + Bσ −Bσα

σσo

]
− Bσ3 −Bσ3α + ασ3

o

2σ2σ2
o(ασo + Bσ −Bσα)

d2

+O(d4). (42)

For smalld, we can approximateSF (d) by SA(d):

SA(d) = exp
[

Bσ3 −Bσ3α + ασ3
o

2σ2σ2
o(ασo + Bσ −Bσα)

d2

]
(43)

which has the Taylor series expansion (atd = 0) of:

SA(d) = 1

− Bσ3 −Bσ3α + ασ3
o

2σ2σ2
o(ασo + Bσ −Bσα)

d2

+O(d4). (44)

One can see that the second order terms match. Fig. 6
shows the plots of bothSF (d) andS′A(d) where

S′A(d) = SA(d)− 1 + log
[
ασo + Bσ −Bσα

σσo

]
(45)

equalsSA(d) up to a constant with the property that

S′A(0) = SF (0). (46)

The cost function utilized by this approach is now fully
determined:

N∑
i=1

exp
[
− 1

2κ
d2

]
→ max (47)

where

κ =
σ2σ2

o(ασo + Bσ −Bσα)
Bσ3 −Bσ3α + ασ3

o

. (48)

The parameterκ is quite invariant regarding the inlier rate
andσo. Furthermore, it is

σ � σo ⇒ κ ∼ σ2. (49)
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Figure 6: Plot of the functionsSF (d) and S′A(d) which
match in their second order Taylor terms. The parameters
in this plot are:σ = 0.3, σo = γ , R = 1 andα = 0.5.

It proves that the estimation succeeds for a

κcf > κ (50)

up to a certain upper bound forκcf . This bound depends
on the inlier rate and on the thresholdτ for the distance
by which a correspondence is decided to be an inlier or
an outlier. For example it is not necessary to setτ = 0
for noise free points (σ = 0). The reason for utilizing a
greaterκ is that the smoothness of the search space hy-
persurface increases and also the region of the global op-
timum becomes easier to find.

3.4. Parameterization of the F-matrix

The magnitude of the camera translation can not be deter-
mined by the estimation soT can be parameterized by 2
values. With 3 parameters for the rotation, 2 parameters
for the translation and one parameter for the focal length,
F is entirely determined by 6 parameters.

The rotation is parameterized by 3 angles:

ϕ, ϑ, ρ ∈ [−0.2
2R

f
rad, 0.2

2R

f
rad] (51)

The translation is parameterized by 2 parameters:

ζ, η ∈ [0, π]
T1 = sin(ζ) cos(η)
T2 = sin(ζ) sin(η)
T3 = cos(ζ) (52)

whereζ andη are angles describing the orientation of a
vector in 3D-space (spherical coordinates). For the gen-
eration of frame 1 it is assumed that the focal lengthf is
known soK is completely known. The focal lengthf ′ of
the camera which generates frame 2 is unknown and must

be estimated. With an estimated̂f ′, K′ is completely de-
termined so the F matrix is constructed by equation (17).
The search space is 6 dimensional and the task of the opti-
mization is to find the estimatêF(ϕ̂, ϑ̂, ρ̂, ζ̂, η̂, f̂ ′) (of the
trueF̄(ϕ̄, ϑ̄, ρ̄, ζ̄, η̄, f̄ ′)) yielding a globally optimal cost.
This problem can be solved by global optimization (GO).
The GO technique proposed is a new approach calledNon
Linear Repulsive Particle Swarm Optimization(NLRPSO)
which is a modifiedParticle Swarm Optimization(PSO)
[5, 8] and belongs to the class of stochastic global opti-
mizers.
The search method of the new algorithm is fundamen-
tally different compared to the RANSAC algorithm. The
RANSAC algorithm constructs solution candidates by ran-
domly chosen samples whereas the GO-based algorithm
constructs solution candidates by interactions within a pop-
ulation of different solution candidates and thus makes use
of more information (e.g. by sharing ’experiences’ within
the population). This is one of the reasons for this new
approach outperforming RANSAC at high outlier rates.
However, the NLRPSO does not fine tune the estimated
parameters since it is not necessary to apply a global opti-
mizer when the region of the global optimum is known.
Instead, it allows for finding that region by utilizing a
greaterτ . The fine tuning is done by a subsequent gradient
search method which does not take considerable effort.

