
Optimally Smooth Error Resilient Streaming of 3-D
Wireframe Animations

Socrates Varakliotisa Stephen Hailesa Jörn Ostermannb

aComputer Science Dept., University College London, UK
bAT&T Labs - Research, USA

ABSTRACT

Much research has been undertaken in the area of streaming video across computer networks in general and the
Internet in particular, but relatively little has been undertaken in the field of streaming 3-D wireframe animation.
Despite superficial similarities, both being visual media, the two are significantly different. Different data passes
across the network, so loss affects signal reconstruction differently. Regrettably, the perceptual effects of such
loss have been poorly addressed in the context of animation to date and much of the work that there has been in
this field has relied on objective measures such as PSNR in lieu of those that take subjective effects into account.

In this paper, we bring together concepts from a number of fields to address the problem of how to achieve
optimal resilience to errors in terms of the perceptual effect at the receiver. To achieve this, we partition the
animation stream into a number of layers and apply Reed-Solomon (RS) forward error correction (FEC) codes
to each layer independently and in such a way as to maintain the same overall bitrate whilst minimizing the
perceptual effects of error, as measured by a distortion metric derived from related work in the area of static
3-D mesh compression. Experimental results show the efficacy of our proposed scheme under varying network
bandwidth and loss conditions for different layer partitionings. The results indicate that with the proposed
Unequal Error Protection (UEP) combined with Error Concealment (EC) and efficient packetization scheme, we
can achieve graceful degradation of streamed animations at higher packet loss rates than other approaches that
do not cater for the visual importance of the layers and use only objective layering metrics. Our experiments
also demonstrate how to tune the packetization parameters in order to achieve efficient layerings with respect to
the subjective metric of surface smoothness.

Keywords: 3-D animation compression, 3-D mesh streaming, 3-D mesh error metrics, mesh QoS optimization,
error resilience, forward error correction, unequal loss protection, MPEG-4.

1. INTRODUCTION

The Internet has evolved rapidly during the past few years from a low-bandwidth, text-only collaboration
medium, to a richer, interactive, real-time, audio-visual virtual world. It involves many users, environments
and applications, where 3-D animations constitute a driving force. Animated 3-D models enable intuitive and
realistic interaction with displayed objects and allow for effects that cannot be achieved with conventional audio-
visual animations. Consequently, the current challenge is to integrate animated 3-D geometry as a new data
stream in the existing evolving infrastructure of the Internet, in a way that both enhances the existing net-
worked environment and respects its limited resources. Although static 3-D mesh geometry compression has
been actively researched in the past decade, very little research has been conducted in compressing dynamic 3-D
geometry, a logical extension of static 3-D meshes to the temporal domain.

To date, the most prevalent representations for 3-D static models are polygonal or triangle meshes. These
representations allow to approximate models of arbitrary shape and topology within some desired precision
or quality. Efficient algorithms and data structures exist to generate, modify, compress, transmit and store

Further author information: (Send correspondence to S.V.)
S.V./S.H.: {S.Varakliotis, S.Hailes}@cs.ucl.ac.uk, Computer Science Dept., University College London, WC1E 6BT, UK.
Tel.: +44 20 7679.3679, Fax: +44 20 7387.1397
J.O.: osterman@research.att.com, 200 Laurel Ave South, Middletown, NJ-07748, USA. Tel.: +1 732 420.9116, Fax: +1
732 368.9475



such static meshes. Future, non-static, stream types that introduce the time dimension, would require scalable
solutions to survive with respect to the network’s limited resources (bandwidth) and characteristics (channel
errors).

In this paper we concentrate on source and channel coding techniques for error resilient time-dependent 3-D
mesh streaming over the Internet, that respects network bandwidth and considers the bursty loss nature of the
channel.

The problem of 3-D wireframe animation streaming we address can be stated as follows: Assume (i) a time-
dependent 3-D mesh has been scalably compressed in a sequence of wireframe animation frames, (ii) the available
transmission rate R is known (or determined with respect to the corresponding TCP-friendly rate), (iii) the
channel error characteristics are known, and (iv) a fraction C of the available transmission rate (C < R) can be
reserved for channel coding. Then, what is the optimal number of bits to be allocated to each level of importance
(layer) in the animation scene that maximizes the perceived quality of the time-dependent mesh at the receiver?

Section 2 presents an overview of literature related to the fields involved in this work. Section 3 describes the
3-D wireframe animation codec and its bitstream content, along with the FEC codes used. The visual distortion
metric is detailed in section 4. The proposed UEP method and receiver-based concealment is discussed in Section
5. In Section 6 an analysis of the experimental results is given. Finally, significant findings and future work are
presented in the concluding Section (7).

2. RELATED LITERATURE

The field of static 3-D mesh compression has been an active topic for research in the past decade. Efficient
algorithms have been developed that compress a 3-D model’s connectivity to very high ratios and decompress it
in real time. Consequently, all recent efforts in 3-D mesh streaming only focus on the efficient transmission of a
3-D model’s layers that correspond to additive Levels of Detail (LOD). These LODs aim at refining the base layer
of a mesh that usually represents a coarse mesh approximation. Usually these streaming efforts accompany some
mesh simplification algorithm1, 2 or progressive mesh compression techniques3, 4 to reduce the downloading time
from a server. The most recent approach in the area of static mesh transmission, considers scalability issues with
regards to the channel bandwidth and the channel error characteristics.5, 6 None of the above works, though,
looks at the problem of robustness for time-evolving 3-D meshes.

One way to compress the time-dependent geometries would be to compress its individual frames using those
static schemes mentioned above. However, a more reasonable approach would be to exploit the temporal coher-
ence inherent in such signals. To this end, only a very limited number of research efforts that tackle the problem
of 3-D animation compression exist. Lengyel’s7 pioneering work is based on an algorithm that calculates and
transmits motion parameters by coding residuals using spatial prediction and a greedy clustering technique.
This landmark work laid the foundation for a couple more approaches later. Alexa8 et al. introduces principal
component analysis and proposes the computation and off-line transmission of a set of basic shapes. Yang9 et al.
in approach the problem using vertex-wise motion vector prediction. More recently Sengupta10 et al. propose a
compression scheme based on image registration techniques and partition the 3-D mesh using an iterative algo-
rithm. This work also caters for connectivity changes in the time-dependent mesh. None of the above literature
addresses streaming issues and QoS in particular.

