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ABSTRACT

The increasing amount of remotely sensed imagery from multiple platforms requires efficient analysis techniques. The leading idea of the

presented work is to automate the interpretation of multisensor and multitemporal remote sensing images by the use of common prior
knowledge about landscape scenes. The presented system is able to use specific map knowledge of a geoinformation system (GIS),

information about sensor projections and temporal changes of scene objects. The prior knowledge is represented explicitly by a semantic

net. A common concept has been developed to distinguish within the knowledge base between the semantics of objects and their visual
appearance in the different sensors considering the physical principle of the sensor and the material and surface properties of the objects.

In this presentation, the basic structure of the system and its use for sensor fusion on different structural and functional levels is presented.
Results are shown for the extraction of roads from multisensor images. The approach for the analysis of multitemporal images is

illustrated for the interpretation of an industrial fairground.

KURZFASSUNG

Um die immer größer werdende Menge an Fernerkundungsbildern bearbeiten zu können, werden in zunehmendem Maße effiziente Aus-

werteverfahren benötigt. Die Kernidee der vorliegenden Arbeit ist es, die Interpretation von multisensoriellen und multitemporalen Luft-

bildern durch die Nutzung von Vorwissen über die Landschaftsobjekte zu automatisieren. Das vorgestellte System ist in der Lage, spezifi-
sches Kartenwissen eines Geoinformationssystems, Informationen über Sensorabbildungen und über zeitliche Veränderungen der

Szenenobjekte für die Auswertung zu nutzen. Das Vorwissen wird explizit in einem semantischen Netz abgelegt. Es wurde ein allgemei-
nes Konzept entwickelt, um innerhalb der Wissensbasis zwischen Objektsemantik und visueller Abbildung in den verschiedenen Senso-

ren zu unterscheiden, wobei sowohl das physikalische Prinzip des Sensors als auch die Material– und Oberflächeneigenschaften der Ob-
jekte berücksichtigt werden. In diesem Beitrag werden die Grundstruktur des Systems und dessen Nutzung für die Sensorfusion auf

verschiedenen strukturellen und funktionalen Ebenen erläutert. Beispielhaft werden Ergebnisse für Extraktion von Straßen aus multisen-
soriellen Bildern präsentiert. Weiterhin wird ein Ansatz für die Analyse von multitemporalen Bildern vorgestellt und am Beispiel der

Interpretation eines Messegeländes illustriert.

1. INTRODUCTION

The automatic extraction of objects from aerial images for map

updating and environmental monitoring represents a major topic
of remote sensing. However, the results of low–level image

processing algorithms like edge detectors are in general
incomplete, fragmented, and erroneous. To overcome these

problems, a scene interpretation is performed which assigns an
object semantic to the features segmented in the remote sensing

image. Prior knowledge about the objects should be used to

constrain the object parameters and to reduce the uncertainty of
the interpretation. To increase or decrease the reliability of

competing interpretations, structural relationships of the objects
could be exploited.

A partial interpretation already exists for most landscapes: the

map corresponding to the observed scene. Due to the growing
availability of geographic information systems (GIS), the map

data can be accessed by computers directly and is therefore

usable for the automatic interpretation of aerial images.

For remote sensing, different sensors such as optical, thermal,

and radar (SAR) have been developed which collect different
image data of the observed scene. The wish to extract more

information from the data than it is possible using a single sensor

system alone raises the question of sensor fusion. Several
parameters influence the data fusion: the different platform

locations, the different spectral bands (optical, thermal, or
microwave), the sensing geometry (e.g. perspective projection or

SAR geometry), the spatial resolution, and the season at image
acquisition. State–of–the–art–systems must be able to combine

information from different sensors.

Especially for environmental monitoring, it is necessary to

investigate images from different acquisition times to study the
development of the observation area. The quality of a scene
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interpretation can be increased by using the information from

preceding images. Hence, it becomes possible to distinguish for

example between the construction and the dismantling of
buildings or between the regeneration and degeneration of

moorland areas [Pakzad, 1999]. To realize such a multitemporal
analysis, an interpretation system must be able to administrate

images from  different time instances and to represent and exploit
information about possible or at least probable temporal changes.