3.5. Non Linear Repulsive Particle Swarm Optimiza-
tion

The estimation of the F-matrix utilizing the cost function
defined in (47) equals a search for the global optimum in
a 6 dimensional search space. It is obvious that there are
many local optima, depending on the outlier rate. The ap-
proach proposed in [12] introduced the RPSO algorithm
which produced good results compared to RANSAC at
high outlier rates.
RPSO utilizes a populationΨ of solution candidates, called
particles. A Particle has a positionp and a velocityv in
the search space. In this case the positionp(r) of a particle
at iteration stepr is determined by 6 parameters:

p(r) := (ϕ(r)
p , ϑ(r)

p , ρ(r)
p , ζ(r)

p , η(r)
p , f ′(r)p )>

The velocityv(r) of a particle determines the next position
p(r+1) after an iteration step:

v(r) := (∆ϕ(r),∆ϑ(r),∆ρ(r),∆ζ(r),∆η(r),∆f ′(r))>

p(r+1) :=p(r) + v(r) (53)

Each particle knows its best position̂p it has achieved so
far measured by the cost function. The equation for the
velocityv(r+1) of a particle in RPSO for the next iteration



is:

v(r+1) = ω v(r)

+ aRPSO χ
(r)
1 (−p(r) + p̂(r))

+ bRPSO χ
(r)
2 ω(−p(r) + ŷ(r))

+ cRPSO χ
(r)
3 ω z(r) (54)

with

• χ
(r)
1 , χ

(r)
2 , χ

(r)
3 : random numbers∈ [0, 1]

• ω: inertia weight∈ [0.01, 0.7]

• p̂(r): best position of a particle

• ŷ(r): best position of a randomly chosen other par-
ticle fromΨ

• z(r): a random velocity vector

• aRPSO, bRPSO, cRPSO: constants.

The term with theaRPSO-scalar on the right side of (54)
leads to a motion of the particle towards its best position
and so represents the local optimization method of the par-
ticle. The term with thebRPSO-scalar leads to a repulsion
between the particle and the best position of a randomly
chosen other particle in order to explore new areas in the
search space and to prevent the population to get stuck in a
local optimum. This represents the global search method.
The term with thecRPSO-scalar generates noise in the ve-
locity of a particle to enhance the exploration of new ar-
eas in the search space. The inertia weightω decreases in
steps of0.05 from 0.7 to 0.01 when no progress at all is
encountered for∆rω iteration steps.
In the proposed Non Linear Repulsive Particle Swarm Op-
timization (NLRPSO) algorithm, the components of the
velocity v and the components of the positionp are con-
strained to be within[0, 1]. The rotation parameters are
mapped by e.g.

ϕp ∈ [0, 1] → ϕ = −0.2 + 0.4ϕp (55)

and the focal length is mapped by:

f ′p ∈ [0, 1] → f ′ = (0.9 + 0.2f ′p)f. (56)

In case of a particle position component bound infringe-
ment the new value is calculated by a ’reflection’: e.g.

p1 = 1.2 /∈ [0, 1] ⇒ p1 → 1− (1.2− 1) = 0.8 (57)

The translation parameters are mapped by e.g.

