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ABSTRACT

A knowledge based approach for the interpretation of aerial images is presented that combines cues from multiple sensors (visual,
infrared, SAR). Here the application of road extraction is described in detail. The sensor fusion is applied at object level. This allows to use
prior knowledge to increase the separability of the classes. The prior knowledge is represented explicitly using semantic nets. Interpreta-
tion exploits the semantic net to control the sequence of sensor fusion mixing bottom–up and top–down strategies. The presented
approach addresses the problem of uncertain and imprecise sensor data by judging the different cues based on possibility theory. Compet-
ing interpretations are stored in a search tree. An A*–algorithm selects the most promising, i.e. best judged, interpretation for further
investigation. Results are shown for the detection of roads in urban and agricultural areas exploiting image data from multiple sensors.

KURZFASSUNG

Im vorliegenden Beitrag wird ein wissensbasierter Ansatz zur Interpretation von Luftbildern vorgestellt, der Merkmale aus unterschiedli-
chen Sensordaten (visuell, IR, SAR) verarbeiten kann. Dieses wird am Beispiel der automatischen Extraktion von Straßen demonstriert.
Die Sensor Fusion wird auf Objekt–Ebene durchgeführt, wodurch es möglich wird, Vorwissen zu nutzen, um die Separierbarkeit der
Objektklassen zu erhöhen. Das Vorwissen wird explizit in einem semantischen Netz repräsentiert, was während der Interpretation zur
Steuerung der Sensor Fusion genutzt wird. Dabei werden abwechselnd daten– und modellgetriebene Strategien eingesetzt. Die Unsicher-
heit und Ungenauigkeit der Daten werden durch ein Bewertungskalkül auf Basis der Möglichkeitstheorie berücksichtigt. Konkurrieren-
de Interpretationen werden in einem Suchbaum abgelegt. Ein A*–Algorithmus selektiert die vielversprechendste, d.h. bestbewertete In-
terpretation, für die vorrangige Bearbeitung. Es werden Ergebnisse zur Extraktion von Straßen in städtischen und ländlichen Gebieten
aus multisensoriellen Bilddaten vorgestellt.
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The automatic extraction of road networks for map updating and
environmental monitoring represents a major topic of remote
sensing. However, the results of low–level image processing al-
gorithms like edge detectors are in general incomplete, frag-
mented, and erroneous. Therefore various model based ap-
proaches for road extraction were presented in the past.
Assumptions about the appearance and properties of roads, like
continuity and closeness, are used to improve the results.

The edge–based road finding system RoadF [Zlotnick, 1993] de-
fines road center hypotheses between antiparallel intensity edges
and groups them to produce continuous, smooth road seeds. In
[Zhu, 1986] a rule based system is used to link antiparallel linear
edges to road segments. [Steger, 1997] represents the road net-
work as a graph. Employing the fuzzy set theory the edges of the
graph are tested for plausibility. In this way uncertain road seg-
ments are eliminated resulting in a complete road network.

Beside the evaluation of a single image some authors integrate
additional data to obtain more reliable and accurate results.

[Haala, 1992] matches a relational description of a digitized map
with the detected road candidates. The multi–scale road extrac-
tion system described in [Mayer, 1996] uses images of different
resolutions. The roads detected in a large scale image are refined
in a small scale image.

The wish to extract more information from the data than is pos-
sible from a single image alone raises the question of sensor
fusion. Especially the fusion of images from different sensor sys-
tems, like a visual, IR, and synthetic aperture radar (SAR) sensor,
is a difficult task.

Data fusion can take place at pixel or at object level. Pixel level
fusion processes directly the image data. Prerequisite for the
pixel based image fusion is the perfect co–registration of the indi-
vidual images. The resulting superimposed images provide mul-
tispectral vector data per pixel to which a numeric classifier can
be applied directly.

The fusion at object level extracts features like regions and lines
from the different images and combines the result to obtain the
most reliable interpretation. The features can be grouped to
extract complex structures. Furthermore, the separability of the
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Fig. 1  Simplified semantic net for the extraction of roads and major roads including the relation to the multisensor image data

classes can be increased by exploiting domain knowledge which
is related to objects and not to pixels. This task requires an image
interpretation which assigns symbolic meanings to the seg-
mented objects.

In the literature various approaches to image interpretation and
sensor fusion have been presented. Only a few authors try to for-
malize the representation of the objects and sensors, and the con-
trol of the information integration. To ease the adaptation of the
systems to new tasks the domain knowledge should be repre-
sented explicitly and be independent from the control of the anal-
ysis. Most interpretation systems like SPAM ���
����� ����

and SIGMA ����������� ���� use a hierarchic control and
construct the objects incrementally using multiple levels of
detail. The system MESSIE �	������� ���� models the objects
explicitly distinguishing four views: geometry, radiometry, spa-
tial context, and functionality. It employs frames and production
rules. ERNEST [Niemann, 1990] uses semantic nets to exploit
the object structure for interpretation.

