3D Reconstruction of Volume Defects from few
X-ray Images

C. Lehr, C.-E. Liedtke

Institut fiir Theoretische Nachrichtentechnik und Informationsverarbeitung,
Division: Automatic Image Interpretation, Prof. Dr.-Ing. C.-E. Liedtke,
Universitdt Hannover, Appelstr. 9A, 30167 Hannover, Germany
Phone: +49-511-7625328, Fax: +49-511-7625333, Email: lehr@tnt.uni-hannover.de

Abstract. In nondestructive testing for quality control of industrial ob-
jects the standard X-ray analysis produces a 2D projection of the 3D ob-
jects. Defects can be detected but cannot be localized in 3D position, size
and shape. Tomographic testing equipment turns frequently out to be too
costly and time consuming for many applications. Here a new approach
for 3D reconstruction is suggested using standard X-ray equipment with-
out costly positioning equipment. The new approach requires only a small
number of X-ray views from different directions in order to reduce the im-
age acquisition time.

The geometric and photometric imaging properties of the system are cal-
ibrated using different calibration patterns. The parameters of a CAHV
camera model are obtained for each view permitting the exact registration
of the acquired images. The efficiency of the 3D reconstruction algorithm
has been increased by limiting the reconstruction to regions of interest
around the defects. This requires an automated segmentation. The 3D re-
construction of the defects is performed with an iterative procedure. Reg-
ularization of the reconstruction problem is achieved on the basis of the
maximum entropy principle. The reliability and robustness of the method
has been tested on simulated and real data.
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1 Motivation

Non destructive testing constitutes a major part of quality control in industrial
production. The standard X-ray analysis produces a 2D projection of the 3D ob-
jects. Defects can be detected but cannot be localized in 3D position, size, and
shape. For this purpose tomographic testing equipment has to be used which
is described at several places in the literature [1],[2]. The use of tomographic
testing methods within industrial quality control is limited by several facts.
Traditional tomographic systems are too complex and expensive for several
applications. They require usually sophisticated detectors and very accurate
and expensive mechanical devices for positioning. The inspection time which is
caused by the analysis of a large number of views taken from around the object



is often considered to be too long [3],[4]. Frequently it is the aspect ratio of the
test objects which prevents the radiographic analysis from all sides for the vol-
ume reconstruction as in the case of platelike objects. For these reasons there ex-
ists a demand for tomographic systems, which operate on the basis of simple ra-
diographs and which permit the volume reconstruction from a small number of
views. The first aspect would tend to reduce the costs, the second to reduce the
time for the analysis. In connection with the reduction of the number of views
as compared to standard tomographic equipment additional problems become
apparent. The reconstruction problem becomes strongly underdetermined and
may produce inconsistent results due to calibration errors, noise and other ef-
fects and the conventional tomographic algorithms like filtered backprojection,
transformation methods, etc are not suitable anymore. Additional information
like prior information about the geometry or material properties of the object
under investigation is needed in order to arrive at a unique solution.

A special application is the reconstruction of casting defects, i.e. the recon-
struction of an inclusion like gas within an otherwise homogeneous object. In
this case the image reconstruction problem can be reduced to the estimation of
binary object properties, i.e. object material vs. inclusion. Different approaches
have been suggested in the literature [5],[6] where some of them require the use
of parametrized functions in order to describe the objects under investigation.
Because of the large variety of possible casting defects these model based ap-
proaches do not seem to be suitable or seem at least to limit the scale of possible
applications. Other approaches are based on modelling the image as a binary
Markov random field [7],[3]. The reconstruction is achieved by minimizing an
error function dependent on the measured projections and on a a-priori choice
of image modelling assumptions. The main difficulty of this type of approach
is to achieve a reasonable fast and reliable minimization considering the very
large number of unknown voxels.