The leading idea of this work is to automate the evaluation of

aerial images of complex scenes using prior knowledge about the
object structure, GIS, sensor type, and temporal changes. To ease

the adaptation of the analysis system to new requirements and the
extension to future tasks, the knowledge is represented explicitly

and is separated from system control. Such a so–called
knowledge based approach constitutes the focal point of this

work.

In the literature various approaches to image interpretation and
sensor fusion have been presented. Only a few authors try to

formalize the representation of the objects and sensors, and the
control of the information integration. Most interpretation

systems like SPAM (McKeown, 1985) and SIGMA (Matsuyama,
1990) use a hierarchic control and construct the objects

incrementally using multiple levels of detail. The system

MESSIE (Clement, 1993) models the objects explicitly

distinguishing four views: geometry, radiometry, spatial context,
and functionality. It employs frames and production rules. In the

BPI system (Stilla, 1997) a net of production rules representing a

part–of–hierarchy describes the structural prior knowledge. A
blackboard realized by an associative memory is used for process

communication. Another blackboard–based architecture is
suggested by Mees (1998). He distinguishes between strategy

knowledge represented by an AND/OR–tree, global knowledge
described by sensor–independent fuzzy production rules, and

sensor–dependent local knowledge stored in attributed
prototypes and image processing operators called local detectors.

ERNEST (Kummert, 1993) uses semantic nets to exploit the

object structure for interpretation. The MOSES system extends
the ERNEST approach to extract man–made objects from aerial

images (Quint, 1997). The presented system AIDA (Liedtke,
1997) adopts the idea to formulate prior knowledge about the

scene objects with semantic nets. In addition, the control
knowledge is represented explicitly by rules which are selected

by an inference engine.

In the following, the system architecture of AIDA is described
and a common concept is presented to distinguish between the

semantics of objects and their visual appearance in the different
sensors considering the physical principle of the sensor and the

material and surface properties of the objects. The necessary
extensions to provide a multitemporal image analysis are

described and illustrated in chapter 5.

2. KNOWLEDGE BASED INTERPRETATION SYSTEM

For the automatic interpretation of remote sensing images, the

knowledge based system AIDA (Liedtke, 1997; Tönjes, 1999)
has been developed. The prior knowledge about the objects to be

extracted is represented explicitly in a knowledge base.
Additional domain specific knowledge like GIS data can be used

to strengthen the interpretation process. From the prior
knowledge, hypotheses about the appearance of the scene objects

are generated which are verified in the sensor data. An image

processing module extracts features that meet the constraints
given by the expectations. It returns the found primitives  – like

line segments – to the interpretation module which assigns a
semantic meaning to them, e.g. road or river. The system finally

generates a symbolic description of the observed scene. In the
following, the knowledge representation and the control scheme

of AIDA is described.

2.1. Knowledge Representation

The knowledge representation is based on semantic nets.
Semantic nets are directed acyclic graphs and they consist of

nodes and edges in between. The nodes represent the objects
expected in the scene, while the edges or links of the semantic net

form the relations between these objects. Attributes define the
properties of nodes and edges.

The nodes of the semantic net model the objects of the scene and
their representation in the image. Two classes of nodes are

distinguished: the concepts are generic models of the object and
the instances are realizations of their corresponding concepts in

the observed scene. Thus, the knowledge base which is defined
prior to the image analysis is built out of concepts. During

interpretation a symbolic scene description is generated
consisting of instances.

The object properties are described by attributes attached to the
nodes. They have a value measured in the data and a range

describing the expected attribute value. During instantiation the
attribute range of the instance is taken from the corresponding

concept and – if possible – is restricted further by the information
of instantiated parent nodes. For example, an already detected

street segment can constrain the position of the adjacent segment.

For both attribute value and attribute range a computation
method can be defined. A judgement function computes the

compatibility of the measured value with the expected range.

