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Abstract—This paper aims at simplified high dynamic range

(HDR) image generation with non-modified, conventional camera
sensors. One typical HDR approach is exposure bracketing, e.g.
with varying shutter speeds. It requires to capture the same scene
multiple times at different exposure times. These pictures are then
merged into a single HDR picture which typically is converted
back to an 8-bit image by using tone-mapping.
Existing works on HDR imaging focus on image merging and tone
mapping whereas we aim at simplified image acquisition. The pro-
posed algorithm can be used in consumer-level cameras without
hardware modifications at sensor level. Based on intermediate
samplings of each sensor element during the total (pre-defined)
exposure time, we extrapolate the luminance of sensor elements
which are saturated after the total exposure time. Compared to
existing HDR approaches which typically require three different
images with carefully determined exposure times, we only take
one image at the longest exposure time. The shortened total
time between start and end of image acquisition can reduce
ghosting artifacts. The experimental evaluation demonstrates the
effectiveness of the algorithm.

I. INTRODUCTION

This paper is concerned with high dynamic range (HDR)
image generation. This problem is important whenever the
dynamic range of a scene exceeds the dynamic range of the
image sensor capturing the image (Fig. 1). If the exposure
time is set too short at the image acquisition, the photo cells
corresponding to dark parts of the scene do not receive enough
light, so the image there remains black or very dark at least
(Fig. 1a). If, conversely, the exposure time is set too long, the
cells corresponding to bright parts of the scene receive too much
light, resulting in overexposed shots (Fig. 1b). The problem
how to create images with sufficient contrast in both dark and
bright parts of the image is not only of interest in industrial
applications but also for consumers. For HDR image generation
with commercially available cameras, multiple images of the
scene need to be taken with different exposure times first. The
exposure times have to be determined such that both bright
and dark parts of the scene have sufficient contrast in at least
one of the shots. This requires an experienced photographer
or a sophisticated software. Nonetheless, this process is time-
consuming, i.e. it requires a quasi static scene, or results in
artifacts for motion in the scene (ghosting). After the acquisition
of several low dynamic range (LDR) images, they need to
be merged into a single HDR image. To cover the increased
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(a) Underexposed shot

(b) Overexposed shot

Figure 1: Example of a scene with high dynamic range which
cannot be covered by the camera sensor: (a) if the exposure time
is adjusted to accurately represent the lightest parts (lamps),
details in the dark image parts are lost, or vice versa (b).

dynamic range, more bits are necessary for the HDR image
(e. g. represented by high bit depths in OpenEXR format) [1],
[2]. Typically, the HDR image is converted back to an 8-bit-per-
color LDR image (e. g. JPEG) afterwards by using tone-mapping
techniques [3], [4]. In this work we will not focus on tone
mapping but aim at the physical image acquisition and thus,
shortly review related work.

We distinguish three types of HDR image generation: firstly,
the sensor design itself can be modified in order to cope with an
increased dynamic range in the scene, e. g. by introducing anti-
blooming drains [5], additional charge-to-voltage converters
[6] or other hardware modifications [7], [8], [9], [10] not
available in commercial camera sensors. As a variation of
this approach, additional elements (like a controllable spatial
light modulator) which are introduced in the light path in
front of each sensor pixel have been proposed [11]. All
approaches aiming at sensor modifications have in common
that they are extremely expensive, highly complex and thus
impractical for consumer camera sensors. Secondly, spatial
exposure bracketing aims at the simultaneous generation of
various images with different cameras and same settings. The
amount of light reaching each sensor is controlled for instance
by optical filters [12]. Obviously, by introducing additional
elements, similar disadvantages apply as for the approaches
mentioned above. Thirdly, time exposure bracketing aims at
the generation of several LDR images in a temporal sequence
with different exposure settings (e. g. [13]). Since it can be
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performed with any camera, this is the most popular HDR
generation approach. However, to generate shots representing
exactly the same field of view, a fixed camera (e. g. mounted on
a tripod) is necessary. Moreover, due to the relatively long time
for the entire acquisition of all LDR images, those algorithms
are prone to ghosting artifacts which are caused by motion
in the scene. These artifacts become more prevalent for long
acquisition times, thus it is in general desirable to reduce the
entire acquisition time to a minimum.