Our work, according to Wu’s11 classification, addresses the problem of application-level QoS control in 3-
D wireframe animation streaming, a specialized area that has rarely formed the subject of research before.
In particular, we provide a 3-D wireframe animation compression and streaming solution, optimized with
source/channel coding FEC. Where the optimization procedure fails due to heavy channel losses, we propose the
use of interpolation-based 3-D wireframe error concealment as set out in our previous work.12

Related source/channel optimization work can be found in the literature for a limited spectrum of media,
namely speech audio and natural video. Some landmark works are listed below.

Podolsky13 et al. systematically study the issue of source/channel coding for audio signals and provide
extensive analytical simulation results to evaluate the ‘scalability’ of signal processing-based FEC (SFEC) for
packet audio i.e., the ability for a coding algorithm to improve aggregate performance when used by all sources



in the network, and find that optimal signal quality is achieved when sources react to network congestion not
by blindly adding FEC, but rather by adding FEC in a controlled fashion that simultaneously constrains the
source-coding rate.

Stuhlmüller14 et al. present detailed analysis of a video transmission over lossy channels. They discuss in
detail a complete video transmission system including rate-distortion performance of the video encoder, modelling
of a 2-state Markov burst-loss channel, forward error correction using RS erasure codes, interleaving and the
effect of error concealment and inter-frame error propagation at the decoder. Their analysis objective is to
optimize the video transmission system based on objective PSNR quality metrics and constant channel to source
coding ratios for RS codes per source coding layer. Obviously, despite the exhibited accuracy of their analytical
model, optimization of an objective metric does not necessarily reflect on improved subjective assessments.

Zhang15 et al. propose a network-adaptive congestion control scheme for scalable video streaming with
Unequal Loss Protection (ULP). In this scheme, end-to-end rate-distortion optimized source and channel codes
are allocated on the fly to best utilize the estimated available network bandwidth. The authors employ an
alternative to the BOP14 packetization scheme, known as EREC,16 which allows the formation of constant
length packets out of variable length blocks of video data. Given such a packetization scheme, the optimal source
to channel coding ration is sought that minimizes end-to-end distortion, again in terms of PSNR.

MPEG-4 attempts to elaborate on the area of 3-D animation within its Animation Effects Framework17, 18

(AFX) in version 5 of the standard, which has recently reached draft standard status. However, the MPEG-4
approach does not provide a scalable error resilience method regarding animation streams at the Elementary
Streams Layer, that accounts for the channel bandwidth or channel error characteristics. It rather leaves any
transport-level loss protection at the Systems Layer.

3. BACKGROUND

This work builds upon our recently proposed 3D-Anim19 animation coder previously presented. The following
section provides an overview of the 3D-Anim codec and introduces the related notation. An overview of the
error correcting Reed-Solomon (RS) codes follows together with derivation of the channel model, as well as the
design of Unequal Error Protection (UEP) packetization for the encoded bitstream.

3.1. 3-D Wireframe Animation Coding

The vertices mj of a time-dependent 3-D mesh form the indexed set Mt = {mjt, j = 1, 2, ..., n}, at time t, where n
is the total number of vertices in the mesh. Since a vertex has three space components (xj , yj , zj), and assuming
that no connectivity changes occur in time (constant n), we can represent the indexed set’s data at time t by
the position matrix Mt, as:

Mt =




x1,t x2,t ... xn,t

y1,t y2,t ... yn,t

z1,t z2,t ... zn,t




We partition the indexed set of vertices into intuitively natural partitions, called nodes∗. The position matrix
corresponding to the ith node is denoted by Ni,t. Note that, without loss of generality, the vertex matrix can
now be expressed as:

Mt =
[
N1,t N2,t . . . Nk,t

]

for k such nodes. For notational convenience, we use Ni,t (i = 1, 2, ..., k) both for representing a matrix and to
refer to the ith node as well. The objective of the 3D-Anim compression algorithm is to compress the sequence
of matrices Mt that form the synthetic animation, for transmission over a communications channel. Obviously,
for free-form animations of a 3-D mesh the coordinates of the mesh may exhibit high variance, which makes the
Mt matrices unsuitable for compression. Hence, we define our signal as the set of non-zero displacements of all
vertices in all nodes at time t:

Dt = {dit = mit −mn0, i = 1, 2, ..., p(p ≤ n) : dit 6= 0}
∗The term is chosen to highlight the correspondence of such nodes with the nodes as defined in VRML.



Following our notation, we can express the above with a displacement matrix, Dt, as:

Dt = Mt −Mt−1 ⇔

Dt =




x1,t − x1,t−1 x2,t − x2,t−1 ... xp,t − xp,t−1

y1,t − y1,t−1 y2,t − y2,t−1 ... yp,t − yp,t−1

z1,t − z1,t−1 z2,t − z2,t−1 ... zp,t − zp,t−1




or equivalently, using node matrices:
Dt =

[
F1,t F2,t . . . Fl,t

]
(1)

where Fi,t the displacement matrix of node i, for l such nodes (i = 1, 2, ..., l). Note that Dt’s dimension is
reduced to p ≤ n compared to Mt, since Dt does not contain vertices for which the displacement on all axes is
zero. Note, too, that l ≤ k holds, in the event that no vertices in a node get displaced (Fi,t = 0). In 3D-Anim
terminology, we call sparse animations those sequences with p < n and l < k. It is evident that depending on
the parameters p and l, the encoder can generate a layered bitstream (by adjusting parameter l), where every
layer L can be scalable (by adjusting parameter p). We quantify the sparsity (or density) of the animation by
the density factor, defined as:

df =
1
N

1
k

F∑

f=1

l∑

j=1

pjf

njf
, with l ≤ k and p ≤ n (2)

in the range [0..1], where N is the number of animation frames and k the number of nodes in the reference model.
For p → n and l → k we have df → 1, therefore a dense animation.