In this paper a two-stage procedure for the 3D reconstruction of volume de-
fects from a few radiographs is presented, which exploits the prior knowledge
of the material parameters. No a-priori assumptions about the shape of the ob-
ject under investigation have to be made. An overview about the processing
steps is depicted in Fig. 1. After a calibration of the projective properties of the
imaging device and a registration of the different views the complexity of the
reconstruction problem is reduced in a first step by limiting the reconstruction
to regions of interest around the defects. The defect areas are segmented and the
spatial extent of the defects in beam direction is estimated from the measured
data using calibration curves. In a second step the defects are reconstructed
with an iterative procedure. Regularization of the reconstruction problem is
achieved on the basis of the maximum entropy principle in connection with an
iterative procedure for the binarization of the reconstruction results. In Chap-
ter 2 the camera model and the calibration procedure is explained. Chapter 3
describes the segmentation process and Chapter 4 the procedure for the 3D re-
construction. Finally in Chapter 5 results are presented based on simulated and
real data.
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Fig.1. System overview

2 Camera Parameters

The components of the X-ray system are depicted in Fig. 2. A microfocus X-
ray tube serves as X-ray source. For imaging an image intensifier and a CCD-
camera are used. The focus of the radiation-source is in the magnitude of pum
and serves effectively as point source. The rays which traverse the test object
are attenuated according to its geometric and material properties. The mapping
process of the rays can be described by perspective projection. The imaging
system itself exhibits a number of (primary radial) geometric distortions. This
is partly due to the spheric shaped screen of the image intensifier, partly caused
by magnetic fields which influence the electronic beam and other reasons. The
radial distortions of the optical system of the CCD-camera appear to be much
smaller and can be neglected.

The imaging properties of the system are mathematically described by the
camera model. The parameters of the camera model are estimated in an calibra-
tion procedure using a calibration pattern. Since for tomographic reconstruc-
tions several camera views of the same object are required, the images have
to be registered. For this purpose test object and calibration pattern need to re-
main in a fixed position relative to each other during the image acquisition step.
The calibration procedure is applied to each viewing position in order to obtain
precise position parameters for each individual view. The nonlinear geometric
distortions are considered in a second step following the perspective projection.

For modelling the perspective projection the CAHV camera model from
Yakimovski and Cunningham [8] has been employed using the following
nomenclature:

C': position of the radiation source in space

Hy: unit vector pointing in the horizontal direction of the imaging target
Vo: unit vector pointing in the vertical direction of the imaging target

A: unit vector describing the optical axis

hy and hy: image point where the optical axis traverses the imaging target
Sz, 8y pixel size

f: distance of radiation source from imaging plane.
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Fig.2. Components of the X-ray system

Following the principles of geometric projection a point P in space is pro-
jected onto a point p,, in the image plane disregarding geometrical distortions
following Eq. 1.
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The line of projection from the radiation source to an image point p,, is cal-
culated as

S(pu) = C + 5-So(pu) (2)

where So(p..) represents the line of sight. The intensity of the beam is attenu-
ated according to the geometric extensions along the line of sight depending on
the material properties and the particular spectrum of the radiation source as
described in Eq. 3.
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In Eq. 3 io(pu) refers to the un-attenuated intensity in the image point p.,
and W to a particular wavelength of the radiation source.

Geometrical distortions are corrected according to Eq. 4 using two-
dimensional polynomial functions. The parameters of these two-dimensional
functions have been estimated during a separate calibration process employ-
ing a planar calibration pattern with equidistant calibration marks. The coef-
ficients of the polynomials have been obtained during an optimization pro-
cedure, where the mean squared distance between the estimated positions of
the calibration marks and their prior known correct positions has been mini-
mized [9]. From the calibration the pixel size s, and s, are obtained as well.



The calibration remains valid as long as the geometric relation between radia-
tion source and the imaging device does not change.

re= (i) = (R0 ®
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The estimation of the parameters of the projection model is done for each
individual position in the sequence of camera views which are acquired for one
tomographic reconstruction. The setup is indicated in Fig. 3. The test object un-
der investigation is recorded together with a calibration pattern. The calibration
pattern consists of a planar plate with circular calibration marks arranged on its
periphery. The presence of the calibration pattern does not affect the analysis of
the investigated object. It reduces only the image area which can be utilized.
The calibration procedure does not require the use of all calibration marks but
only those which are detected with a high degree of reliability.