The presented knowledge based image interpretation system
AIDA [Liedtke, 1997] adopts the idea to formulate prior knowl-
edge about the scene objects with semantic nets. In addition the
control knowledge is represented explicitly by rules. The system
combines cues from different sensors and structural relationships
of the objects to increase or decrease the reliability of competing
interpretations. Hence, the fusion is applied at object level. Addi-
tionally scene specific knowledge provided by a geographical
information system (GIS) can be integrated in the interpretation
process. In the field of remote sensing the system is used for the

3D reconstruction of landscapes [Tönjes, 1997] and for the detec-
tion of control points for image registration [Growe, 1997]. In
this paper the application of road detection using multiple sen-
sors is described.
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The knowledge base has to represent the knowledge about the
sensors and the objects with their spatial relationships. The
knowledge can be classified into 3D scene domain and 2D image
domain knowledge. The latter is sensor related. The sensor coor-
dinate system is referred to the image raster while the scene
domain uses a cartographic coordinate system (e.g. Gauss–
Krueger or UTM). The 3D scene domain can be subdivided into
three aspects, the scene specific semantic or functionality (e.g.
road), the 3D geometry (e.g. 3D stripe), and the material with its
reflectance properties (e.g. asphalt).

The knowledge about the object structure and its relationship to
the sensor specific appearance is represented efficiently by
semantic nets. Semantic nets consist of nodes and edges in
between. The edges or links of the semantic net form the relations
between the objects. The specialization of an object is described
by the is–a link introducing the concept of inheritance. Objects
are composed of parts indicated by the part–of link. Thus the
detection of a complex structure is simplified to the search for its
parts. The transformation of an abstract object to its more con-
crete realization is represented by the concrete–of link, abbre-
viated con–of.



The object properties are described by attributes attached to the
nodes. They contain an attribute value which is measured bot-
tom–up in the data and a range which represents the expected at-
tribute value. The range is predefined and/or calculated during
the interpretation. For each attribute a value and range computa-
tion function has to be defined. A judgement function computes
the compatibility between expected range and measured value.

Figure 1 shows a simplified semantic net for the extraction of
roads. The different aspects of the domain knowledge are mod-
elled by conceptual layers, namely the scene, geometry, material,
and sensor layer. If more than one sensor is available the sensor
layer is duplicated (e.g. visual, infrared, and SAR layer). The GIS
can be regarded as a symbolic sensor that is directly connected to
the top scene layer.

According to the knowledge base shown in Fig. 1 a RoadNet con-
sists of more than one Road which is modelled by the minimum
and maximum quantity in the part–of link ([1, �] ). Each Road is
represented in the GIS by the corresponding database object. Fur-
thermore the road’s geometry is described as 3D Stripe while its
material is modelled by the node Asphalt. During the interpreta-
tion the knowledge about geometry and material of an object is
used to generate more accurate hypotheses about its appearance
in the image data. For example in an aerial image a road is sup-
posed to be a bright stripe whereas it is expected to be a dark stripe
in a SAR image.

In the sensor data a road is represented by a 2D Stripe. Because of
erroneous and incomplete segmentation results this stripe is com-
posed of several SubStripes which are located close to each other.
This knowledge is modelled explicitly in the semantic net by an
attributed relation called close–to. By a spatial inference process
via the close–to link the system is able to track the segmented
image primitives bridging small gaps.

For the extraction of major roads the inheritance mechanism is
used. The node Major Road is a specialization of Road. There-
fore it inherits the attributes and subnodes of its parent node. The
GIS representation GIS Road is overwritten by the node Major
GIS Road because major roads are described by a different object
class in the GIS. The geometrical and physical properties stay the
same. Only the dimensions are changed, like the expected width
and length of the 3D Stripe. In addition a major road possesses a
metallic crash barrier as obligatory part which appears clearly as
a bright line in a SAR image. The combination of a wide stripe in
the visual and/or SAR sensor with a thin bright line in the SAR
image justifies the instantiation of a major road.
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The analysis exploits the generic model represented as semantic
net to control the extraction of the objects from the sensor data. In
principle three approaches to sensor fusion can be distinguished:

Bottom–up fusion: The sensor data is grouped bottom–up. For
example, the corresponding pixels or primitives from different
sensor images are composed to form a feature vector for classifi-
cation.

Top–down fusion: The scene is observed by various sensors.
Fusion consists of selecting the most appropriate sensor.

Mixed fusion: Analysis proceed mixing successively top–down
and bottom–up fusion techniques to accomplish the interpreta-
tion. Interpretation can focus on salient objects first and start
evaluation with the most reliable sensor.

