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ABSTRACT

Line-based camera calibration methods estimate the radial lens
distortion from a single view. They use only the constraint, that
straight lines in the 3D world must project to straight lines in
the image plane, if the distortion is compensated. Therefore nei-
ther calibration pattern nor information about other camera pa-
rameters are necessary. Former approaches are impaired by real
curved lines in the 3D world, that are interpreted as straight lines.
This affects their robustness and reduces the accuracy of the es-
timation. The problem is solved in this paper by a novel efficient
outlier elimination of real curved lines in the 3D world. The
given results show the significant improvement of robustness and
accuracy of the calibration by the applied outlier elimination.

1. INTRODUCTION

Camera calibration is a basic technology for computer vi-
sion tasks. Usually, a mathematical parameter model of a
pinhole camera with perspective projection is used to de-
scribe the mapping between the 3D world and the 2D cam-
era image. Using homogeneous coordinates, the mapping
function of the pinhole camera is a simple linear equation
system. If low-cost or wide-angle lens systems are used,
the linear pinhole camera model fails. In this case the ra-
dial lens distortion is the dominating source of mapping
errors. It is necessary to compensate this distortion by
a non-linear inverse radial distortion function. It corrects
measurements in the 2D camera image to those that would
have been obtained with a linear pinhole camera model.
Most camera calibration methods estimate simultaneously
the inverse radial distortion function and the parameters of
the linear pinhole camera model.
Therefore, classical camera calibration methods use cali-
bration patterns or reference objects with known 3D struc-
ture [1, 2]. Thus, they can solve the calibration problem by
establishing control points of which true coordinates are
known, both in the 2D camera image and the 3D world.
In practice, however, it is often necessary to perform com-
puter vision tasks on images already recorded without any
calibration object.
Auto-calibration methods do not require a calibration ob-
ject but must be applied on multiple views taken by a mov-
ing or rotating camera and not on a single view. Some

of them, which also take radial distortion into account
[3, 4, 5], first estimate the parameters of the linear pin-
hole camera model and then reduce the residual error of
their cost function by applying the inverse radial distor-
tion function.
The estimated inverse radial distortion function depends
on the parameters of the linear pinhole camera model.
Thus, estimation errors of these parameters propagate to
errors in the inverse radial distortion function.

In contrast, line-based approaches like [6, 7, 8, 9] need no
calibration object and can estimate the radial lens distor-
tion separately from the parameters of the linear pinhole
camera model. They obtain the inverse radial distortion
function from just one camera view by using the constraint
that straight lines in the 3D world must always project to
straight lines in the 2D image plane under any perspec-
tive projection. From this constraint it follows that the
observed curvature of projected straight lines are caused
by radial lens distortion. Thus a correct inverse radial dis-
tortion function is found if it maps all curved lines into
straight lines. The only precondition for line-based ap-
proaches is that the 3D scene contains straight 3D lines,
which is valid for most man-made environments.

In this paper a line-based approach to calibrate radial lens
distortion is presented. In contrast to other line-based ap-
proaches a highly efficient outlier elimination of those cur-
ved lines in the 2D image plane is performed, that do not
correspond to straight lines in the 3D scene. By statistical
analysis of the estimation results with and without outlier
elimination, it will be shown, that line-based approaches
must apply an outlier elimination to achieve robustness
and to increase accuracy of the estimation.

The following section contains a short introduction to the
source of radial lens distortion and derives a parameterisa-
tion for the inverse radial distortion function. In Section3
the new line-based calibration method with efficient out-
lier elimination is described. Section4 compares results
with and without outlier elimination. The paper ends with
a conclusion.