The parameter estimation uses a modified version of the method described
by Tsai [10] for the calibration of CCD-cameras. It works iteratively starting
with a reduced set of parameters and increases the number of parameters step
by step. Since the camera parameters influence each other small errors in the lo-
calization of the calibration marks may result in significant errors of the derived
camera parameters. The reliability can be improved by increasing the number
of measurements. This can be achieved by using the measurements from sev-
eral views for the estimation of those parameters which remain constant in all
views, the so called inner camera parameters f, h, and h,,.

3 Image Segmentation

The efficiency of the tomographic reconstruction could be increased consider-
ably by reducing the reconstruction problem to the area which contains the
defects. This requires an automated segmentation of the images which will be
used for the reconstruction. The steps of the image segmentation procedure are
shown in Fig. 4.

In a first step the measured intensity values i(p.,) are converted into esti-
mates for the material thickness g;(pw.) using a calibration function G.

gb(pu) = G(l(pu)) 5)

This is referred to in Fig. 4 by the term “linearization”. G depends on the
intensity and the spectrum of the radiation source and the material of the ob-
ject under investigation. In order to consider different radiation effects like
backscattering the calibration function is obtained from experiments using cal-
ibration objects of different thickness.
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Fig. 3. Estimation of the parameters of the camera model

For the estimation of the spatial extent of the defect, called defect thickness
94(Pw), an estimate for the material thickness without the defect has to be esti-
mated from the values of g,(p.) outside the defect area. This is called a back-
ground model g (p.). Assuming locally smooth surfaces of the objects under
investigation a two dimensional polynom of 3rd order according to Eq. 6 has
been chosen for background interpolation.

gn(z,y) =ho+h1-z+hy-y+hs-2>+hg -2y + ... + hag - 229° + hys - 2°9°
(6)

The segmentation starts by using some arbitrary automated defect detection
method or a semiautomated interactive method incorporating a manual mark-
ing of regions of interest around the defect regions. This first estimate needs not
to be accurate. From this first estimate the defect-free thickness gy, (p.,) is esti-
mated. The defect thickness g4(p.,) is calculated from the difference between
9 (Pu) and gp(pw). Using gq(p.) the defect region can be localized more ac-
curately. In further iterations the improved defect localization leads to an im-
proved background estimation resulting in a further improvement of the defect
segmentation. From the final result a good estimate of the defect extent in all
three dimensions can be obtained.
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Fig.4. Image segmentation: The X-ray image serves as input image. The defect segmen-
tation constitutes a binary mask, indicating the precise location of the defect within the
2D image. The defect thickness represents a map indicating the estimated defect thick-
ness for each point.

4 3D Reconstruction

The 3D reconstruction of the defect areas is carried out in an relaxation loop.
The 3D volume which encloses the defect area is described by the discrete 3D
voxel vector p. p describes the material properties of the object under investi-
gation. The values are normalized 0 < p(i) < 1. Since the material is assumed
to be homogeneous except for the defects, binary values are expected for p(i):
p(d) = 1 for the voxels belonging to the defect area and p(0) = 0 for the vox-
els belonging to the non-defect area. The relation between the measured and
preprocessed data in the area of interest p and the binary material properties
p are given by the matrix equation (7) where A describes the spatial relations,
i.e. projection of the 3D volume space onto the different 2D radiographic views
which have been recorded. The matrix value a;; corresponds to the influence of
the i-th voxel on the j-th projection.

P=Axp )

When only a few radiographs are used as had been proposed for the pre-
sented method, Eq. 7 turns out to be underdetermined. Inconsistent results may
turn up due to errors in preprocessing, calibration errors, from both, the densio-
metric and the geometric calibration as well as due to different noise sources.
The standard approach is to formulate additional constraints for the recon-
struction process. These additional constraints are added to an energy function
which has to be minimized and they have to be weighted by a regularization
factor as is indicated in Eq. 8.