The relations between the objects are described by edges or links

forming the semantic net. The specialization of objects is

described by the is–a relation introducing the concept of

inheritance. Along the is–a link, all attributes, edges and
functions are inherited to the more special node which can be

overwritten locally. Objects are composed of parts represented
by the part–of link. Thus, the detection of an object can be

reduced to the detection of its parts. The transformation of an
abstract description into its more concrete representation in the

data is modelled by the concrete–of relation, abbreviated con–of.
This relation allows to structure the knowledge in different

conceptual layers like for example a scene layer and a sensor
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layer. Topological relations provide information about the kind

and the properties of neighboured objects. Therefore, the class of

attributed relations (attr–rel) is introduced. In contrast to other
relations, this one has attributes which can be used to constrain

the properties of the connected nodes. For example, a topological
relation close–to can be generated which restricts the position of

an object to its immediate neighbourhood. The initial concepts
which can be extracted directly from the data are connected via

the data–of link to the primitives segmented by image processing
algorithms.

For the efficient representation of multiple relations, the

minimum and maximum number of edges can be defined in the
knowledge base. The minimum quantity describes the number of

obligatory relations and the difference to the maximum quantity
represents the number of optional relations between objects. In

this way, it can be easily modelled that for example a crossroad
consists of three up to five intersecting roads. Additionally, for

each edge a priority can be defined in order to realize an ordered

evaluation of the relations. Edges with high priority are
instantiated first. For the application of landscape analysis for

example, it can be guaranteed that the streets are extracted prior
to the rivers.

Some relations appear exclusively in certain domains. For

example roads have always a lane but they have pavements in
urban areas only. This fact is taken into consideration by a

domain dependent relation in the generic model. Fig. 1 shows a
simple semantic net for a generic model of a Road Net which is

defined as a composition of at least one Road, illustrated by the
set [1, ∞]. A Road consists of one or two lanes. Its specialization

Major Road inherits the properties of Road and possesses an
additional Crash Barrier. For the part–of relation between

pavement and road the domain Urban Scene is defined. Only in
urban scenes this relation is valid and the system searches for

pavements. All the initial objects Crash Barrier, Lane, and

Pavement are represented by a Stripe–Form in the image.

Road Net

Urban SceneRoad

Lane Pavement

part–of [1, ∞]

part–of  [1, 2]

is–a

part–of [2, 2]
[Urban Scene]

Major Road

Crash Barrier

Stripe–Form

is–a

part–of

data–of data–ofdata–of

Figure 1. Example for a semantic net: The scene contains at least one

Road. The Pavement is defined for the domain Urban

Scene. The more special concept Major Road inherits the

properties of Road. All objects are represented by a
Stripe–Form in the image.

2.2. Control of the Scene Analysis

To make use of the knowledge represented in the semantic net

control knowledge is required that states how and in which order
scene analysis has to proceed. The control knowledge is

represented explicitly by a set of rules. The rule for instantiation
for example changes the state of an instance from hypothesis to

complete instance, if all subnodes, which are defined as
obligatory in the concept net, have been instantiated completely.

If an obligatory subnode could not be detected, the parent node

becomes a missing instance.

An inference engine determines the sequence of rule execution
according to a given strategy. A strategy contains a set of rules out

of the rule base. For each valid rule, a priority is defined to
determine in which order the rules are tested. The first matching

rule is fired. The user can modify the interpretation strategy by

changing the priorities and by removing or inserting rules to the
current strategy. The default strategy prefers a model–driven

interpretation with a data–driven verification of hypotheses.
Topological relations are instantiated as soon as possible to

realize a spatial reasoning.

Whenever ambiguous interpretations occur, for example if more

than one suitable image primitive is found for a hypothesis,  they
are treated as competing alternatives and stored in the leaf nodes

of a search tree. Each alternative is judged by comparing the
measured object properties with the expected ones. The

judgement calculus models imprecision by fuzzy sets and
considers uncertainties by distinguishing the degrees of

necessity and possibility (Dubois, 1988; Tönjes, 1999). The
judgements of attributes and nodes are fused to a judgement of

the whole interpretation. The best judged alternative is selected
for further investigation.

