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ABSTRACT 

As the capabilities of video standards and receiver hardware are increasing towards integrated 3d animations, 
generating realistic content is now becoming a limiting factor. In this paper we present a new technique of 
generating 3d content from reality, i.e. from video sequences acquired with normal TV cameras. The major aim 
is to provide the TV viewer with animated 3d reconstructions of athletic events in MPEG-4 over Digital Video 
Broadcast (DVB), which allows for an immersive experience via free navigation and interaction on the receiver 
side. As intervention in the actual scene, e.g. by markers, is often prohibited, markerless computer vision 
techniques are used on the images from normal broadcasting cameras for the accurate estimation of an athlete’s 
movements. The paper focuses on the key components for the realistic reconstruction of 3d geometric features, 
which are the calibration of moving TV cameras and the modelling of the moving athlete in its environment. 
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1. INTRODUCTION 
In the last years, several methods of enhancement 
were introduced in sports television, e.g. a moving 
line enabling the comparison of an athlete’s attempt 
with the world record, or the overlay of two 
competitors for comparison of their technique, e.g. in 
skiing. Due to the nature of ordinary television, these 
enhancements were previously limited to 2d 
sequences the TV viewer cannot interact with. With 
the advent of MPEG-4, advanced set-top boxes 
enable the interactive visualization of animated 3d 
content. However, the creation of suitable content 
that makes use of the 3d features of the MPEG-4 
format is much more difficult than the production of 
ordinary TV content, particularly in case of 3d 
content representing actual real world events.  

In order to bridge the gap between the technical 

possibilities of MPEG-4 and the tools available for 
creating high quality content, we aim at automatically 
converting ordinary images from TV cameras to a 3d 
scene description which contains an animated body 
model of the athlete in its 3d environment with 
accurate body movements. These 3d animations 
enable several novel viewing modalities: 

• The TV viewer interactively specifies the 
position and direction of the camera while 
watching the sports event. 

• Multiple athletes can be watched in parallel 
within the same environment in order to 
compare their attempts. 

• By overlaying a metric grid, the athlete’s 
attempt can be analysed in detail. 

The work presented here is embedded in the 
European project PISTE, which covers the end-to-
end chain for creation, transmission and reception of 
enhanced content during sports broadcasts close to 
the actual event. Along with the 3d reconstruction of 
moving athletes [Klein 02], PISTE also provides 
tools for a number of 2d enhancements as well as an 
authoring tool that allows the efficient administration 
of the content creation process and enables fast 
dynamic generation of content using templates 
[Walczak 02]. Moreover, the transmission over DVB 
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and the development of a set-top box capable of 
displaying MPEG-4 streams is addressed within 
PISTE. This paper focuses on the work towards the 
3d reconstruction of sports events. 

2. RELATED WORK 
The analysis and tracking of human motion has been 
an active area of computer vision research during the 
last years. Detailed surveys of several 2d and 3d 
computer vision based techniques and their 
applications can be found in [Moeslund 01] and  
[Gavrila 99]. Here only a few examples of markerless 
motion capturing applications shall be stated, which 
are most closely related to our approach. Chu et al 
[Chu 03] aim at reconstructing human motion by 
capturing human volumes from multiple images 
without any underlying model. This approach seems 
to be limited to poses, which can be recognised 
unambiguously. Sidenbladh et al [Sidenbladh 92] 
address the problem of 3d human motion tracking by 
representing 3d human motion with a large database 
of example motions. A probabilistic approach using a 
PCA-based dimensional reduction solves the problem 
of efficient search in a large training set.  Lee et al 
[Lee 02] use an articulated human body model 
consisting of tapered 3d cones representing 14 body 
segments, which are projected onto 2d images and 
matched with extracted body silhouettes. A 
combination of analytical and synthesis-based 
methods is used for tracking human motions, which 
still needs a learned scene background for detection 
purposes. In this paper we propose an approach that 
is able to reconstruct a complete sequence of a sports 
trial solely by analysing the original video footage 
delivered by the TV broadcaster cameras using a 
sports specific kinematic model. 