E =||Axp—p|®+ B Er(p) 8)



As additional constraint the negative entropy Egr () of the voxel vector has
been chosen. Minimizing Er(p) is equivalent to maximizing the entropy. The
minimization of the energy function E in Eq. 8 is achived using a modification
of the MART algorithm for entropy maximization. Using the MART method the
choice of the explicite regularizaton factor 3 in Eq. 8 is replaced by the choice
of the relaxation parameter A in Eq. 9.2. The modified MART algorithm, which
has been used is the following:

1. Start with a strictly positive vector u*, k = 0
2. Calculate for all pixels j the actual projections ﬁ? and the new voxel values

PE=aixpk 9.1)
)\*aij

D
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P;

3. Update all voxels according
k+1 o g k1
ket _ i <1

t {1 if pttt > ©9)

4. Update all voxel i every K.th iteration

P = median(pfth) (9.4)

5. k=k+1
6. Repeat steps 2 to 6 until convergence

The first steps contain the basic MART algorithm. Depending on the noise
properties of the data an adequate relaxation factor A is selected automatically
in order to guarantee a stable convergence of the procedure. Eq. 9.3 imposes the
material constraints on the reconstruction. Finally, the repeated median filtering
of the intermediate results leads to a clear improvement of the convergence
behaviour. The noise properties of the measured data used for the choice of an
adequate relaxation factor A are estimated during the preprocessing procedure.

The minimization of the energy function E in Eq. 8 results in continuous ma-
terial values p where low values indicate the tendency toward an non-defect
property and high values the tendency towards a defect property. After the
minimum of the E has been obtained using the modified MART algorithm
thresholding is applied to p in order to update the defect area. Only the vox-
els with the largest material values are identified as belonging to the defect
area. With the updated vector a new optimization cycle is started until the bi-
nary solution has been reached. In each iteration the threshold is automatically
adapted to the current p. The idea of this binarization procedure is to assign
only a few voxels to the defect area in each iteration in order to ensure a grad-
ual adjustment of the solution to the binary constraint.



5 Results

The performance of the suggested reconstruction method had at first been
tested on simulated data. The complex test object of Fig. 5 has been chosen. It
consists of a ball positioned within a convex hull. From this test object two sets
of simulated X-ray views have been generated. Each set contains five different
views within a range of 90°. The two sets differ in that one set has been aug-
mented with noise in order to test the robustness of the reconstruction method.
The surface of the simulated object, one sample of a simulated view from each
set and the surface of the reconstructed 3D object are shown in Fig. 5. As can
be seen the reconstructions almost match the shape of the original object except
for some slight differences at the lower part of the convex hull in case of the
noise deteriorated data.

Real data have been processed with known and unknown geometric prop-
erties. In both cases the X-ray images have first been rectified for geometrical
distortions and the camera parameters have been estimated. Geometric distor-
tions of sometimes more than 11 pixels could be reduced to less than 0.3 pixel.
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Fig. 5. Reconstruction of a simulated object: (a) shape of the test object, (b) simulated
X-ray views with and without added noise, (c) shape of reconstructed object

A test object with known geometric properties consists of a plate with
drilling holes of different depth and diameter. Five views have been acquired
within a range of 60°. All reconstruction errors appear in the border region on
the surface. The deviation from the real shape is in the average less than one
voxel. The maximum deviation amounted to 2 voxels. The test object and its
3D reconstruction are depicted in Fig. 6 on the left side.

Fig. 6 (left side) shows the reconstruction of casting defects with geometric
properties which have not be known before. This and the other tests demon-



strate very well that it is possible to reconstruct the 3D shape of objects from a
few X-ray images taken from different views with standard X-ray systems and
without special positioning equipment.
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Fig. 6. Reconstruction of drilling holes and casting defects
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