Starting at the root node of the concept net, the system generates
model–driven hypotheses for scene objects and verifies them

consecutively in the data. Expectations about scene objects are
translated into expected properties of the corresponding image

primitives to be extracted from the sensor data. Suitable image
processing algorithms are activated and the semantic net assigns

a semantic meaning to the returned primitives in a data–driven

way. Interpretation stops, if a given goal concept is instantiated
completely or no further rule of the current strategy can be fired.

3. KNOWLEDGE BASE FOR THE INTERPRETATION
OF REMOTE SENSING IMAGERY

For object extraction, only those features are relevant that can be
observed by the sensor and that give a hint for the presence of the

object to be extracted. Hence, the knowledge base contains only

the necessary and visible object classes and properties. The
network language described in chapter 2.1. is used to represent

the prior knowledge by a semantic net. In Figure 2  a generic
model for the interpretation of remote sensing images is shown. It

is divided into the 3D scene domain and the 2D image domain.
The 3D scene domain splits into the semantic layer and the

physical layer. If a geoinformation system (GIS) is available and
applicable, an additional GIS layer can be defined representing
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Data Layer

part–of con–of data–of

Figure 2. Semantic net representing a generic model of a purification plant and its relation to the image data.
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the scene specific knowledge from the GIS. The 2D image

domain contains the sensor layers adapted to the current sensors

and the data layer.

For the objects of the 2D image domain, general knowledge

about the sensors and methods for the extraction and grouping of
image primitives like lines and regions is needed. The primitives

are extracted by image processing algorithms and they are stored
in the semantic net as instances of the concepts Line Data or

Region Data respectively. Due to fragmentation, the lines and
regions have to be grouped according to perceptual criteria like

continuity, nearness, similarity etc. A continuous Stripe for

example is represented in the semantic net by a composition of
neighbouring SubStripes. The sensor layer can be adapted to the

current sensor type like SAR, IR or optical sensor. For a
multisensor analysis, the layer is duplicated for each new sensor

type to be interpreted, assuming that each object can be observed
in all the images (see Fig. 2). All information of the 2D image

domain is given related to the image coordinate system. As each
transformation between image and scene domain is determined

by the sensor type and its projection parameters, the
transformations are modelled explicitly in the semantic net by the

concept Sensor and its specializations for the different sensor

types.

The knowledge about inherent and sensor independent

properties of objects are represented in the 3D scene domain

which is subdivided into the physical, the GIS and the semantic

layer. The physical layer contains the geometric and radiometric

properties as basis for the sensor specific projection. Hence, it
forms the interface to the sensor layer(s). The semantic layer

represents the most abstract layer where the scene objects with
their symbolic meanings are stored.

The semantic net eases the formulation of hierarchical and
topological relations between objects. Thus, it is possible to

describe complex objects like a purification plant as a
composition of sedimentation tanks and buildings close to a road

and a river, where the cleaned water is drained off (see Fig. 2).

The symbolic objects are specified more concretely by their
geometry and material. In conjunction with the known sensor

type, the geometrical and radiometrical appearance of the objects
in the image can be predicted. This prediction can be improved, if

GIS data of the observation area is available. Though the GIS
may be out of date, it represents a partial interpretation of the

scene providing semantic information. Hence, the GIS objects
are connected directly with the objects of the semantic layer.

4. INTERPRETATION OF MULTISENSOR IMAGES

The automatic analysis of multisensor images requires the fusion

of sensor data. The presented concept, to separate strictly the
sensor–independent knowledge of the 3D scene domain from the

sensor–dependent knowledge in the 2D image domain, eases the
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a b c

Figure 3. Sensor Fusion demonstrated on the aerial view of a purification plant: Rejected (thin lines) and accepted (wide lines) road features

from (a) optical and (b) infrared image with (c) fusion result.

integration and simultaneous interpretation of images from

multiple sensors. New sensor types can be introduced by simply

defining another specialization of the Sensor node with the
corresponding geometrical and radiometrical transformations.

According to the images to be interpreted, the different sensor
layers (SAR, IR, optical) are activated.

For the application of road extraction, the advantages of a
multisensor image analysis are illustrated in Fig. 3. Using only

the aerial image (a) or the infrared image (b) yields  fragmented

results. If both images are analyzed simultaneously, the gaps can
be closed. In those areas where both images provide a hint for a

road segment the reliability of the interpretation is increased. In
other areas, the information from the images complement each

other. Other examples for the fusion of multisensor images are
given in (Tönjes, 1998).