3. CHALLENGES IN COMPUTER 
VISION 
In order to accurately reconstruct 3d movements of 
an athlete, four major problems have to be addressed: 
the separation of the athlete’s moving limbs from the 
background, the calibration of the video frames, the 
estimation of the 3d pose and position, and the 
tracking of the overall movement in the sequence. 
The work in PISTE focuses on methods used to deal 
with these problems in the context of fast camera 
movements (causing motion blurring) and swifter, 
higher, and stronger action of the athletes. The latter 
is to be recovered in the Body Animation Parameters 
of MPEG-4. Additionally, a 3d model of the 
environment has to be reconstructed and aligned with 
the reconstructed athlete. 

Previous results were often based on massive 
employment of manual techniques, i.e. the 
reconstruction is performed for each field of the 

video sequence separately by mouse-clicking some 
known features in the background as well as all 
relevant joint positions of the athletes. Carrying out 
this approach for an event with one athlete covered 
by two cameras requires as much as 2400 accurate 
mouse clicks per second of video footage. 
Alternatively, hardware sensors on the TV cameras 
can be used to track the camera movement (pan, tilt, 
and zoom) through the sequence, but they still require 
an estimation of the camera’s relative orientation. 
This is often difficult due to insufficient overlap of 
the background shown in the camera images. 

PISTE pursues the minimisation of user interaction 
by assuming some characteristics of the problem: 

• Additional photographs are used to ensure 
sufficient mutual overlap of background 
shown in the images for calibration. These 
additional photographs are used at the same 
time for the 3d reconstruction of the 
environment. 

• The TV cameras typically vary their 
orientation in pan, tilt, and zoom only, while 
their positions are constant, i.e. the camera 
position has to be estimated only once and not 
for every single video field. The remaining 
parameters can be estimated using 2d imaging 
techniques. 

• The athlete possesses the typical shape and 
behaviour for a specific kind of sports. 
Consequently, a spatio-temporal model of the 
athlete’s movements is used to evaluate and to 
predict the pose and position through the 
sequence. 

Together with an integration of camera calibration, 
3d modelling, and texturing, these approaches reduce 
the user interaction to a minimum. 

 
Figure 1. 3d reconstruction from multiple images. 



4. 3D RECONSTRUCTION 
The 3d model of the environment is reconstructed 
from multiple photographs using well-known 
photogrammetric techniques. The primary goal is to 
reduce the number of required photographs, as their 
acquisition is often difficult in a sports TV context. 
To meet this demand, a wide-baseline approach has 
been chosen so that manual user interaction is 
required to identify corresponding features for 
camera calibration. Besides the standard approach 
based on 2d-2d correspondences, a 2d-3d approach, 
and a 3d-3d registration approach are used in order to 
reconstruct the scene from multiple photographic 
views [Hartley 00, Faugeras 93]. Subsequently, this 
camera set-up is optimised simultaneously using a 
bundle adjustment approach [Triggs 00]. 

As a very sparse point set represents the 3d surface at 
this point, we decided to model the surface by 
manually selected polygons rather than automatically 
increase the surface point density. This manual 
approach leads to small and efficient meshes (Figure 
1). 

In order to obtain a photorealistic result, the surface 
colour is determined from all photographs and 
sampled in OpenGL-compatible textures. The 
blending function used to combine the colours from 
the source photographs consists of four weights, 
which relate to visibility, quality (in terms of 
resolution on the 3d surface), a smooth transition to 
undefined regions, and a re-weighting of outlier 
colours using an M-Estimate approach [Neugeb 99]. 

This approach does not require any manual masking 
of persons in the scene as the respective regions are 
assigned a very low weight due to their outlier nature.  

However, video footage has to be processed in the 
calibration step in order to include the broadcasting 
cameras in the reconstruction process. Fixed camera 
positions are still the common setup in many kinds of 
sport. An analysis of the camera setups in the 
Olympic games 2000 showed that the two required 
cameras are nearly always available. By assuming a 
constant camera position for the broadcasting 
cameras, the first-order primitive, which the 
calibration is based on, is not a single image, but 
rather an already stitched panorama consisting of a 
video sequence [Coorg 98]. The resulting advantage 
is twofold: the reduced number of unknown 
parameters eases in the calibration process, and the 
large field of view of the panorama increases the 
mathematical stability of the geometric set-up. The 
simultaneous estimation of camera parameters and 3d 
scene features is performed using a bundle block 
adjustment approach [Triggs 00]. Automatic early 
optimisation of parameters during the reconstruction 
ensures a good initial estimation of the overall 

optimisation problem, so that the processing time of 
the final optimisation is reduced to a few minutes. 