The scheme described and summarized in equation (1) above, is suited to a DPCM coder, as detailed below.
The coding process assumes that the initial wireframe model M0, here termed as the reference model, is already
present at the receiver. The reference model can be compressed and streamed with an existing method for
static 3-D mesh transmission such as the one recently proposed by Al-Regib5 and colleagues, along with error
protection if we assume the transmission is done over the same lossy channel as the time-dependent mesh. Our
method can accommodate and interoperate with such static mesh transmissions and will not be discussed further
here.

In the 3D-Anim codec’s context, an I-frame describes changes from the reference model M0 to the model at
the current time instant t. A P-frame, describes the changes of a model from the previous time instant t− 1 to
the current time instant t. The corresponding position and displacement matrices for I and P frames are denoted
respectively by M I

t , MP
t , DI

t , DP
t .

Figure 1 shows a block diagram of our coding scheme. The top Figure 1 diagram depicts a DPCM encoder
that takes advantage of the temporal correlation of the displacement of each vertex along every axis in the 3-D
space. To encode a P-frame, the decoded set (animation frame or displacement matrix) of the previous instance
is used as the predicted value, M̂P

t−1. (Equivalently, for encoding an I-frame the predicted matrix is M̂ I
t−1, where

M̂ I
t−1 = 0 at t = 0 is the displacement matrix for the reference model.) Then, the prediction error Et, i.e.

the difference between the current displacement matrix and the predicted one, is computed and quantized (Êt).
Finally, the quantized samples are entropy coded (Ct) using an adaptive arithmetic coding algorithm20 to handle
the unknown data statistics. The predictive scheme described prevents quantization error accumulation.

A DPCM decoder (bottom of Figure 1) first decodes arithmetically the received samples (C ′t) and computes
the decoded samples (D̂′

t). The quantization step size can be assumed to be the same for all nodes, or can
vary in order to shape the encoded bitstream rate†. Similar coding schemes have been used in MPEG-4 for the
compression of facial animation parameters21 and for BIFS-Anim.22

We mentioned before that Dt’s dimension is reduced to p ≤ n compared to Mt, since it does not contain
vertices for which the displacement on all axes is zero. This property is an advantage against MPEG-4’s BIFS-
Anim,22 which does not allow for reduced animation frames. For sparse Dt matrices it may also be the case

†Allowing different quantization step sizes for different nodes may result in artifacts, such as mesh cracks, especially
in the boundaries between nodes.



Quantizer

Model 
Frame Repository

Arithmetic
Encoder

+

+Arithmetic
Decoder

-tD tE tÊ tC

tD̂1tM̂ −

Model 
Frame Repository

1tD̂ −′

tD̂′tC′

Figure 1. Block diagram of the 3D-Anim codec. Top: Encoder, Bottom: Decoder.

that a whole node is not animated thus allowing great animation flexibility and generating a scalable bitstream.
Furthermore, in the case where Fi,t = 0, ∀i ∈ [1..l], the displacement matrix Dt is zero, leading to an ‘empty’
frame. This property resembles the silence period inherent in speech audio streams and can be exploited in
the application layer of RTP-based receivers to absorb network jitter. Inter-stream synchronization can also be
achieved, which is paramount for many applications (e.g. lip synchronization of a 3-D animated virtual salesman
with packet speech).

3.2. Channel Model and Error Correction Codes
The idea of Forward Error Correction (FEC) is to transmit additional redundant packets which can be used at
the receiver to reconstruct lost packets. In our FEC scheme we use Reed-Solomon (RS) codes across packets. RS
codes are the only non-trivial maximum distance separable codes known, hence they are suitable for protection
against packet losses over bursty loss channels. An RS (n, k) code of length n and dimension k is defined over the
Galois Field GF (2q) and encodes k q-bit information symbols into a codeword of n such symbols, i.e. n ≤ 2q−1.
A sender needs to store copies of k information packets in order to calculate n − k redundancy packets. The
resulting n packets are stacked in a block of packet (BOP) structure, commonly used in the literature5, 14 and
described later in Figure 2. To maintain constant total channel data rate the source rate is reduced by the
fraction k/n, called the code rate, resulting in an initially reduced animation quality. A receiver can begin
decoding as soon as it receives any k correct symbols, or packets of a BOP.

In reality, the underlying bursty loss process of the Internet is quite complex, but it can be closely approxi-
mated by a 2-state Markov model. The two states are state G (good), where packets are timely and correctly
received, and B (bad), where packets are either lost or delayed to the point that they that can be considered
lost. The state transition probabilities pGB and pBG fully describe the model, but since they are not sufficiently
intuitive, we express the model using the average loss probability PB , and the average burst length LB , as:

PB = Pr(B) =
pGB

pGB + pBG
(3)

LB = 1/pBG (4)

For the selection of the RS code parameters we need to know the probability that a BOP cannot be recon-
structed by the erasure decoder as a function of the channel and the RS code parameters. For an RS (n, k) code,
this is the probability that more than n− k packets are lost within a BOP, and it is called the block error rate,
PBER. Let P (m,n) be the probability of m lost packets within a block of n packets, also called the block error
density function. Then, we can calculate:

PBER =
n∑

m=n−k+1

P (m,n) (5)

The average loss probability PB and the average loss burst LB corresponding to the 2-state Markov model
described above, relate to block error density function P (m,n). The exact nature of their relationship has been



extensively studied and derived in the literature. Here we adapt the derivation for bit-error channels23 to a
packet loss channel.