5. INTERPRETATION OF MULTITEMPORAL IMAGES

Currently, the system is being extended for the interpretation of

multitemporal images. Applications like change detection and
environmental monitoring require the analysis of images from

different acquisition times. By comparing the current image with
the latest interpretation derived from the preceding image, land

use changes and new constructions can be detected. In the
following, the necessary extensions to a multitemporal analysis

with the system AIDA are described. Preliminary results are
shown for the extraction of an industrial fairground.

5.1. Extension of the Knowledge Based System

The easiest way to generate a prediction for the current image
from an existing scene interpretation is to assume that nothing

has changed during the elapsed time. The latest scene
interpretation represented in an instantiated semantic net is

therefore regarded as a kind of GIS and it is used to guide the
analysis of the current image. The objects found in the last image

are verified in the current one but changes are difficult to detect

and to explain. However, in many cases humans have knowledge
about possible or at least probable temporal changes. Hence, the

knowledge about possible state transitions between two time

steps should be exploited in order to increase the reliability of the

scene interpretation.

Temporal changes can be formulated in a so called state

transition graph where the nodes represent the temporal states

and the edges model the state transitions. To integrate the
transition graph in a semantic net the states are represented by

concept nodes which are connected by a new relation: the
temporal relation (see Fig. 4). For each temporal relation a

priority can be defined in order to sort the possible successor
states by decreasing probability. As states can either be stable or

transient, the corresponding state transitions differ in their

transition time which can be also specified in the temporal
relation. As normally no knowledge about the temporal changes

of geometrical objects or materials is available, the state
transition diagram is part of the semantic layer (compare Fig. 2).

In contrast to hierarchical relations like part–of or con–of, the
start and end node of temporal relations may be identical –

forming a loop – to represent that the state stays unchanged over
time. Figure 4 shows a simple example of a state transition graph

consisting of three states. For the different transitions priorities
and transition times are defined.

To exploit the temporal knowledge, a time stamp is attached to
each instance of the semantic net which documents the time of its

instantiation. Thus, it will be possible to filter time slices out of
the semantic net. The possible time stamps are given by the

Figure 4. State transition graph represented by concepts of a

semantic net. To each temporal relation a priority and a

transition time can be assigned.

A
temp–rel

part–of

C DB
Priority 2 / 3 days

Priority 1 /
2 days

8 days

Priority 1
Priority 2 / 10 days

con–of
Semantic
Layer
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acquisition times of images to be interpreted. Images acquired

simultaneously – eventually from different sensors – are

collected in a sensor group. All sensor groups are sorted in their
chronological order to ease the proper administration of the

image sequence.

During the interpretation process, the state transition diagram is

used by a new inference rule. Analysis starts with the first image
of the given sequence marked with time stamp t1. If a state of the

state transition diagram can be instantiated completely, the
temporal knowledge is used to hypothesize one or more possible

successors of this state for the next image in the chronological

order (time stamp t2). The system selects all successor states that
can be reached within the elapsed time t2–t1 according to the

transition times defined in the temporal relations. States which
are selected many times, due to loops in the transition diagram,

are eliminated. The possible successor states are sorted by
decreasing priority so that the most probable state is investigated

first. All hypotheses are treated as competing alternatives
represented in separate leaf nodes of the search tree (see chapter

2.2.). Starting with the alternative of the highest priority, the
hypotheses for the successor state are either verified or rejected in

the current image. For continuous monitoring, the time stamps of

the instances can be used to remove the old nodes of t1.

In the example of Fig. 5, a successor state for the complete

instance of B(t1) is determined which can be reached within a
time step of 14 days. According to the knowledge base of Fig. 4,

the states B, C, and D are possible. The successor B can be
reached either via the loop B–B or via the path B–C–B, but

identical solutions are considered only once. The node C  is

Figure 5. Search tree of the interpretation process according to the

knowledge base in Fig. 4: Assuming a time step of 14 days

the possible successor states of B are B, C, or D. Hence, the

search tree splits into three leaf nodes N2(t2) to N4(t2).
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reached via the transition B–C and the successor D by following

the path B–C–D omitting the intermediate state C. All three

possibilities are treated as competing alternatives and the search
tree splits into three leaf nodes. The system prefers the best

judged node according to the possibilistic approach mentioned in
chapter 2.2. If the judgements are similar the alternative of the

highest transition priority is chosen.