The mixed fusion is the most adaptive and general for scene anal-
ysis and is used in the following. According to the mutual depen-
dencies the sensors are redundant or complementary. In the first
case the sensory information support each other and can be com-
bined independently. In the second case interpretation depends
on all sensors and fails if the evaluation of one sensor does not
succeed.

Sensor fusion has to deal with uncertainty and imprecision of the
data. A proposition is uncertain if it can not be classified clearly
as true or false. (E.g.: The segmented line is a road with a proba-
bility of eighty percent.) A proposition is imprecise if it possesses
no accurate value but a range of several values. (E.g.: The road
has a width between five and ten meters.) Several schemes have
been suggested to represent and combine uncertainty, like possi-
bility theory, Bayes nets, and evidence theory, and to model
imprecision by fuzzy sets or linguistic variables. The presented
approach uses the possibility theory [Dubois, 1988] to model
both uncertainty and imprecision.

Modelling of Uncertainty

To judge the uncertainty of a proposition we define a measure of
belief. It maps all propositions into the interval [0, 1]. A hypothe-
sis that has not yet been tested in the sensor data is neither neces-
sary right nor wrong. To model this ignorance the interval [0, 1] is
divided into the three intervals necessity N(e), necessity N(¬e) of
the contrary proposition, and ignorance � (fig. 2). If no knowl-
edge about a proposition e exists both necessity N(e) and the
necessity of the contrary proposition N(¬e) are zero. (The neces-
sity measure in the sense of Dubois and Prade [Dubois, 1988]
assumes that the elementary focal propositions can be ordered in
a hierarchy of inclusion, i.e. are consonant). The possibility P(e)
of a proposition is given by:

P(e)� 1 � N(�e) (1)

Fig. 2: Necessity N(e) and Possibility P(e)

N(e)  � N(¬e)
P(e)

10

The comparison of a proposition, i.e. hypothesis, with the sensor
data, i.e. evidence, reduces the uncertainty by increasing the
necessity of e or its opposite ¬e.

Modelling of Imprecision

To model the imprecision of a proposition fuzzy sets in the sense
of Zadeh �Zadeh, 1979� are employed. They describe the mem-
bership of a value x to a set, e.g. hypothesis H, with a membership
function in the interval [0, 1] (fig. 3). A certain membership value
a is interpreted as possibility p(a) that a proposition ”x possesses
the Value a” (e.g. the road width is 4 m) is true for the assumption
”x is H” (e.g. the road is small).



The combination rules that are defined for fuzzy sets allow to
judge imprecise attributes. The possibility and necessity of an
imprecise hypothesis H for a given imprecise measurement E are
depicted in fig. 3 and result to

P(H|E)� sup
x�X

min(pH(x), pE(x)) (2)

N(H|E) � inf
x�X

max(pH(x), 1� pE(x)) (3)

P(H|E)

pH pE

x

x

N(H|E)

pH 1–pE

Fig. 3 Computation of possibility P and necessity N of a hy-
pothesis H for a given evidence E
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Information Integration

The decision, whether for example a segmented line is a road, is
based on several attributes, like length, curvature, etc., and the
evaluation of several complementary object parts or sensors. The
joint necessity N(e) and joint possibility P(e) from the cues of
complementary sensor information result to:

N(e)� min
i

N(ei) (4)

P(e)� min
i

P(ei) (5)

The corresponding approach to compute the joint necessity N(e)
of redundant sensors from the maximum of the cues fails if the
sensory information is in conflict, i.e. one suggests e and the other
¬e. In this case N(e) + N(¬e) ≤ 1 is not guaranteed. To consider
contrary information the cues of redundant sensors are combined
similar to Dempster’s rule of combination. All combinations of
sensor information that support the proposition e are summed up
(black rectangles in fig. 4). The sum is normalized by the sum in
the denominator of all combinations that are not contradictory
(all but white rectangles in fig. 4). The combination is associative

N2(a)

N1(a) N1(¬a)

N2(¬a)

P2(a)

P1(a)

Fig. 4: Combination of two sources of different certainty

and commutative. Hence it can be written for two sensors without
loss of generality:

N(e)�
N1(e) P2(e)� N2(e) P1(e)� N1(e) N2(e)

1� N1(e) N2(�e)� N1(�e) N2(e)
(6)

The belief measures are used to judge the different competing
fusion results and to select the most possible interpretation Pi for
further investigation that fulfills

Pi(e) � Pj(e) � i � j (7)
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The detection of roads performs in a model driven manner and is
described exemplarily for an aerial image. In a first step the avail-
able sensors and images are instantiated. If a GIS is available, the
roads of the observed area are extracted from the database to
constrain the expected object locations. Here the German ATKIS
DLM 25 is exploited which contains the properties and the geom-
etry of objects like roads, rivers, forests, and settlements.