2. INVERSE RADIAL DISTORTION FUNCTION

In real camera systems, especially if wide-angle lenses are
used, the assumption of a linear pinhole camera model is
not valid. If a lens and an aperture ring are added to the
mathematical camera model the source of radial lens dis-
tortion can be explained.
Due to the lens, the location of a sharp projection of the
3D scene pointP does not lie in the image plane, but
in a point p located in front of the plane, as shown in
Fig. 1. The corresponding point in the image planepu =
(xu, yu)> is the center of the circle of confusion ofP. For
a sharper projection, the circle of confusion is reduced by
a smaller lens aperture. As illustrated in Fig.1 the smaller
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Figure 1:Source of radial lens distortion.

aperture causes not only a smaller circle of confusion but
also moves the center of the circle from the undistorted
point pu to the distorted pointpd = (xd, yd)>. If the
aperture ring is in front of the lens, as shown in Fig.1, the
result is a barrel distortion. An aperture ring behind the
lens causes a pincushion distortion. Both kinds of radial
lens distortion are illustrated in Fig.2.
The inverse radial distortion function is the mapping from
the distorted pointpd to the undistorted pointpu. It can
be concluded from the location of the point of sharp pro-
jection p that the radial distortion increases with the ra-
dius r. Thus, the inverse radial distortion functionf(rd)
can be approximated and parameterised by the following
Taylor expansion:

ru = f(rd) = rd + rd

∞∑
i=0

κir
i−1
d (1)

with

ru =
√

x2
u + y2

u and rd =
√

x2
d + y2

d

it follows that

xu = xd + xd

∞∑
i=0

κir
i−1
d (2)

yu = yd + yd

∞∑
i=0

κir
i−1
d (3)

Practical tests have shown, that it is sufficient to take only
the parametersκ3 andκ5 into account. Using more pa-
rameters brings no major improvement to the approxima-
tion of f(rd) for images in video resolution. In addition
an estimation of less parameters is more robust. Thus, we
simplify Eq. (2) and Eq. (3) to:

xu = xd + xd(κ3r
2
d + κ5r

4
d) (4)

yu = yd + yd(κ3r
2
d + κ5r

4
d). (5)

The parameterκ3 has the dominant influence on the kind
of radial lens distortion. Ifκ3 > 0, a barrel distortion
and if κ3 < 0, a pincushion distortion is compensated by
f(rd) (see Fig.2).
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Figure 2:Barrel and pincushion distortion.

3. CALIBRATION OF LENS DISTORTION

The calibration process can be divided into four steps:

• Detection of points on curved line segments

• Linkage of curved line segments

• Outlier elimination

• Final parameter estimation of the inverse radial dis-
tortion function

3.1. Detection of points on curved line segments

The presented calibration method relies on the constraint,
that straight lines in the 3D world must always project to
straight lines in the 2D image plane, if the radial lens dis-
tortion is compensated. Thus, with radial lens distortion a
pointP on a straight lines in the 3D world is projected to
a distorted pointpd on a curved line. Therefore we search
for an inverse radial distortion functionf(rd), that maps



all pointspd on curved lines into pointspu on straight
lines. So in a first step the pointspd on curved lines are
detected.
Pointspd on curved lines can be found with a straight line
detector, which seems contradictory at first sight. But by
increasing the tolerance region of the straight line detector,
segments of curved lines are detected as straight lines, as
shown in Fig.3.
The straight line detector is not described here because
such algorithms can be taken from literature, provided that
the coordinates of the pointspd on the curved line seg-
ments are detected with subpixel accuracy.

pointspd on curved line

tolerance region

detected straight line

Figure 3:Detection of pointspd on curved line segments
with a straight line detector.