Enriched with semantic information that can be 
generated within the same tool, the model is ready to 
be combined with an animated model of the athlete. 
The alignment of the athlete’s model with the 3d 
environment is given without additional computation 
because the TV cameras that are used to estimate the 
athlete’s 3d pose are calibrated according to the same 
coordinate system as the photographs that are used to 
calculate the 3d geometry of the environment. 

5. RE-CALIBRATION OF 
BROADCASTING CAMERAS 
The camera set-up consists not only of the static 
cameras used for the 3d reconstruction of the scene, 
but the non-static broadcasting cameras as well, 
which need to be re-calibrated when moved. We 
assume the position of the broadcasting cameras to be 
constant, so that the plenoptic function [McMillan 
95] of each camera can be modelled by a panorama. 
However, to use this panorama image for calibration 
purposes as described in the next paragraph, it is 
necessary to relate this panorama image to the 3d 
camera set-up of the scene. To this end, we include a 
small number of video frames from each camera in 
the multi-camera calibration step. Subsequently, we 
use these images as “anchor points” within the 
panorama image of the respective camera so that both 
extrinsic and intrinsic parameters of the panorama 
image are known, namely the exact focal length and 
the camera position. 

 
Figure 2. Registration of single video fields with 

pre-calibrated environment map. 

The video footage showing the human body to be 
reconstructed can now be calibrated using 2d image 
registration techniques with the pre-computed 
panorama image (Figure 2). However, when 
comprehending the panorama image as the camera’s 



plenoptic function, we ignored the time dimension. 
Consequently, the registration algorithm must be 
robust in spite of small changes in lighting conditions 
and moving persons in the scene, namely the athlete 
to be reconstructed. 

To meet this demand, we use a hierarchical 
optimisation approach based on colour differences in 
the LUV colour space combined with an outlier re-
weighting using M-Estimates [Zhang 97]. As the 
details of this 2d registration techniques are beyond 
the scope of this paper, we refer the reader to the 
literature on full view panorama stitching, e.g. 
[Szelski 97], where a similar problem is addressed. 

Once a video frame is registered with the panorama 
image, its complete set of calibration parameters is 
known. The main advantage of this approach is the 
independency of the calibration of any other images 
except the panorama image. This allows camera 
positions that do not provide any overlap in the 
background scene, which is a usual condition in 
sports TV. Moreover, parallelisation can be 
employed as each single video frame can be 
processed independently. 

6. 3D POSE ESTIMATION 
In order to reconstruct an athlete’s movements, 
synchronized and calibrated video sequences from at 

least two views are necessary. The calibration is 
carried out as described in the previous section. Both, 
the fast motion of the cameras and the athlete cause 
motion blurring. Additionally, we have to overcome 
difficulties introduced by self-occlusion. Therefore, 
we use a particular statistical model for each 
discipline that allows reliable temporal prediction of 
an athlete’s pose.  Moreover, we use an articulated 3d 

body model to exploit knowledge about human 
anatomy. 

The images of each sequence are processed by a 
chain, which incorporates a number of computer 
vision techniques (Figure 3). At first, the athlete’s 
silhouette is determined in each view by a seeded 
region growing algorithm [Sifakis 01, Adams 94]. 
Then an initial 3d pose is adapted to these 
observations. Therefore, a 3d body model is moved 
into the respective pose and projected into each view. 
Differences between segmented and synthetically 
created silhouettes are evaluated in order to 
determine the pose, which explains the observations 
best. From the 3d joint positions of the adapted body 
model, rotations for the joint angles are calculated to 
derive both VRML97 animations and MPEG-4 body 
animation parameter (BAP) used to animate an avatar 
at the receiver side. To overcome measurement errors 
like e.g. flickering of the athlete’s movements, 
smoothing splines are used to reduce dithering effects 
within the completed animations. 

In order to perform all these steps iteratively, 
automatically, and reliably, the initial pose is 
obtained by a prediction from previous poses. The 
prediction is based on a discipline specific, statistical 
model. This model is also able to detect a pose 
untypical for the specific kind of sports as an outlier, 

which requires confirmation or correction. 

The following section describes the pose prediction; 
the consecutive section explains the pose adaptation. 