The roads extracted from the GIS constitute a hypothesis that
does not always match exactly with the roads in the sensor image.
The hypothesis is propagated top–down via the geometry and
material layer down to the sensor layer converting the geometry
attributes from world to image coordinates. For example the
width measured in meter is transformed into pixel (Fig. 5). Ac-
cordingly the material specific properties, e.g. reflectance and
roughness, are transformed into the sensor specific photometric
appearance, e.g. brightness and texture. Here the expected
brightness of asphalt in the aerial image is computed.

The hypothesis 2DStripeVIS–1 can be tested in the image data.
The expectation about the brightness, width and orientation of
the stripe can be used to select an appropriate segmentation algo-
rithm and adapt its parameters. We use the algorithms suggested
in [Mayer, 1996] and [Bückner, 1998]. Depending on the seg-
mentation one or more extracted stripes from the aerial image are
required for one expected 2DStripeVIS. For this reason the
2DStripeVIS in the generic model is composed of several sub
stripes. The extraction of the 2DStripeVIS–1 starts with the
search for the first SubStripeVIS–1 within a search area given by
the expectations from the GIS. From the segmented stripes the
best match, e.g. the longest within the search area, is used. Con-
secutively adjacent substripes are searched for. The expected
location of their start point is further constrained by a maximum
distance and an angle for the difference in orientation. The search
area is described by a cone as depicted in figure 6. This enables
the system to bridge small gaps due to fragmented segmentation
results.

The propagation of this topological constraint is modelled by the
attributed relation close–to with its attributes distance and angle.
The close–to relation propagates the topological constraint to a
second SubStripeVIS–2 (see fig. 5) Again, if a stripe primitive in
the aerial image matches, the expectation is verified and the Sub-
StripeVIS is instantiated. This procedure is repeated until no fur-
ther adjacent substripe is found.

If more than one segmented stripe matches the expectations the
search node, i.e. current interpretation, splits into competing
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interpretations for each possible segmented stripe. The search
nodes are judged applying the possibility theory mentioned
above and the most promising search node is investigated further.
The extracted 2DStripeVIS–1 causes the instantiation of
3DStripe–1 that models the continuous course of the road in 3D.

If there are multiple sensor images available, sensor fusion at ob-
ject level is applied. The following types of sensor fusion have
been realized successfully with AIDA:

Sensor selection: The object can be extracted completely using
only one sensor. For example, metallic crash barriers show up
clearly in SAR signals (fig. 8c) due to their high reflectance.
Therefore they are extracted in the SAR image only. The same
meets for the extraction of rivers which are significant in infrared
images because of their cold temperature (fig. 7b). This knowl-
edge is modelled in the semantic net by defining a concrete repre-
sentation of the scene object in the specified sensor layer like 3D
LineSAR as subnode of Crash Barrier in the example of fig. 1.

Composite feature: The extraction of the feature from only one
sensor might be erroneous like the road extraction from the visual
sensor or infrared sensor alone. Hence the extraction combines
the measured feature properties of different sensors to improve
the road detection (see fig. 7 and 8). The contribution of each sen-
sor is weighted and fused using Dempster’s rule of combination.
To achieve this behaviour in each sensor layer a representation of
the scene object has to be defined and linked via the con–of rela-
tion.

Composite object: The object is composed of several parts
which can be extracted from different sensors. The major road in
figure 8 consists of two carriageways and a crash barrier in
between. The complex task of detecting a major road is simpli-
fied to the extraction of the wide carriageways from the visual
and/or SAR image and the crash barrier from the SAR image
alone (fig. 8d).

Composite context: The object may be only detectable in a cer-
tain context. For example, the roads in urban areas are usually
accompanied by building rows along their sides which show up
as bright lines in SAR image. In figure 9 only those segmented
dark stripes in the aerial image are interpreted as roads which are
supported by parallel bright lines in the SAR image.

Fig. 7: Rejected (thin lines) and accepted (wide lines) road features from (a) visual and (b) infrared image with (c) fusion result.

a b c



b

Fig. 8: Segmented (thin lines) and accepted road candidates (wide lines) in (a) SAR image and (b) the corresponding aerial image. (c)
Used GIS data for the object class Road and (d) fusion result. The major road is emphasized.

a

c d



Fig. 9: The segmented lines, i.e. road candidates, from the visual image (a) must be accompanied by parallel lines as hint for buildings
in the SAR image (b) to verify the road hypothesis (c)

a b c
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A knowledge based approach for the interpretation of aerial
images from multiple sensors was presented. The sensor fusion is
applied at object level. This allows to use prior knowledge which
is represented here explicitly using semantic nets. Interpretation
exploits the semantic net to control the sequence of sensor fusion
mixing bottom–up and top–down strategies. For the application
of road detection the cues from multiple sensors are combined to
refine and confirm the results extracted from a single sensor. If
available the information of a GIS is used to constrain the ex-
pectations about the object properties.
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