3.2. Linkage of curved line segments

The inverse radial distortion functionf(rd) will be esti-
mated from only one line in the outlier elimination step
utilizing the difference between a straight line and a curved
line. If the curved line is short, this difference is small (see
left line in Fig. 3), and the estimation is very sensitive to
noise. Thus, using long lines increase the robustness of
the estimation.
To provide long curved lines, the detected straight line
segments from the previous step must be linked. It is as-
sumed that two line segments belong together, if they have
nearly the same direction and their endpoints are suffi-
ciently close together. The link algorithm searches within
a radiusR around each endpoint for endpoints of other
lines. Consequently, in the example given in Fig.4, the
endpoints of line 2 and 3 are valid candidates because their
distanceρ to the endpoint of line 1 is smaller thanR. Then
the algorithm checks if the lines run in the same direction
by checking if the absolute value of the angleα is smaller
than a certain threshold.
To suppress the linkage of parallel lines, a last check is
performed, which demands that the endpoint of the linked
line has a perpendicular distanced to the other line smaller
than the thresholdD. Therefore, the endpoint of a linked
line can only be located in the gray area marked in Fig.4.

Finally, all short lines and all lines in radial direction are
removed, because they contain no reliable information about
the radial lens distortion. The result is a set ofM long
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Figure 4: Linkage of straight lines, which represent seg-
ments of curved lines. The connection of line 2 and line 1
is valid. The endpoint of line 3 is not located in the gray
area and therefore line 3 is not linked.

curved linesLm with m = 1, . . . ,M , where every line
consists ofNm distorted pointspd,n with n = 1, . . . , Nm.

3.3. Outlier elimination

In order to establish a robust estimation only straight lines
in the 3D world should be used for estimation of the in-
verse radial distortion functionf(rd). So curved lines in
the 3D world must be detected and eliminated from the set
of long curved lines.
The outlier elimination applies the Random Sample Con-
sensus (RANSAC) technique [10]. RANSAC is an ap-
proved technique for outlier elimination and is used for
many applications in the field of computer vision. The ad-
vantage of this technique is, that it can cope with larger
numbers of outliers compared to other techniques.
The application of the RANSAC starts with the random
selection of one long curved lineLm out of the set. The
inverse radial distortion functionf(rd) is estimated from
this curved line. Therefore, in the following a cost func-
tion for the estimation of the parametersκ3 andκ5 of the
inverse radial distortion function from one long curved
line is derived.

With Eq. (4) and Eq. (5) all Nm distorted pointspd,n =
(xd,n, yd,n)> of the selected long curved line are mapped
to the undistorted pointspu,n = (xu,n, yu,n)> by

xu,n = xd,n + xd,n(κ3r
2
d,n + κ5r

4
d,n) (6)

yu,n = yd,n + yd,n(κ3r
2
d,n + κ5r

4
d,n) (7)

All Nm undistorted pointspu,n should now lie on a straight
line. Thus, an associated straight lineΛm throughpu,n is
estimated using linear regression. IfΛm is represented in
Hesse’s normal form, it has three unknownsnx, ny and
d0:

Λm :
(

nx

ny

)>(
x
y

)
− d0 = 0 (8)



To determine these unknowns with linear regression, the
following expressions are calculated:

Ex = 1
Nm

Nm∑
n=1

xu,n Ey = 1
Nm

Nm∑
n=1

yu,n

Exx = 1
Nm

Nm∑
n=1

(xu,n)2 Eyy = 1
Nm

Nm∑
n=1

(yu,n)2

Exy = 1
Nm

Nm∑
n=1

xu,n yu,n

Two cases have to be distinguish:
If Exx − (Ex)2 ≥ Eyy − (Ey)2, the associated straight
line Λm is parameterized as

Λm : y = ax + b (9)

with

a =
Exy − ExEy

Exx − (Ex)2
b =

ExxEy − ExExy

Exx − (Ex)2
(10)

the three unknowns follows as

nx = −a√
a2+1

ny = 1√
a2+1

d0 = b√
a2+1

(11)

It is not possible to describe a straight line parallel to the
y-axes with Eq. (9). Thus in the second case, ifExx −
(Ex)2 < Eyy − (Ey)2, the parameterization of the asso-
ciated straight lineΛm changes to:

Λm : x = cy + d (12)

with

c =
Exy − ExEy

Eyy − (Ey)2
d =

EyyEx − EyExy

Eyy − (Ey)2
(13)

