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Abstract

The presented work addresses the problem of auto-
matic control point matching for the registration of
remotely sensed images. The inaccuracy of flight parame-
ters and the sensor specific appearance of objects are the
difficulties automatic registration suffers from. To over-
come these problems the presented system uses prior knowl-
edge to select appropriate structures for matching, i.e. con-
trol points,  from a GIS and to extract their corresponding
features from the sensor data. The knowledge is represented
explicitly using semantic nets and rules. The best corre-
spondence between the GIS data and the image is found by
an A*–Algorithm. The automatic control point matching is
demonstrated for crossroads in aerial and SAR imagery.

1. Introduction

The evaluation of remotely sensed images from multi-
ple sensors requires the registration of all data in a common
(geographic) coordinate system. This is especially true for
multiple sensors that differ in geometry, spectrum, and time.
Prerequisite for the image–to–map registration of remotely
sensed images is the detection of corresponding points in
the image and the map. The common approach uses manual
control point matching. But the quantity of data and the
short update periods ask for methods that automate the reg-
istration.

For precise registration the control points must be dis-
tributed equally and detected accurately. The different sen-
sor specific appearances of the control points in the image
data and the map require the segmentation of common fea-
tures. The increasing availability of geoinformation sys-
tems (GIS) and digital landscape models (DLM) eases this
task making the segmentation of maps abundant. The pres-
ented work exploits the German digital landscape model
DLM 25 of ATKIS (Authoritative Topographic and Carto-
graphic Information System) which corresponds to the con-
tents of the 1:25000 map. ATKIS provides both semantics
and geometry of the represented object classes.

The features used for control point matching have to be
contained in the used digital landscape model and should be

eminent in the sensor data to allow robust segmentation.
The demand for equally distributed control points suggests
the use of frequently present features. In the literature vari-
ous features for control and tie point matching have been
suggested like rivers, coastlines, roads, fields, or even man-
hole covers [1]. The extraction of feature points using a
Gabor wavelet model for detecting local curvature disconti-
nuities is proposed in [2].

The presented work uses roads to define control points
by crossroads. However the system is not limited to linear
shaped features. It could also handle areal features using for
example the center of gravity as control point. The flight
parameters taken from GPS and INS give an initial estima-
tion of the sensor orientation. Nevertheless the orientation
is inaccurate. The risk for matching wrong features is very
high. To reduce the risk the matching must take structural
relationships into account.

To exploit the relationships between the features for
example relaxation labeling [3], and relational matching [4]
have been suggested. In [5] a structural matching of polygo-
nal features like buildings is proposed.

Here a knowledge based approach is used that provides
explicitly a generic description of the structure used for
matching. A further advantage is that this approach can also
model the relationship between the objects and their
expected appearance in the image data.

2. System Overview

2.1. Image Interpretation System AIDA

The task of feature extraction and matching is con-
trolled by the image interpretation system AIDA [6] (Auto-
matic Image Data Analyzer) that provides methods for
explicit knowledge representation. The knowledge about
object structure and their appearance in the image is repre-
sented by semantic nets (similar to ERNEST [7]). Rules
exploit the knowledge to match the features in the GIS with
their correspondences in the image. In AIDA the rules are
problem independent and exploit only the syntax of the
semantic net.

The input data for registration consists of the image to
be registered, flight parameters, interior sensor parameters,



and a GIS. Matching proceeds in two steps. At first features
are selected from the GIS to establish an initial scene
description thus constraining position, radiometric and geo-
metric appearance, and structure of the control points
expected in the image. Consecutively the hint from the GIS
is used to extract corresponding control point candidates
from the image. The relationships between the features are
exploited to increase or decrease the reliability of compet-
ing control point candidates. The best mapping between the
features in the image and the features in the landscape model
is found using graph search methods.

2.2 Knowledge Representation

Semantic Net: The knowledge about the object struc-
ture belonging to the control point and its relationship to the
sensor specific appearance can be represented efficiently by
semantic nets. Semantic nets consist of nodes and edges
in–between (see fig. 1). The nodes are implemented as
frames which contain a collection of attributes, like the
width of a road or the intersection of crossroads. Further the
object has methods, i.e. functions, at its disposal to compute
the attribute values. There may also be a method available
to segment the object in the image data, for example a con-
tour finding algorithm to extract stripes from images. The
edges or links of the semantic net form the relations between
the objects.