For a highly accurate image matching, image alignment
techniques are applied. To remove ghosting artifacts, e. g. patch
match was proposed for images [14] as well as for HDR video
[15]. It finds and merges patches from different exposed shots
and extends them to the final image or video by combining
optical flow techniques with patch-based reconstruction. A
specifically adopted region-adaptive multiple-exposure fusion
algorithm was proposed in [16], whereas in [17] a statistically
optimal weighting function under the assumption of compound-
Gaussian noise for a multiple-exposure sequence was proposed.
Recently, a merging method that is robust to misalignment,
based on a pairwise frequency-domain temporal filter operating
was proposed [18]. One disadvantage, which all time exposure
bracketing methods have in common, is that the alignment of
different LDR images is challenging due to the long overall
acquisition time for all exposures (especially for hand-held
exposures), and it may not be possible to entirely remove or
conceal ghosting artifacts.

To reduce the total acquisition time, the sensor sensitivity
is increased (i. e. increase the amplification by using high 1SO
settings), either for the entire image or parts of it (e. g. each
second scanline may be read with different 1SO settings [19],
[20]). Since noise is also further amplified in this case, special
noise reduction has to be applied afterwards ([21]), which may
impair the dynamic range and overall image quality again.

Here, we suggest the acquisition of a single image is indeed
sufficient if the exposure time is set “large enough”. Although
“large enough” typically may mean that the exposure time
for our proposed approach is comparable to the largest one
from a common time expose bracketing approach, the overall
acquisition time is limited to this time span for our approach
and consequently much shorter than the total acquisition time
for taking several shots with different exposure times in the
case of common time exposure bracketing. This procedure
obviously causes over-exposure in some parts of the image.
To nonetheless obtain all the relevant information about tone
contrast, we propose to sample the image or parts thereof
multiple times during the exposure. By sampling, we mean to
read out the photo sensor yet to continue the exposure process.

This idea is motivated by the fact that the bottleneck between
image sensor, image processing chip and memory is the transfer
of data to the memory, not the transfer between image sensor
and the chip. Commercially available (mid- and upper-class)
cameras, e. g. digital single-lens reflex cameras (DSLRs), can
take rapid sequences of pictures until the capacity of an internal
cache in the image processing chip is reached. The limit how
fast consecutive images can be taken is mainly determined by

mechanical properties, i.e. how fast the shutter can operate.

However, current consumer-level cameras do not allow to
read the sensor information during the exposure process. This
operation would only require changes to the firmware of the
image processing chip which needs to allow this operation, not
the image sensor itself. We therefore propose an algorithm that
approximates the proposed idea to read out the image sensor
multiple times during the exposure process.

The contributions can be summarized as follows:

o An algorithm to infer values of sensor elements outside

the dynamic range of the image sensor is proposed.

« We propose to read-out intermediate images during the
exposure process.

« The images used for estimating out-of-range sensor values
can be taken by a sampling procedure.

o Only the image with longest exposure time need to be

taken.
Because the overall time required to take all the images
is reduced, ghosting is less likely to occur.

o An analysis of the error caused by extrapolating quan-
tized intermediate sampling values (“sampling error”) is
presented.

The remaining paper is organized as follows: the basic model
is introduced in Section II. It rests upon the idea that images
can be sampled without interrupting the exposure process. In
Section III, the impact of the sampling error introduced by our
approach is analyzed. Experimental results are presented in
Section IV before Section V concludes the paper.

II. SAMPLING DURING EXPOSURE

Let 7 be the image and 7 (x,y,?) be the value of a pixel
at position (x,y) at time z. Assume that the value of an
pixel (x*, y*) measured after an exposure time fg exceeds
the maximal sensor limit v.x. Thus, instead of the true value
v(x*, y*,tg) a measurement ¥(x*, y*,fg) = vmax iS obtained
with v being the maximal measurable value of one pixel
due to physical limits.