Such a model is determined by the distribution of error-free intervals (gaps). If there occurs an event of gap
length ν such that ν − 1 packets are received between two lost packets, then the gap density function g(ν) gives
the probability of a gap length ν, i.e. g(ν) = Pr(0ν−11|1), where 0 denotes a received, and 1 a lost packet. The
gap distribution function G(ν) gives the probability of a gap length greater than ν − 1, i.e. G(ν) = Pr(0ν−1|1).
In state B of our model all packets are lost, while in state G all packets are received, yielding:

g(ν) =

{
1− pBG, ν = 1
pBG(1− pGB)ν−2pGB , ν > 1

G(ν) =

{
1, ν = 1
pBG(1− pGB)ν−2, ν > 1

Let R(m,n) be the probability of m− 1 packet losses within the next n− 1 packets following a lost packet. This
probability can be calculated from the recurrence:

R(m,n) =

{
G(n), m = 1∑n−m+1

ν=1 g(ν)R(m−1, n−ν), 2≤m≤n

Then, the block error density function P (m,n) or probability of m lost packets within a block of n packets is
given by:

P (m,n) =

{
1−∑n

ν=1 P (m, ν), m = 0∑n−m+1
ν=1 PBG(ν)R(m,n−ν+1), 1≤ m≤n

where PB is the average error probability.

From Eq. (5) we see that P (m,n) determines the performance of the FEC scheme, and can be expressed
as a function of PB , LB using Eq. (3) and (4). In a later section we will see how we can use this expression
of P (m,n) in a RS (m,n) FEC scheme for optimized source/channel rate allocation that minimizes the visual
distortion.

3.3. Bitstream Format and Packetization

The output bitstream of the 3D-Anim codec needs to be appropriately packetized for streaming with an
application-level transport protocol, e.g. RTP. This process for a single layer bitstream has been previously
described in detail19 and its main features are summarized below:

• In order to describe which nodes of the model are to be animated we define the animation masks, NodeMask
and VertexMasks, in a similar way to BIFS-Anim.22 The NodeMask is essentially a bit-mask where each
bit, if set, denotes that the corresponding node in the Node Table will be animated. The Node Table (an
ordered list of all nodes in the scene) is either known a priori at the receiver since the reference wireframe
model exists there already, or is downloaded by other means. In a similar way, we have defined the
VertexMasks, one per axis, for the vertices to be animated.

• In its simplest form, one frame (which represents one Application Data Unit (ADU)), is contained in one
RTP packet. In this sense, the 3D-Anim codec’s output bitstream is ‘naturally packetizable’ according to
the Application Level Framing24 (ALF) principle. We considered an RTP packet payload format starting
with the NodeMask and VertexMasks, followed by the encoded samples along each axis.

This simple format suffices for light animations with a modest number of vertices. However, sequences with
high scene complexity or high resolution meshes, may generate a large amount of coded data after compression,
resulting in frames which potentially exceed the path MTU. In such cases, raw packetization in a single layer
would require the definition of fragmentation rules for the RTP payload, which may not always be straightforward



Symbol, q (bits)Encoded Animation 
Geometry Data

…

…… … …

Packet Size, (bytes)PS

codew
ord length, n

k
sym

bols to protect

n-k redundant symbols

single layer BOP grid

Figure 2. The Block-Of-Packets (BOP) grid structure.

in the ALF sense. Furthermore, frames directly packetized in RTP as described above generate a variable bitrate
stream due to their varying lengths.

We seek a more efficient packetization scheme that satisfies the requirements set out above: (a) to accom-
modate layered bitstreams, and (b) to produce a constant bitrate stream. We can achieve this efficiency by
appropriately adapting the block structure presented by Horn25 et al. known as Block-Of-Packets (BOP). In
this method, encoded frames of a single layer are placed sequentially in line order of an n-line by SP -column grid
structure and then RS codes are generated vertically across the grid. For data frames protected by an RS (n, k)
erasure code we append error resilience information so that the length of the grid is n for k frames of source
data, as shown on Figure 2. This method is most appropriate for packet networks with burst packet errors, and
can be fully described by the sequence frame rate FR, the packet size SP , the data frame rate in a BOP FBOP ,
and the RS code (n, k).

Intuitively, for a BOP consisting of FBOP data frames, with SP bytes long packets, at FR frame rate, the
total source and channel bitrate R is given by:

R =
n · FR · SP

FBOP
(6)

This equation serves as a guide to the design of efficient packetization schemes by appropriately balancing the
parameters FBOP , n and SP . It also encompasses the trade-off between delay and resilience. Obviously, for a
layered bitstream we need to design one BOP structure per layer. By varying the parameters in Eq. (6) we
can allocate different RS code rates to each layer, thus providing unequal level of error protection to each layer.
The way these parameters are adjusted in practice for the application of 3-D animation streaming, considering
a measure of visual error, is explained in Section 5.

4. VISUAL DISTORTION METRIC

In order to measure the visual loss resulting from a non-perfect reconstruction of the animated mesh at the
receiver, a metric is required that is able to capture the visual difference between the original mesh Mt at time
t and its decoded equivalent M̂t. The simplest measure is the RMS geometric distance between corresponding
vertices. Alternatively, the Hausdorff Distance has been commonly used in some literature5, 26 as an error metric.
The Hausdorff distance, is defined in our case as the maximum minimum distance between the vertices of two
sets, Mt and M̂t, in such a way that every point Mt lies within the distance H(Mt, M̂t) of every point in M̂t and
vice versa. This can be expressed as:

H(Mt, M̂t) = max(h(Mt, M̂t), h(M̂t,Mt)) (7)

where h(Mt, M̂t) = max
mt∈Mt

min
m̂t∈M̂t

‖mt − m̂t‖, and ‖ · ‖ is the Euclidean distance between the two vertices, mt and

m̂t.27 Many other distortion metrics for 3-D data can be derived by equivalence to natural video coding in 2-D,



A
B

C D

E B

A

C D

E

lAB
lAD

lAElAB

Figure 3. Example of a Laplacian operator on a hypothetical surface. Left: original surface. Right: reconstructed surface
with distortion on vertex A.

such as SNR10 and PSNR,19 but these are tailored to the statistical properties of the specific signal they encode,
failing to give a uniform measure of user perceived distortion across a number of signals and encoding methods
over different media. Moreover, especially for 3-D meshes, all these metrics give only objective indications of
geometric closeness, or signal-to-noise ratios, and they fail to capture the more subtle visual properties the human
eye appreciates, such as surface smoothness.