Pose Prediction 
Within the computer vision pipeline, the 3d pose 
estimation as well as the motion prediction is needed 

 
Figure 3: 3d pose estimation overview 



for the correct representation of the athlete’s body 
and its movements. In the PISTE project the human 
body is described as a set of 18 single joints, each 
representing a 3d position in the world coordinate 
system. Once the parameters of the TV cameras are 
known, two corresponding joint positions in image 
space are sufficient to determine the respective 3d 
position. 

The kinematic information is calculated for each type 
of sports separately. This is done by a Point 
Distribution Model (PDM) [Cootes 92, Heap 96] of 
all possible poses of an athlete for a specific type of 
sports. The Point Distribution Model is a powerful 
shape description technique that may be used to 
derive a statistical description of objects from a set of 
training data. It is most useful for describing features 
that have well understood “general” shape, but which 
cannot be described by a rigid model. The human 
body is a good example for such a shape, that a 
human can comprehend and describe easily, but 
which do not permit rigid model-based description. 

 
Figure 4. Creation process of a PDM. 

In order to derive the statistical parameters from the 
training set, it is first necessary to align a set of 3d 
skeletons in an approximate sense (Figure 4). The 
minimization problem of the transformation function 
is an iterative application of a least-squares approach 
and can be solved by applying the Levenberg-
Marquardt-Method [Marquardt 63]. 

The outcomes of this alignment process are (mutually 
aligned) 3d skeletons, from which it is possible to 
derive statistical parameters like the mean skeleton 
and the modes of variation. The knowledge of the 
mean skeleton allows explicit measurement of the 
variation and co-variation exhibited by each joint 

coordinate. Doing this for each aligned skeleton, we 
can calculate the covariance matrix, which has some 
useful properties. It exhibits the variations that are 
seen in the underlying training data. 

These variations are important properties of the 
skeleton we are describing. The importance can be 
derived by an eigen-decomposition of the covariance 
matrix, which provides its eigenvectors and the 
eigenvalues. The eigenvectors associated with large 
eigenvalues correspond to large variation in the 
training data set. They provide the modes of variation 
(Figure 5). 

 

 
 Figure 5. 1st  and 2nd mode of variation for epee 

fencing. 

Sorting the eigenvalues by its numerical quantity, it is 
possible to represent any skeleton s (describes as a 
54-dimensional vector of joint coordinates) as a 
linear combination of all eigenvectors: 

ttbPss +≈  

where s is the mean skeleton, Pt the matrix of 
eigenvectors corresponding to the t largest 
eigenvalues and bt the deformation vector. The 
components of this deformation vector bt indicate 
how much variation is exhibited with respect to each 
of the corresponding eigenvectors in Pt. 

Within the modes of variation the PDM detects a 
pose very untypical for the specific kind of sports as 
an outlier, which requires confirmation or correction 
by resolving the above equation into 

)(1 ssPb tt −⋅≈ −  

Due to the fact that Pt  is because of the dimensional 
reduction factor t not a square matrix, the calculation 
of the pseudo inverse matrix of Pt is needed to 
determine the corresponding deformation vector. 

Verification of an arbitrary skeleton is now possible 
using the above equation by applying statistical limits 
to all components of the deformation vector. Poses 
are accepted as valid ones, if all components come to 
lie within this limiting interval. 

The PDM can also be used to perform a pose 
correction automatically, e.g. if a limb is invisible or 
ambiguous in all images and the most reasonable 



pose must be found instead, while additional user 
interaction is requested as last resort only. 
Mathematically, mapping outliers of the deformation 
vector to its nearest valid values leads to the 
correction of an invalid skeleton. 

With the knowledge of n last fields in a given 
sequence, it is possible to predict a pose in the 
following field by applying a non-linear extrapolation 
on the PDM´s parameters, more precisely by applying 
the extrapolation on the most important components 
of the deformation vector bt, and calculating a new 
skeleton s using the above mentioned equation. This 
predicted 3d skeleton than is projected to the image 
planes and used as the next seed in the segmentation 
module. 

Pose Adaptation 
Aiming at an accurate description of the individual 
motion of an athlete during a particular attempt, the 
predicted pose has to be adapted to the actual 
observations. Therefore, we use silhouette 
information from multiple views. Silhouettes are 
obtained by a segmentation based on a Seeded 
Region Growing approach applied to the input 
camera images. Due to motion blurring and camera 
calibration errors, the segmentation results might be 
insufficient for some fields. A robust adaptation 
approach is required to overcome such a problem. 