In this case the three unknowns of Eq. (8) are

nx = 1√
c2+1

ny = −c√
c2+1

d0 = d√
c2+1

(14)

Now an associated straight lineΛm is found, which is a
function ofκ3, κ5 and the pointspd,n. If a correct solution
for κ3 andκ5 is found, allNm undistorted pointspu,n

should lie on that straight line (see Fig.5) and therefore
fulfill Eq. (8).
Thus, a cost function with the residual errorsεn of Eq. (8)
is formulated as:

εn =
(

nx

ny

)>(
xu,n

yu,n

)
− d0 (15)

Nm∑
n=1

(εn)2 −→ min (16)

This cost function is a non-linear function ofκ3, κ5 and
the pointspd,n of one long curved lineLm. To estimate
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Figure 5: Points pd on a curved line are mapped on
pointspu on the associated straight lineΛm, which is a
function ofκ3, κ5 and the pointspd.

κ3 andκ5, the sum of squares is minimized using the iter-
ative Levenberg-Marquardt method [11]. Because nothing
is known about the sign of the parameters, the initial val-
ues ofκ3 andκ5 are set to zero.

The RANSAC method estimates the actual parametersκ3

and κ5 from a randomly chosen curved lineLm out of
the set. Then it tries to compensate the radial distortion
with these actual parameters and evaluates the percentage
of outliers. A lineLm is considered as outlier, if more
than a certain percentage of its undistorted pointspu,n

have an absolute deviation larger thatδmax from its as-
sociated straight line. The absolute deviation can be cal-
culated with Eq. (15) using the actual parametersκ3 and
κ5. If the actual parameters generate to many outliers, a
new curved lineLm is randomly chosen until a satisfying
solution for the parametersκ3 andκ5 is found. The curved
lines, which support the satisfying solution, are called in-
liers. Only theI long curved linesLi with i = 1, . . . , I,
which are detected as inliers, are applied to estimate the
final parameters as described in the following processing
step.

3.4. Final parameter estimation

The final parameter estimation of the inverse radial distor-
tion functionf(rd) minimizes the cost function

I∑
i=1

Nm∑
n=1

(εn)2 −→ min (17)

This cost function is a non-linear function ofκ3, κ5 and
the pointspd,n of all long curved inlier linesLi. Again,
the cost function is minimized with the Levenberg-Mar-
quardt method. As initial values forκ3 andκ5 the best
parameter set from the outlier elimination is used.



4. RESULTS

4.1. Synthetic images

The improvement of robustness and accuracy is tested on
synthetic images by applying an efficient outlier elimina-
tion before the final parameter estimation.
An example for a synthetic image is given in Fig.10.
It contains straight lines as well as curved lines in the
3D world. For this image the ground truth parameters
of the inverse radial distortion function areκ3 = 1.0 ·
10−4mm−2 andκ5 = 0.0 mm−4. In the synthetic image,
64 long curved linesLm are detected. The outlier elim-
ination step detects 21 long curved outlier lines and thus
43 inlier linesLi are used for final parameter estimation,
which gives a result ofκ3 = 0.9968 · 10−4 mm−2 and
κ5 = 5.316 ·10−10 mm−4. The estimation error results in
a maximum deviation of∆r = 0.9381 pixel at the corners
of the image. Fig.11 shows the undistorted image after
application of the estimated inverse radial lens distortion
function. Inlier linesLi are marked green and outlier lines
are red.
Fig. 6 and Fig.7 compare the accuracy of the estimation
result without and with outlier elimination. For simplicity
only the parameterκ3 is taken into account. In this experi-
ment the parameterκ3 is estimated only from a single line.
Fig.6 shows the result of the estimation ofκ3 without out-
lier elimination, where the relative frequency overκ3 for
64 long curved linesLm is plotted. It is obvious, that
these 64 lines contain outliers, because the relative fre-
quency ofκ3 is distributed over a wide range, which can
not be explained with noisy measurement of the distorted
pointspd. Consequently, the final parameter estimation
without outlier elimination gives a worse result ofκ3 =
0.8732 · 10−4 mm−2 andκ5 = 4.234 · 10−10 mm−4. The
higher estimation error without outlier elimination results
in a higher maximum deviation of∆r = −12.135 pixel at
the corners of the image.
In contrast, if outlier elimination is applied, the estimation
result is remarkable better. In Fig.7 the parameterκ3 is
estimated separately from each of the 43 long curved lines
Li, which are detected as inliers. The relative frequency
of κ3 is distributed over a smaller range around the true
value forκ3. Thus, it is shown that the outlier elimination
leads to the improvement of the estimation accuracy in
this example.
The next experiment evaluates the improvement of robust-
ness. The presented method is applied on 100 images out
of a synthetic image sequence showing different areas of
a 3D scene. Again the ground truth parameters of the in-
verse radial distortion function isκ3 = 1.0 · 10−4mm−2.
Fig. 8 and Fig.9 show the relative frequency of the pa-
rameterκ3 after final parameter estimation. Robustness
of the algorithm with and without outlier elimination is
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Figure 6: Relative frequency of the parameterκ3 using
single linesLm for estimation. Outliers and inliers are
evaluated.
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Figure 7: Relative frequency of the parameterκ3 using
single linesLi for estimation. Only inliers are evaluated.