One attempt that was made in this direction was reported by Karni and Gotsman28 as being undertaken
whilst evaluating their spectral compression algorithm for 3-D mesh geometries. In this, the suggested 3-D mesh
distortion metric normalizes the objective error computed as the Euclidean Distance between two vertices, by
each vertex’s distance to its adjacent vertices. This type of error metric captures the surface smoothness of the
3-D mesh. This may be achieved by a Laplacian operator, which takes into account both topology and geometry.
The value of this geometric Laplacian at vertex vi is:

GL(vi) = vi −
∑

j∈n(i) l−1
ij vj∑

j∈n(i) l−1
ij

where n(i) is the set of indices of the neighbors of vertex i, and lij is the geometric distance between vertices i
and j. Figure 3 provides intuition on the geometric Laplacian quantity GL. The surface on the left of the image
represents a hypothetical fragment of the animated mesh at time t, consisting of vertices denoted by heavy
dots and triangular connectivity denoted by straight and dotted lines. The right hand side mesh represents
the corresponding decoded fragment. Assume a scenario where the decoded coordinates of vertices B, C, D, E
introduce no coding error whereas vertex A’s y-coordinate contains coding error. Obviously, the decoded surface
suffers a bump on vertex A. This distortion is what the Laplacian GL captures.

Hence, the new metric is defined as the average of the norm of the geometric distance between meshes and
the norm of the Laplacian difference (mt, m̂t are the vertex sets of meshes Mt, M̂t respectively, and n the set
size of Mt, M̂t):

V S(t) = f(Mt, M̂t) =
1
2n

n∑
r=1

(‖mrt − m̂rt‖+ ‖GL(mrt)−GL(m̂rt)‖) (8)

This metric in Eq. (8) is used in our proposed scheme, and we will be referring to it hereafter as the Visual
Smoothness metric (VS).

Obviously, the VS metric requires connectivity information: the adjacent vertices of every vertex mt. For the
case of the 3D-Anim codec, where we have assumed no connectivity changes during the animation, the vertex
adjacencies can be precomputed.

5. ERROR RESILIENT 3-D WIREFRAME STREAMING

In Section 3.3 we described the BOP structure, which is suitable for the design of an efficient packetization
scheme that employs redundancy information based on RS erasure codes. We also expressed in closed form
the relation of its design parameters FBOP , n and SP in Eq. (6). This equation, though, does not reflect any
information about layering. In this section, the layering design approach is given first, followed by the proposed
error resilient method for 3-D wireframe streaming.



0.2

0.4

0.6

0.8

1

1.2

0 30 60 90 120 150
30

32

34

36

38

E
rr

or
 (

D
is

ta
nc

e)

P
S

N
R

Frame Number

BounceBall, I/8
Visual Metric
Hausdorff
PSNR

Figure 4. Comparative plot of distortion metrics: PSNR, Hausdorff Distance, and Visual Smoothness for 150 frames of
the animated sequence BOUNCEBALL with I-frame freq. at 8Hz. The two upper plots (PSNR-Hausdorff) show the expected
correlation between the corresponding metrics of Geometric Distance and Hausdorff Distance (eq. 7) they represent. The
two lower plots, indicate that the Visual Distortion (eq. 8) might be low in case where the Geometric Distance is high
and vice-versa.

The layering is performed in a way that the average VS value of each layer reflects its importance in the
animation sequence. To achieve this, we need to compute the VS from Eq. (8) for every node in the mesh
independently and order the nodes according to their average VS in the sequence. A node, or group of nodes,
with the highest average VS forms the first and most important layer visually, L0. This is the layer that we want
to make more resilient to packet errors than other layers. Subsequent importance layers L1, ..., LM are created
by correspondingly subsequent nodes, or group of nodes, in the VS order.

If a 3-D mesh has more nodes than the desirable number of layers, then the number of nodes to be grouped
in the same layer is a design choice, and dictates the output bitrate of the layer. For meshes with only a few
nodes but a large number of vertices per node, node partitioning might be desirable. The partitioning would
restructure the 3-D mesh’s vertices into a new mesh with more nodes than were originally present. This process
will not affect connectivity, or the overall rendered model. Following the discussion on visual importance in this
paper, one realizes that mesh partitioning into nodes, if it is possible, should not be arbitrary, but should rather
reflect the natural objects these new nodes will represent in the 3-D scene and their corresponding motion. If
partitioning is not possible in the above sense, one could partition the mesh into arbitrary sized sub-meshes
(nodes) that are allocated to the same layer. Mesh partitioning may require complex pre-processing steps and
goes beyond the scope of this paper. Recall, however, that the 3D-Anim codec assumes static connectivity.

The expected distortion of the animation at the receiver at time t is the sum of the product quantities
Pjt · V Sjt, where j is the layer index, V Sjt is the visual distortion incurred by missing information in layer j at
time t, and Pjt is the probability of having an irrecoverable packet loss in layer j. By the way we constructed
the layers, the probabilities Pjt are independent, and a burst packet loss in a layer contributes to its own visual
distortion V Sjt in the decoded sequence. Formally, the expected visual smoothness V S(t) of an animation at the
decoder at time t can be expressed as:

V S(t) =
L−1∑

j=0

Pjt · V Sjt (9)

where L is the number of layers. In the equation above, Pjt is the block error rate PBER as given by Eq. (5),
or the probability of losing more than n− kj packets in layer j. Using the block error density function P (m,n),
we can write:

Pjt =
n∑

m=n−kjt+1

P (m,n) (10)

From Eqs. (9) and (10) we can express V S(t) as:

V S(t) =
L−1∑

j=0

n∑

m=n−kjt+1

P (m, n) · V Sjt (11)



0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

V
is

ua
l M

et
ric

Loss Rate (%)

Telly, node=Nostril, I/15, 8 iter
FR
MV
IN

Figure 5. Performance of three error concealment methods for sequence TELLY, for PB = [0..30] and LB = 4. FR=Frame
Repetition, MV=Motion Vectors, IN=Interpolation. The plot shows the average performance over 8 iterations with
different loss patterns.