ζp ∈ [0, 1] → ζ = 0 + πζp. (58)

As an exception, the translation components of the particle
position are not constrained.
In case of a velocity component bound infringement the
new value is calculated by a ’cut off’: e.g.

v1 = 1.2 /∈ [0, 1] ⇒ v1 → 1. (59)

One disadvantage of the RPSO algorithm is the fact that
the local optimization ability of a particle does not include
any interaction with other particles but only relies on in-
formation about itself. This increases the robustness of
the convergence but also slows down its speed. NLRPSO
is an approach where both the local optimization method
and the global search method of a particle are realized by
swarm interactions. This enables a better utilization of
available information and so a faster convergence. The
main difference of NLRPSO compared to RPSO is the
particle propagation operator (PPO). The PPO assigns a
new velocity (and so a new position) to a particle by pro-
cessing available information such as the positions and ve-
locities of all particles. Before we represent the proposed
PPO for NLRPSO, we define the following attractive part:

V
(r)
attr = a

m∑
i

χ
(r)
i (−p(r) + p̂(r)

i ) (60)

and the repulsive part:

V (r)
rep = b χ

(r)
R

S∑
i

−p(r) + p̂(r)
i

| − p(r) + p̂(r)
i |

exp

[
−d(p̂(r)

i , p̂(r))2

2cD
2

]
.

(61)
The proposed PPO is:

v(r+1) = V
(r)
attr + V (r)

rep (62)

with

• χ
(r)
i , χ

(r)
R : random numbers∈ [0, 1]

• m: number of randomly chosen attractive particles

• S: swarm size

• D: mean distance of current particle to all other par-
ticles

• d(p(r)
i ,p(r)): distance between current particle and

particle numberi

• a, b, c: scalar constants.

In contrast to RPSO, the velocity does not depend on its
previous vector. This means that there is no inertia de-
manded in the movement of the particles so the movement
pattern of the swarm is more like a gas. Another difference
is that there is no local optimization part as in the case
of RPSO. Instead, there is an attraction towards the best



positions of other particles by the term (60). This term
produces a vector which is an element of a space spanned
by

(−p(r) + p̂(r)
i ), i = 1, ...,m (63)

and leads to an attraction of the particle towardsm ran-
domly chosen particleŝp(r)

i . This has the effect that the
attractive vector is less constrained then in the case of
RPSO. The parametera determines the size of the spanned
space. A small value fora results in faster convergence
but at the same time the ability to explore new areas suf-
fers and so the robustness.

The repulsion strategy is also different. The term (61) in-
volves all particles, in contrast to RPSO where there is
only a repulsion between 2 particles at a time. If the best
position of the current particle gets closer to the best po-
sition of another particle the repulsion gets stronger non-
linearly. This property leads to a prevention of premature
convergence and so helps avoiding local optima. On the
other hand, it also enhances exploring new locations in the
search space and speeds up the convergence. The param-
eterb adjusts the repulsion strength. For a too big value
of b, the repulsion gets too strong and this may lead to a
state where each particle is surrounded by a barrier which
it cannot overcome. NLRPSO is quite sensible on botha
andb. These parameters have to be balanced to achieve
high performance or even a global convergence.
The parameterc scales the mean distance range where the
repulsion between particles is effective and so is coupled
with the parameter b in its effect.
Though the cumulation of particles in a suboptimal region
is made less probable by the PPO of NLRPSO, in more
complex search spaces it can occur that the best position
of a particle, once arrived in a suboptimal region, does not
change and so gets stuck in that region. If this happens to
more than one particle in the same region then we speak
of a collision. In NLRPSO, a collision detection system
recognizes collisions. If the distance of thebestposition
of the current particle to the best position of any other par-
ticle is less than a specified thresholdτcol the current par-
ticle’s best position is displaced by the vector

1
b
ccolVrep (64)

whereccol is a constant.
The information utilization ability of NLRPSO is consid-
ered higher than that of RPSO due to the differences in the
attractive and repulsive parts, respectively.

4. EXPERIMENTAL RESULTS

This approach is tested on synthetic data and on a real im-
age sequence. Some of the parameters of the algorithm are

fixed while others are adaptively changed in dependence
of the outlier rateβ. The required number of iterations
for the three algorithms is compared where an iteration
is defined by processing all correspondences. A swarm-
iteration is defined by processing all particles so a swarm
with S particles has to processS iterations per swarm-
iteration.
The NLRPSO algorithm is used to find the region of the
global optimum. After a minimum number of swarm-
iterationsrmin, the solution of the NLRPSO algorithm is
used as a start position for a levenberg-marquardt gradient
search algorithm for fine-tuning. If the fine-tuning does
not succeed, the NLRPSO algorithm is continued until the
gradient search algorithm succeeds.