measured by the percentage of performed estimations of
κ3 with an estimation error, that results in a deviation of
less than one pixel in the distortion compensated images.
Because the deviation of image points caused by an estma-
tion error increases with the image radiusr, the deviation
is evaluated for image points, that are located at the half
of the maximum radius.
If an outlier elimination is applied the robustness is 94% in
contrast to 33% without outlier elimination. Because both
algorithms are applied on the same noisy measurement of
the distorted pointspd, it can be concluded, that the out-
lier elimination increases the robustness significantly and
therefore it is a necessary step for line-based calibration
methods.

4.2. Natural images

Natural images are used to compare the presented line-
based approach with Tsai’s calibration method [1], which
uses a calibration pattern. In Fig.12 the original distorted
image is shown. In Fig.13and Fig.14 the result of Tsai’s
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Figure 8:Relative frequency of the parameterκ3 applying
final parameter estimation on 100 images without outlier
elimination.
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Figure 9: Improved robustness: Relative frequency of the
parameterκ3 applying final parameter estimation on 100
images with outlier elimination step.

calibration method and the result of the line-based ap-
proach are opposed. By inspection of the straight lines
there is no quality difference visible. Other examples of
tested natural images are given in Fig.15 and Fig.17,
which are two images out of a sequence taken with a low-
cost internet camera, which produces large lens distortion
and blur. Fig.16 and Fig.18 show the undistorted im-
ages.

5. CONCLUSIONS

Automatic line-based calibration methods are especially
suitable for images taken in man-made environments, be-
cause here the precondition of straight lines in the 3D
world is valid. In these cases the method is comfortable to
use, because it does not require any calibration pattern.
In contrast to other approaches the described method uses
a novel efficient outlier elimination step, which removes
curved lines in the 3D world. The experimental results

have shown that the outlier elimination step increases ro-
bustness and accuracy significantly.
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Figure 10:Original synthetic image with ground truth in-
verse radial distortion function.

Figure 11:Undistorted synthetic image with outlier elim-
ination (green = inlier, red = oultier).

Figure 12: Original image used for comparison with
Tsai’s camera calibration method.

Figure 13: Undistorted image using Tsai’s camera cali-
bration method, which uses the calibration pattern.

Figure 14: Undistorted image using the presented line-
based calibration method. The calibration pattern is not
used.



Figure 15:Original natural image, showing a building of
the University of Hannover.

Figure 16: Undistorted natural image (green = inlier,
red = oultier).

Figure 17:Original natural image, showing the garden in
front of the building.

Figure 18: Undistorted natural image (green = inlier,
red = oultier).
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