Equation 11 estimates in a statistical sense the expected visual smoothness experienced per frame at the decoder.
Our objective is to minimize this distortion with respect to the values of kjt’s in Eq. (11). From the way we split
the bitstream into layers we would expect the optimization process to allocate more redundancy to the layer
that exhibits the greatest visual distortion (coarse layer), and gradually reduce the redundancy rate on layers
with finest contribution to the overall smoothness. There are L values of kjt that need to be calculated at every
time t, that follow the conditions 0 ≤ kjt ≤ n and

∑L−1
j=0 (n− kjt) = RC/q, where RC the redundancy bits, and

q is the symbol size. The above problem formulation yields a non-linear constraint optimization problem that
can be solved numerically.

The anticipated behavior of the model for PB = 0 is to produce equal values for kjt’s, whereas at high PB

we would get unequally varying kjt’s. Note that for the calculation of smoothness distortions in Eq. (11) we
assumed that no error concealment takes place at the receiver.

In our recent work,12 we have shown that techniques based on vertex linear temporal interpolation are a
sufficient and efficient method of error concealment for 3D-Anim frames. According to this technique, a burst
of missing frames can be concealed by interpolating the missing vertex values from two sets of vertices: the
ones in the last received frame before the burst occurred and those in the currently received frame. This relies
on the ‘locality of reference principle’, according to which high-frame rate animations are unlikely to exhibit
vertex trajectories other than linear or piece-wise linear. If higher complexity can be accommodated, higher
order interpolation can be employed by using information from the neighboring frames. Interpolation and other
concealment methods discussed elsewhere12 are generic in that they can be used by any other decoder.

Figure 5 shows the relative performances of three error concealment methods adapted to the experimental
parameters of this work, namely PB = [0..30] and LB = 4. It is evident that linear interpolation outperforms
Frame Repetition or Motion Vector-based methods‡. The plot shows average values for 8 iterations with different
loss patterns. It is clear on the plot (as seen by the error bars) that the interpolation concealment method exhibits
very low variance, verifying the locality of reference principle (the average loss burst length LB = 4 is much lower
than the sequence frame rate of 30 Hz.) We, therefore, propose the use of interpolation-based error concealment
at the receiver in the case where the channel decoder receives less than n−kjt BOP packets. In fact, the kjt’s that
provide a solution to the optimization problem, will also give minimum distortion if combined with concealment
techniques. The expected distortion in such cases will be lower than the distortion without error concealment.

In the following section we explain the experimental procedure and we tune the values and the optimization
process for a real-world case of 3-D wireframe animation, along with discussion of our findings.

6. EXPERIMENTS AND RESULTS

In the following experiments, we are demonstrating through simulation the efficiency of the proposed Unequal
Error Protection (UEP) scheme combined with Error Concealment (EC) for streaming 3-D wireframe animations.

‡Detailed descriptions of the other error concealment methods at the receiver are given in our past related work.12



In particular, we are comparing UEP and EC to simple UEP, to Equal Error Protection (EEP) and to No
Protection (NP). The comparison is based on the Visual Smoothness metric, which is known to yield a distortion
measure that captures the surface smoothness of the time-dependent mesh during the animation. For the
calculation of the parameters kjt we numerically solved the constrained minimization problem of Eq. (11), given
the channel rate RC . Furthermore, we calculated n from Eq. (6) such that we meet the rate characteristics
of the original source signal for our particular design of a BOP. The other parameters we used in Eq. (6) are
given below for the two sequences in the experiments, and are also summarized in Table 1. For the EEP case we
consider a constant k that can be derived directly from the selection of the channel rate, which we set to 15%.
For the NP case we allocate all available channel rate to the source. Finally, we used an EC scheme based on
interpolation for the case of UEP with residual losses. In all experiments we use LB = 4.

We utilized the sequences TELLY and BOUNCEBALL with density factors of dfTELLY = 0.75 and dfBBALL = 1.0
given by Eq. (2). TELLY consists of 9 nodes (out of which 3 are relatively sparse, and the remaining 6 are
complete) and totals 780 frames at 30 Hz as shown in Table 1. Its average source bitrate is RS,TELLY = 220 Kbps.
BOUNCEBALL only has 1 complete node and 528 frames at 24 Hz, forming 1 layer of source rate RS,BBALL = 61
Kbps average. Both sequences have been coded with I-frames at every 15 frames. We allow roughly 15% of
channel coding redundancy, resulting in total source and channel rates of RTELLY = 253 Kbps and RBBALL = 70.15
Kbps. Choosing n = 32 the parameters we calculated from Eq. (6) for each layer’s packetization are tabulated
in Table 1. The value of n is chosen as a compromise between latency and efficiency, since higher n makes the
RS codes more resilient, by sacrificing delay and buffer space.

Sequence TELLY was split into 3 layers according to the suggested layering method presented in Section 5,
each consisting of the nodes shown in Table 1. Each layer’s fraction of the total number of animated vertices
in the 3-D mesh is (L0, L1, L2) = (0.48, 0.42, 0.10) on average. This splitting is expected to reflect the source
bitrates of each layer proportionally. We noticed that the suggested layering scheme allocated 2 out of 3 sparse
nodes to the same layer, L1. The total number of vertices of these two sparse nodes represents 65% of the vertices
in the reference mesh. The third sparse node, Nostril, was allocated to layer L2, but its individual motion relates
to a very small fraction of the model’s total number of vertices (≈ 1.3%). This fact may bear some significance
if we wish to relate the node-to-layer allocation (using the VS metric) to the density factor dfL, calculated per
layer§ (Eq. 2), and to the output bitrates. We do not have enough model data at the moment to derive any
useful relation. If such relation exists, a dynamic layering scheme may be developed for applications with such
needs.