Figure 1 shows a simplified semantic net for registra-
tion. The knowledge base distinguishes three conceptual
layers. The scene layer describes the scene specific seman-
tic. The GIS layer contains the objects as represented in the
GIS. The bottom layer is sensor related and describes the
sensor specific radiometric and geometric appearance of the
objects. According to the chosen sensor (visual, infrared, or
SAR) a specific sensor layer is used. Each layer possesses
a common appropriate vocabulary. For instance the scene
layer uses a cartographic coordinate system (e.g. German
Gauss–Krueger or UTM) while the sensor coordinate sys-
tem is referred to the image raster. The layer specific level
of abstraction is modelled by the concrete–of link, abbre-
viated con–of. The decomposition of an object into its parts
is described by the part–of link. Here the control point con-
sists of a crossroads which is composed of intersecting
roads. The data–of link establishes a relation to the features
segmented in the image data or contained in the GIS.

The syntax of the semantic net distinguishes between
two types of nodes: concepts and instances. Concepts
describe the generic model of the objects. The instances I(n)
are realizations of the concept n in the observed scene. Thus
they are related via instance–of to their concepts. During
interpretation the state of the instances changes from hypo-
thesis IH(n) to complete instance IC(n) or missing instance
IM(n). Counters in the links of the concept net state the

Fig. 1: Simplified semantic net for automatic search of
control points in aerial images

Scene

Control Point

Crossroads

Road

GIS Road

GIS Data Object

Image–Stripe Pattern

Scene Layer:

GIS 
Layer:

Sensor Layer:
(here: 
Aerial Image )

data–of

con–ofcon–ofcon–of

part–ofpart–of

part–of

part–of [3,5]

part–of [3,5]

Sensor

data–of

part–of

Visual Camera

is–a

SAR

is–a

data–of

part–of

Attributes:

– Intersection
– ...

GIS

is–a

data–of

part–of

Image–Stripe

Segmentation Algorithm:
Parallel Contour Finding

Stripe Data

GIS Data

data–of

Image Data

minimum and maximum number of links required in the
instance net.

Rules: To make use of the knowledge represented in
the semantic net procedural knowledge for control is
required that states how and in which order scene analysis
has to proceed. The control knowledge is represented
explicitly by a set of rules. A rule is composed of a condition
and an action part. The condition checks for a new
interpretation state of neighboured nodes in the semantic
net. The action part adapts the interpretation state of the
focused node. Furthermore the attributes are restricted top–
down by new expectations and bottom–up by new measure-
ments.

For example a hypothesis IH(n) can be denoted as com-
plete instance IC(n), if all obligatory subnodes have been
instantiated completely. This can be expressed by the fol-
lowing rule:

Rule–complete–instantiation:

CONDITION:IH (n) � IC(m) �m ��

�={m| m = part–of(n) � m = con–of(n)}

ACTION: Change status to IC(n), 
compute bottom–up all attributes,
return IC(n).



3. Automatic Search of Control Points

As mentioned before, the coarse orientation of the
remote sensing data is known from flight parameters. The
exact image–to–map registration is performed in a block-
wise manner. The registration searches for one control
point, i.e. crossroads, in each block of the image to be regis-
tered by scene interpretation.

In a first step the semantic net is initialized by loading
the knowledge base represented by a semantic net (see fig.
1) and a set of instantiation rules. According to the image
data (aerial image or SAR data) the suitable sensor is instan-
tiated. Since the GIS provides the most reliable data the
aerial image/SAR layer is neglected at first and the scene
analysis exploits only the GIS data. As crossroads them-
selves are not registered in the DLM roads have to be
grouped to crossroads by the interpretation system.