4.1. Synthetic Data Tests

A virtual camera with rotation angles restricted to± 0.2
rad and a maximum focal length variation of 10% between
two consecutive frames is used.
At first a 3D point cloud is randomly constructed. To sim-
ulate relative-motion-outliers, moving objects with vary-
ing number of supporting points are randomly generated.
With a focal length of1 the virtual camera determines the
first projection of the 3D points into the camera plane to
generate frame 1. After translating, rotating and chang-
ing the focal length of the virtual camera frame 2 is gener-
ated. The corresponding feature points are determined. To
simulate additional random-outliers, mismatches are gen-
erated randomly. A Gaussian noise is added to the feature
point coordinates to simulate real world conditions. With
N = 400 and varying outlier rates the required number of
iterations for a 99% successful search is experimentally
determined.
The search area is defined byR = 0.5u and the coordi-
nates of the feature points lie within[−0.5, 0.5]u whereu
is any length unit. The true variancēσ2 of the Gaussian
noise isσ̄2 = 10−7u2. Assuming that a real camera has
720x576 pixel resolution this is equivalent to a Gaussian
error with a standard deviation ofσ ∼ 0.18 pel.
The fixed parameters are shown in tab. 1.

c κcf m
2 40 · 10−6 6

Table 1:Fixed parameters.

This setup results in

κ ∼ 10−7. (65)

As stated in sec. 3.3, empirical studies show that the fac-
tor κc specified in the cost function may be greater thanκ



without loosing significant accuracy of the estimated pa-
rameters. Tab. 2 shows the parameters of the NLRPSO
algorithm depending on the outlier rate. Each time the
NLRPSO algorithm finds a new globally best position, the
appropriate inlier rate is calculated and the other parame-
ters are adapted accordingly.
These parameters are determined empirically, since there
is no analytical derivation available yet.

β τcol a b ccol τ [u] S rmin

0.5 0.0 0.63 −0.039 0.0 7 · 10−3 15 120
0.6 0.0 0.64 −0.039 0.0 6 · 10−3 20 100
0.7 0.02 0.64 −0.04 −0.02 4 · 10−3 30 110
0.8 0.05 0.65 −0.04 −0.075 3 · 10−3 30 200
0.9 0.1 0.66 −0.043 −0.1 3 · 10−3 30 –

Table 2:Adaptive parameters of the NLRPSO algorithm.

4.2. Real Data Tests

The proposed approach was also tested on an outdoor se-
quence. In this sequence, a sportsman is moving in the
foreground while the camera keeps focus on him. Some
of the parts of the background are moving as well so many
outliers are produced. Fig. 7 shows the detected inlier
rates.
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Figure 7:Inlier rates in tested outdoor sequence.

The sequence was tracked and a virtual blue cube was
placed into the scene as shown in Fig. 8.

4.3. Results

Fig. 9 shows the results of the synthetic data tests where
the required number of iterations is plotted.
For outlier rates of 53% and higher, the proposed approach
requires less iterations compared to the RANSAC based
approach.

Figure 8:Snapshot from the outdoor image sequence.
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Figure 9: Mean iterations required for 99% successfull
search: RANSAC vs. RPSO vs. NLRPSO

5. CONCLUSIONS

The introduced NLRPSO algorithm for robust estimation
shows promising results. In robust estimation of epipolar
geometry and focal length, it outperforms the well known
RANSAC based approach at high outlier rates. Compared
to the RPSO algorithm, NLRPSO shows considerable im-
provements in global search ability.

Though the proposed technique requires more iterations
than the RANSAC algorithm at outlier rates below 53%,
the upper bound for the required computational effort of
the estimation of camera rotation, translation and focal
length is significantly decreased. The real time estimation
at high outlier rates can be facilitated. Another advantage
of the proposed estimator is that it can be configured to
estimate any subset of parameters, e.g. only rotation and
one direction translation, so it is possible to benefit from
any constraints in the camera parameters.
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