      
Figure 6. Wireframe and shaded representation of 3d 
body model. 

We propose an analysis by synthesis approach, which 
can be subdivided into three major steps. Firstly, a 
generic 3d body model is set into the predicted pose. 
Then synthetic silhouettes of this model are generated 
for each available view by a fast rendering procedure 
using the results of the online camera calibration. In 
the third step, differences between synthetic and 
segmented silhouettes are analysed. These steps are 
repeated varying the pose hierarchically until an 
optimal explanation of the observed silhouettes is 
achieved. 

The generic 3d body model consists of 15 simple 
volumetric primitives, which are attached to an 
articulated skeleton, represented by 18 joints (Figure 
6). Approximate body proportions are taken from 
anthropometrical descriptions of human bodies like 
e.g. [Dreyfuss 67]. The number of polygons, which 
represent a body part, is kept low. So the model is 
simple enough for fast rendering of synthetic views, 
and complex enough to capture the pose of an athlete 
well. 

 
Figure 7. Input images (a), overlays of synthetic and 
observed silhouettes before pose adaptation (b), and 
label images (c). 

In order to compare the pose of the 3d model and the 
real pose of the athlete, the 3d model is rendered into 
the image plane of each camera. For efficient 
rendering a simple pinhole camera model is used. 
Differences between the synthetic and observed 
silhouettes are evaluated in order to measure the 
correctness of the current pose. Figure 7a shows two 
views of a fencing sequence; in figure 7b 
corresponding overlay images of observed and 
synthetic silhouette can be seen. Here, green areas 
indicate parts of the observed silhouette, which are 
not covered by the synthetic ones, and red areas 
indicate the vice versa situation. Both types areas 
indicate an erroneous pose. In order to detect and 
overcome self-occlusion problems, not only synthetic 
silhouettes of the 3d model but label images are used. 
Each label in figure 7c represents one of the 15 body 
parts mentioned above. By using such label images, 



partial and complete occlusions of body parts can be 
recognized. 

The 3d pose adaptation is performed hierarchically. 
At first, the general position and orientation of torso, 
chest and belly are adapted by fitting the 
corresponding body parts to the observed silhouettes. 
Figure 8a shows the initial configuration of these 

body parts. Let vL  be the ratio of label area outside 

the observed silhouette of view v (green) to the 

complete label area (green and yellow), and let vS  

be the ratio of uncovered silhouette area in view v  
(red) to the complete silhouette area (red and yellow). 
The pose adaptation is carried out by varying 3d 
position and orientation of these body parts in order 
to minimize the sum of these ratios over all available 
views. To equally distribute the silhouette error over 

the body part contour, a third term is considered. vC  

is the distance between the centers of gravity of  the 
green and yellow areas in each view. The empirically 

determined weighting factors Lw , Sw  and Cw  

ensure comparability between these terms.  

This leads to the global error function E, which has to 
be minimized over all available views: 

vCvSv

V

v
L CwSwLwE ++=∑

=1

 

Figure 8b shows torso, chest and belly after 
adaptation. The pose adaptation is carried out by 
varying 3d position and orientation of each body part 
in order to minimize this error criterion by Powell’s 
minimization strategy [Press 92]. Subsequently, the 
body limbs are optimized. Final adaptation results are 
shown in figure 9. 

 
Figure 8. Overlay images before (a) and after (b) 
torso, chest and belly adaptation. 

 
Figure 9: Overlay images before (a) and after (b) 
adaptation. 

7. CONCLUSION 
The MPEG-4 standard enables interactive, immersive 
TV experience on advanced set-top boxes, but the 
creation of suitable content that represents real world 
events is a significant bottleneck. The PISTE project 
addresses this challenge by developing content 
creation tools, which enable extensively automated 
3d reconstruction from real world camera images 
(Figure 10). Even in cases where the TV camera set-
up alone does not provide enough information for 3d 
computations, the integration of additional 
photographs leads to accurate results. Thus, the 
creation of 3d content encoded in MPEG-4 is made 
possible within one hour after the event, which will 
significantly advance interactive 3d television and 
increase its attractiveness. 

 

Figure 10: Final reconstruction of epee fencing 
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