5.2. Extraction of an Industrial Fairground

An industrial fairground is an example for a complex structure
detectable by a multitemporal image interpretation only. Using a

single image it would be classified as an industrial area consisting
of a number of halls. The special use of this industrial area can not

be detected from one time instance alone. However, during
several weeks of the year some unnormal activity can be

observed: exhibition booths are constructed, crowds of people
visit the site, and the booths are dismantled again. In aerial

images the different phases can be recognized by full or empty
parking lots, or vehicles or people on the fairground respectively.

This knowledge can be exploited for the automatic extraction of a

fairground and formulated in a semantic net for a multitemporal
image analysis (see Fig. 6). The different states of a fairground

are represented by the concepts Fair Idle, Fair Construction,

Fair Active, and Fair Dismantling. The construction, active and

dismantling phase are transient compared to the state Fair Idle.
Therefore, transition times of four to eight days are defined for

the corresponding temporal relations. Additionally, the node
Fair Idle is looped back to itself.

The analysis starts with the first image of the sequence looking
for an Industrial Area. In the given example, the system searches

for at least three halls and one parking lot. These objects are
represented in the image by regions of special  geometric and

radiometric properties. Halls for example are in most cases
right-angled polygons. To verify the hypotheses suitable image

processing algorithms are activated. Segmented regions that
meet best the expectations are chosen, others are rejected. If the

Industrial Area can be instantiated completely, the system tries to
refine the interpretation by exchanging the Industrial Area by a

more special concept. There are four possible specializations

(Fair Idle to Fair Dismantling) and the search tree splits into four
leaf nodes. Each hypothesis is tested in the image data. Normally

any cars are prohibited on the fairground. But during the
construction or dismantling phase there are trucks near the halls

which keep the equipment for the booths. Hence, the system
searches for small bright rectangles close to the halls. An active

fair can be recognized by parking lots filled with cars and – if the
image resolution is sufficient – by persons walking on the

fairground (see images in Fig. 6).

If one of the four states can be verified, the temporal inference is

activated. The system switches to the next image in the sequence
and generates hypotheses for the successor state. According to

the elapsed time and considering the transition times all possible
successors are determined. If for example the time step between

the two images was two weeks, it is possible that Fair Idle

follows immediately after Fair Active omitting the dismantling
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5 days
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Figure 6. Simplified semantic net for the extraction of an industrial fairground introducing temporal relations. The more concrete representations of

the objects (physical and sensor layer of the semantic net) are illustrated here by corresponding image regions.
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phase. Having found hints for all obligatory states, a complete

instance of Industrial Fairground can be generated and the

interpretation goal is reached.

5.3. Results

The presented approach is currently being tested for a sequence
of five aerial images (three colour, two greyscale images) of the

Hannover fairground – the future Expo 2000 exhibition ground.
The images cover the years 1995 to 1998 and show a

construction/dismantling phase in 1997 and an ongoing fair in
1998. Furthermore, the construction of three new halls can be

observed. Unfortunately, no continuous sequence of aerial
images exists which depicts all phases of a single fair. But the

given images are suitable to simulate the whole cycle. They were

coregistered and resampled in resolution pyramids of 0.5 to two
meters per pixel to permit the segmentation of both large halls

and small vehicles with minimal processing effort.

The multitemporal features described in chapter 5.1. were
integrated in the AIDA system and the semantic net illustrated in

Fig. 6 was implemented. Additionally, a number of special image
processing algorithms are necessary to realize the aspired

application. Halls and parking lots have to be segmented, trucks,
persons and cars must be detected on the fairground and the

parking lots respectively. Figure 7 shows preliminary results for
a colour image of 1997.