Sequence BOUNCEBALL initially contains only one node. The sequence represents a soft ball with inherent
symmetry around a center point as its shape implies. The ball also deforms slightly as it bounces. Given the
shape symmetry, we decided to partition the mesh into 2 nodes of equal number of vertices without respect to
the VS metric for each node. The logic behind this partitioning is to attempt to verify the effect the VS metric
has on the proposed UEP resilience scheme. All other source coding parameters are constant between the two
layers, most importantly the quantization step size. It is anticipated that both layers will receive roughly equal
average protection bits, so that UEP performance will approach that of EEP.

Figure 6 (top) depicts visual smoothness, VS, as a function of the average packet loss rate, PB , for TELLY. The
four curves on the plot represent each suggested resilience method, for the code (31, 22). The average calculated
codes for the UEP are as follows (rounded to nearest integer): (n, k̄0) = (31, 19), (n, k̄1) = (31, 23), (n, k̄2) =
(31, 28). It is clear that UEP, and UEP+EC outperform NP and EEP for medium to high loss rates of PB > 9%.
Recall that we performed the layering in such a way that the lowest layer exhibited high average visual distortion.
Since the UEP method allocates higher codes to the lower layer (L0), better resilience is expected for L0 at high
loss rates. This factor dominates in the average distortion, resulting in better performance. At low loss rates we
notice that EEP and UEP behave in approximately the same way, as the RS codes are more than sufficient to
recover all or most errors. We also note that the NP method under conditions of no loss is much better than any
other. This is an intuitive result, since source information takes all available channel rate, thus better encoding
the signal. It is also worth noticing the effect of EC: the distortion of the UEP+EC scheme is slightly improved
over the simple UEP case. This is also expected.

§This calculation is possible if k in Eq. (2) refers only to the nodes allocated to the particular layer.



Table 1. Animation sequence parameters used in the redundancy experiments: TELLY & BOUNCEBALL.

Sequence TELLY

dfTELLY 0.75
Nodes 9
Frame Rate 30 Hz
Source Rate 220 Kbps
Channel Rate 33 Kbps
Frames 780

Layer 0
UpperLip
LowerLip
Tongue

Layer 1
Skin
Teeth

Layer 2

EyeLash
EyeBrow

EyeCorner
Nostril

Sequence BOUNCEBALL

dfBBALL 1.0
Nodes 1
Frame Rate 24 Hz
Source Rate 61 Kbps
Channel Rate 9.15 Kbps
Frames 528

Layer 0 Bball 1st half

Layer 1 Bball 2nd half

TELLY BBALL

L0
SP 264 200
FBOF 16 35

L1
SP 264 200
FBOF 19 35

L2
SP 150

N/A
FBOF 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 6 12 18 24 30

E
rr

or
 (

V
is

ua
l D

is
t.)

PB

TELLY, I/15, LB=4, (n, k)=(31,22)
NEP
EEP
UEP
UEP+EC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 6 12 18 24 30

E
rr

or
 (

V
is

ua
l D

is
t.)

PB

TELLY, I/15, LB=4, (n, k)=(31,27)
NEP
EEP
UEP
UEP+EC

Figure 6. Comparison of Visual Smoothness (VS) between transmitted and decoded frames of 3 layers of the wireframe
animation TELLY. The equivalent EEP RS codes are respectively: top (n, k) = (31, 22), bottom (n, k) = (31, 27). Average
burst length: LB = 4

The results for the (31,27) RS code on sequence TELLY, shown in Figure 6 (bottom), are similar. Here,
the threshold where the UEP methods (with or without EC) take over EEP or NP is around PB = 7%. Note
how the initial NP performance (low PB ’s) is steep compared to the (31, 22), highlighting again the fact that
channel coding bits are actually ‘wasted’ since they do not contribute much resilience in this low loss region,
at the expense of source rate. The corresponding average codes per layer are: (n, k̄0) = (31, 26), (n, k̄1) =
(31, 28), (n, k̄2) = (31, 30). There is a slight improvement again in the UEP method’s performance resulting from
the error concealment’s interpolation algorithm. As this quantity has not been accounted for in the optimization
problem it is expected to contribute a small reduction to the visual error.

Figure 7 shows the results achieved for the same experiment repeated over the BOUNCEBALL sequence, which
was ‘symmetrically’ layered as described earlier in this section. We used the same (31, 22) EEP code as before
for comparison. The graph shows the same trends and relative performances as in TELLY, with UEP+EC being
the one giving the best overall performance. We note, however, that the distance of the UEP curves from the
EEP ones decreased considerably compared to the TELLY sequence at high PB ’s. The average integer calculated
RS codes for the UEP case are: (n, k̄0) = (31, 22), (n, k̄1) = (31, 22), i.e. equivalent to the EEP case. This may
be a surprising result at the first glance, but careful reasoning suggests that equally balanced layers in terms
of the amount of animation they contain (same number of vertices, nodes, very similar motion in the scene,
and same encoding parameters) correspond to visually balanced distortions. This is exactly the result we were
anticipating when we discussed layering for the BOUNCEBALL sequence earlier in this section. In fact, the real
values of k0t, k1t computed as the solution to the optimization problem, vary around the average integer value of
22. Furthermore, recall that we partitioned the original symmetric BOUNCEBALL mesh into two arbitrary nodes



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 6 12 18 24 30

E
rr

or
 (

V
is

ua
l D

is
t.)

PB

BOUNCEBALL, I/15, LB=4, (n, k)=(31,22)
NEP
EEP
UEP
UEP+EC

Figure 7. Comparison of Visual Smoothness (VS) between transmitted and decoded frames of 2 layers of the wireframe
animation BOUNCEBALL. The equivalent EEP RS code is: (n, k) = (31, 22). Average burst length: LB = 4

without consideration to their individual visual distortions, which we assumed to be similar. In fact, the soft
ball’s deformation at the bouncing points reduces the symmetry of the original shape. These facts reasonably
explain why the UEP and EEP curves are not accurately fit at higher PB ’s as one would normally expect.
Finally, we note that the UEP+EC method provides a slight, but hardly noticeable, improvement to the visual
distortion as in the previous experiment.