Because the goal is to instantiate a control point the
initial hypothesis IH(Scene) generates a hypothesis IH(Con-
trol Point). The condition for the complete instantiation is
not fulfilled because the obligatory part Crossroads is not
present. Hence the rule for top–down propagation of hy-
potheses is executed generating IH(Crossroads). The rule is
fired repetitively until the initial concept GIS–Road is
reached resulting in the hypothesis IH(GIS Road). The GIS
database is asked for roads within the current image region.
The objects returned are added to the semantic net as Ic(GIS
Data Object). An appropriate data node is chosen to verify
a complete instance IC(GIS Road) and to compute its attrib-
utes like width in meters, material, and 3D coordinates. The
new information is propagated consecutively bottom–up
instantiating IC(Road). Because crossroads consist of at
least three intersecting roads a second hypothesis IH(Road)
is generated. From the 3D coordinates of the first road an
estimation for the position of the second one can be com-
puted resulting finally in the instantiation of an adjacent
road. The process is repeated until no further road belonging
to the crossroads is found in the GIS data. The instances
IC(Road) are grouped, complete instances IC(Crossroads)
and IC(Control Point) are generated and the 3D coordinate
of the control point is computed from the intersection of all
roads.

The found scene consisting of a crossroads and several
roads has to be validated in the image to find the correspond-
ing 2D coordinates of the objects. Therefore the knowledge
base is extended by the sensor layer, here the aerial image
layer. A hypothesis IH(Image–Stripe) is instantiated top–
down to search for the pictorial representation of the first
road. From the coarse orientation of the image we can com-
pute an estimation for the position and the appearance of the
searched road. Transforming the 3D coordinates into image
coordinates the search area for the road segmentation is
restricted significantly. From the known road width (in me-

Fig. 2: Simplified instantiated semantic net matching
GIS data with image stripes. The 3D/2D control
point is stored in node Control Point–1.
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ter) the expected width of the image stripe (in pixel) is
computed using again the world–to–image coordinate
transformation. The luminance of the image stripe can be
predicted exploiting the known material of the road, knowl-
edge about the sensor type and reflection properties. The
attribute ranges of IH(Image–Stripe) are restricted accord-
ing to these estimations. All expectations of the semantic net
are finally used for the configuration of the following seg-
mentation algorithm.

For road segmentation we developed an algorithm
which searches for parallel contours by tracking edges in the
gradient image perpendicular to the gradient direction [6].
It returns one or several candidates IC(Stripe Data) for the
given hypothesis IH(Image–Stripe) as a polyline. For each
candidate one IC(Image–Stripe) is instantiated, each de-
scribing one possible interpretation. These competing scene
interpretations are represented by separate leaf nodes of a
search tree. Each leaf node is judged by comparing the ex-
pected with the measured attributes. An A*–algorithm se-
lects the most promising, i.e. best judged, interpretation
alternative for further investigation.

 Finally the crossroads is instantiated completely by
generating hypotheses top–down for all roads and subse-
quently verifying them in the image. From the image coor-
dinates of the roads their intersection representing the 2D



Fig. 3: Expected (black), segmented (grey) and se-
lected (white) roads with computed control point
in an aerial image block

Fig. 4: Expected (black), segmented (grey) and se-
lected roads (white) in the corresponding SAR–
image block

coordinate of the control point is computed by extrapola-
tion. The found 3D/2D correspondence is one of the control
points used later to estimate the sensor orientation and to
resample the image accordingly exploiting a DEM.

4. Results

The knowledge based approach to automatic control
point matching was tested successfully for aerial images
and SAR data. Figure 3 shows the expected position of
crossroads derived by projecting the GIS data into the aerial
image (black lines). The system selects the four white road
candidates and computes the marked intersection used as
control point in the later rectification process. The results
for the corresponding SAR–image are depicted in figure 4.

The control algorithms of the system AIDA are imple-
mented in C++ with a Tcl/Tk interpreter and graphical user
interface. The procedural knowledge is represented by Tcl
scripts while the road segmentation is implemented in C++.
The ATKIS interface is also realized in Tcl/Tk to allow easy
access to the used GIS (SICAD/open) from AIDA.

5. Conclusions

The presented approach exploits prior knowledge
about scene objects and a GIS to compute control points for
the automatic registration of remote sensing data. Therefore
suitable GIS objects are selected, grouped, and interpreted
by assigning a symbolic meaning to them. Top–down prop-
agation of object specific expectations is used to constrain
the search of the image features and to configure the seg-
mentation algorithms. Due to the flexibility of the knowl-
edge representation the system can be extended easily to
other object classes representing control points.

The knowledge based scene interpretation with se-
mantic nets is a promising approach in the field of image
understanding. Therefore the system AIDA is currently
tested in other applications like land–use analysis, map up-
date, and 3D reconstruction of landscapes and buildings.
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