The aerial image in Fig. 7a was classified at a resolution of two

meters per pixel using a Maximum–Likelihood operator which
exploits all available image bands. The classifier considers the

classes of the 3x3–neighbourhood to modify the prior probability

of the current pixel. This results in a more homogenous

classification result and suppresses small noisy regions. The
training regions were defined manually in the first image of the

sequence and stayed the same for the following images. Figure
7b shows the classification result for the class Hall (marked

grey). From all candidates the semantic net chose the white ones
to be a hall using features like area, elongateness, compactness,

luminance value, and variance of the corresponding image
region. The expected feature values were defined prior to the

analysis in the attributes of the concept net according to the
human experience.

To verify the states Fair Construction and Fair Dismantling, the
system looks for trucks on the fairground which appear as small

bright rectangles in the image. The characteristic width and
length of a truck is stored (in meters) in the semantic net, which is

transformed into pixel units and used as expectation.  To limit the
segmentation spatially to the immediate neighbourhood of the

halls, the detected halls are used to define a valid search area in

the current image of 0.5 m/pixel resolution. Assuming an
accurate segmentation of the halls, it can be avoided to confuse

trucks with the skylights of the halls. For a part of Fig. 7a the
search area is shown in Fig. 7c as a dark region, the detected

trucks are marked white. If the number of detected trucks is larger
than a given threshold defined in the semantic net, the hypothesis

Trucks near Halls is regarded as verified. Consecutively, the
construction or dismantling phase can be instantiated. A final

distinction between construction and dismantling becomes
possible, only if the preceding state of the fairground is known.
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Figure 7.  (a) Aerial image of the Hannover fairground, (b) Classification result for the class ”Hall” (grey) and selected hall candidates (white),

(c) Detail marked in (a): Search area for trucks on the fairground derived from the found halls (dark) and extracted trucks (white).

a b

c
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5.4. Future Work

To improve the extraction of halls, the segmented regions are
planned to be splitted in compact regions and approximated by

right–angled polygons fitted to the contours in the image. This
will also yield a more accurate detection of the trucks. For the

extraction of parking lots, cars, and persons, image processing
operators and their interface to the AIDA system have to be

implemented. Concerning the semantic net, the knowledge base
for the fairground example has to be completed including the

definition of computation and judgement methods. The strategy
for the multitemporal image analysis will be tested in detail and

improved, if necessary.

Additionally, a concept will be developed to allow the
monitoring of landuse changes and detection of new

constructions using again temporal relations to model possible
state transitions. This will be tested for the interpretation and

monitoring of moorland areas near Hannover.

Currently, the uncertainty and vagueness of the data is handled

within the semantic net by a possibilistic judgement approach. It
is planned to develop a second judgement calculus based on a

probabilistic belief network (Bayesian net), which exploits the
nodes and edges of the semantic net. Thereafter, a comparison of

the two judgement approaches will be carried out.

To get more accurate segmentation results, a self–adaptive image
processing module based on agents is currently developed. This

system will select, configure and adapt iteratively an appropriate
image processing operator according to a task description

derived from the expectations and constraints of the semantic net.
Finally, the segmentation results matching best with the given

task description will be returned to the semantic net.

6. CONCLUSIONS

A knowledge based scene interpretation system called AIDA

was presented, which uses semantic nets, rules, and
computational methods to represent the knowledge needed for

the interpretation of remote sensing images. Controlled by an
adaptable interpretation strategy, the knowledge base is

exploited to derive a symbolic description of the observed scene
in form of an instantiated semantic net. If available, the

information of a GIS database is used as partial interpretation,
increasing the reliability of the generated hypotheses. The

system is employed for the automatic recognition of complex
structures from multisensor images.

Currently, extensions are made in order to provide a

multitemporal analysis. The use of knowledge about temporal
changes improves the generation of hypotheses for succeeding

time instances and allows for example the extraction of complex
structures like an industrial fairground. The temporal knowledge

is represented in a state transition graph and integrated in the
semantic net. A new interpretation strategy generates hypotheses

for the successor state of an object in the next image, which are
verified in the sensor data. The first results show that the

knowledge based scene interpretation is a promising approach

for the analysis of multisensor and multitemporal images.
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