7. CONCLUSION

In this paper we have addressed the fundamental problem of how best to utilize the available channel capacity
for streaming 3-D wireframe animation in such a way as to achieve optimal subjective resilience to error. In
short, we have linked channel coding, packetization, and layering with a subjective measure that measures visual
smoothness in the reconstructed image. On this basis, we believe that our result may help open the way for 3-D
animation to become a serious networked media type. Our methods attempt to optimize the distribution of the
bit budget allocation reserved for channel coding amongst different layers, using a metric that reflects the human
eye’s visual property of detecting surface smoothness on time-dependent meshes. Using this metric we initially
partition the encoded bitstream into layers of visual importance, and show with experimental results that UEP
combined with EC yields good protection against burst packet errors occurring on the Internet.

ACKNOWLEDGMENTS

The authors wish to thank Adam Greenhalgh for technical support on the experiments and Athanasios Zacharo-
poulos on mathematical modelling.

REFERENCES
1. G. Taubin and J. Rossignac, “Geometric compression through topological surgery,” ACM Transactions on

Graphics 17(2), pp. 84–115, 1998.
2. C. Touma and C. Gotsman, “Triangle Mesh Compression,” Graphics Interface ’98 , pp. 26–34, 1998.
3. H. Hoppe, “Progressive Meshes,” Computer Graphics 30, pp. 99–108, 1996.
4. R. Pajarola and J. Rossignac, “Compressed progressive meshes,” IEEE Transactions on Visualization and

Computer Graphics 6, pp. 79–93, March 2000.
5. G. Al-Regib and Y. Altunbasak, “An unequal error protection method for packet loss resilient 3-D mesh

transmission,” IEEE INFOCOM , 2002.
6. G. Al-Regib and Y. Altunbasak, “A system level framework for streaming 3-D meshes over packet networks,”

in International Conference on Networking ICN2001, LNCS 2094, P.Lorenz, ed., pp. 745–753, Springer-
Verlag, 2001.

7. J. Lengyel, “Compression of time-dependent geometry,” in ACM Symposium on Interactive 3-D graphics,
(Atlanta), August 1999.



8. M. Alexa and W. Müller, “Representing animations by principal components,” EUROGRAPHICS 19(3),
pp. 411–418, 2000.

9. J.-H. Yang, C.-S. Kim, and S.-U. Lee, “Compression of 3D triangle mesh sequences,” in Proc. IEEE Work-
shop on Multimedia Signal Processing (MMSP-01), pp. 181–186, (Cannes, France), IEEE 2001.

10. S. Gupta, K. Sengupta, and A. A. Kassim, “Compression of 3D Dynamic Geometry Data using Iterative
Closest Point Algorithm,” IEEE Computer Vision and Image Understanding 87, September 2002.

11. D. Wu, Y. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video over the Internet: Approaches
and directions,” IEEE Transactions on Circuits and Systems for Video Technology 11, pp. 1–20, Feb. 2001.

12. S. Varakliotis, S. Hailes, and J. Ostermann, “Repair options for 3-D wireframe model animation sequences,”
IEEE International Conference on Multimedia and Expo , August 2002.

13. M. Podolsky, C. Romer, and S. McCanne, “Simulation of FEC-based error control for packet audio on the
internet,” in INFOCOM (2), pp. 505–515, 1998.

14. K. Stuhlmüller, N. Färber, M. Link, and B. Girod, “Analysis of video transmission over lossy channels,”
IEEE Journal on Selected Areas in Communications, Special Issue on Error-Resilient Image and Video
Transmission 18, pp. 1012–1032, June 2000.

15. Q. Zhang, G. Wang, W. Zhu, and Y.-Q. Zhang, “Robust scalable video streaming over Internet with network-
adaptive congestion control and unequal loss protection,” 11th Packet Video Workshop , April 2001.

16. D. W. Redmill and N. G. Kingsbury, “The EREC: An error-resilient technique for coding variable-length
blocks of data,” IEEE Transactions on Image Processing 5, pp. 565–574, April 1996.

17. ISO/IEC JTC1/SC29/WG11, “N4415: Systems AMD 4 PDAM (AFX and Multi User Worlds),” Feb. 2002.
18. E. S. Jang, “3-D Animation Coding: its History and Framework,” IEEE International Conference on

Multimedia and Expo , August 2000.
19. S. Varakliotis, J. Ostermann, and V. Hardman, “Coding of animated 3-D wireframe models for Internet

streaming applications,” IEEE International Conference on Multimedia and Expo , August 2001.
20. A. Moffat, R. Neal, and I. H. Witten, “Arithmetic Coding Revisited,” ACM Transactions on Information

Systems 16, pp. 256–294, July 1998.
21. M. Tekalp and J. Ostermann, “Face and 2D mesh animation in MPEG-4,” Signal Processing: Image Com-

munication 15, pp. 387–421, January 2000.
22. J. Signès, “BIFS: Combining MPEG-4 media to build rich multi-media services,” Signal Processing: Image

Communication 15, January 2000.
23. E. O. Elliott, “A model of the switched telephone network for data communications,” Bell Systems Technical

Journal 44, pp. 89–109, January 1965.
24. D. Clark and D. Tennenhouse, “Architectural considerations for a new generation of network protocols,”

SIGCOMM Symposium on Communications Architectures and Protocols , pp. 200–208, September 1990.
25. U. Horn, K. Stuhlmüller, M. Link, and B. Girod, “Robust Internet Video Transmission Based on Scalable

Coding and Unequal Error Protection,” Signal Processing: Image Communication, Special Issue on Real-
time Video over the Internet 15, pp. 77–94, September 1999.

26. N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors between surfaces using the hausdorff
distance,” IEEE International Conference on Multimedia and Expo , August 2002.

27. J. Choi, Y. Kim, H.-J. Lee, I.-S. Park, M. Lee, and C. Ahn, “Geometry compression of 3-D mesh models
using predictive two-stage quantization,” IEEE Transactions on Circuits and Systems for Video Technology
10, pp. 312–322, March 2000.

28. Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” in Siggraph 2000, Computer Graphics
Proceedings, K. Akeley, ed., pp. 279–286, ACM Press / ACM SIGGRAPH, 2000.