Let t; = /s indicate some shorter time span with s being
the number of intermediate read-outs, i.e. is s > 1. Under
the assumption that the light source is not too bright, we
can expect that the measurement P(x*, y*,#5) < vpax if s is
sufficiently large. This assumption is the basis of all HDR
image composition algorithms. If it is possible to read the
photo cell at (x*, y*,7y) at time t, yet not to reset it, then we
may estimate D(x*, y*,tg). To reconstruct the non-measurable
value D(x*, y*,7g) > vmax Of sensor cell (x*,y*) at time rg,
all that is necessary to do is to determine a time ¢, < fg at
which D(x*, y*,5) < vmax. In the absence of any noise and
assuming a constant illumination during the exposure time fg
(the latter is usually satisfied for all but very long exposure
times), P(x*, y*,fg) can be approximated by
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since t, = E/s.
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If we assume temporal noise, the measured value d(x*, y*, z,)
of pixel (x*,y*) at time ¢, is not exact, thus the extrapolation
s - D(x*, y*, t5) is perturbed by noise. In fact, for larger
values of s (i.e. shorter times f4), the error introduced
by the extrapolation increases (see Section III). Denote by
E{P(x*,y*)} the expectation value of the reconstructed pixel
value P(x*,y*) at time tg, let k indicate multiples of the
shortest exposure time 7 /s, k = 1,...,s and let kn,x indicate
the last sampling step for which $(x*, y*,7x) < Vmax. Then,
by using Eq. (1), we can define

D(x*, y*,1g) = E{D(x*, y*)}
1 kmax

= —D(x*, *,lt .
kmasz:;.( VtE)

2

Additional weighting may be applied as investigated below
(see next section and Eq. (6)).

One appealing property of this procedure is that it requires no
expansive changes to the photo sensor. Only the image processor
and the firmware are required to permit read-outs during the
exposure. This operation should also be implementable without
expensive changes of the hardware itself.

III. ERROR ANALYSIS

. . . 1
The rounding error of each sampling step is |e] < ;.

Therefore, for the k-th out of s sampling steps, the extrapolation
error, i.e. the extrapolation of the rounding error, is limited to
lex| < 5. The maximum error |e| < %s can occur for k =1
and decreases for larger values of k.

Let [-] denote the rounding function to the nearest integer
value. The particular sampling error e} corresponding to
pixel (x*, y*) is calculated as the difference between the true,
non-measurable value ¥(x*, y*,7g) and the extrapolated value
PO YR tE) & £ Py ) = £ [ £ 5(t y* 1) |- Tn the
noise-free case (see Eq. (1)), the error e; can thus be modeled
as

ef = [P(e% % 1m) — i (3)
where g = 7 - [% -v(x*, %, tE)]. Assuming zero-mean white
noise 1 = N (0,0), we obtain

*
[

Py~ (e el )|+ @

Denote by 1, g and v the random variables with realizations
k> gk and v = -1, respectively. The correction term vi of
Eq. (4) is due to rounding gx and n; separately. The true value
of v typically is much smaller, consequently v; represents
the upper bound of the error. Taking the expectation value
as in Eq. (2) to reduce the influence of temporal noise, we
may decompose P(x*, y*) into two parts: the expectation over
k of the second term in Eq. (4) and the expectation of the
Gaussian noise terms 7z. With the discrete random variable v,
we therefore have

E{e*} S‘ﬁ(x*,y*,tg) —E{g} - E{ [7] H +E{v} .

with v = 7.
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Figure 2: Figure in color. Results using simulated images.
horizontal axis: dynamic range factor dg which specifies how
much the maximal sensor value is exceeded; vertical axis: RMSE.
Black lines: results of noise-free experiment with o = 0; red
lines: experiment with noise o~ = 3. Dash-dotted lines: naive
extrapolation by Eq. (1); dashed lines: reconstruction by Eq. (5)
and uniform probability distributions; solid lines: non-uniform
probability distributions using Eqs. (5) and (6).

The noise n; follows a normal distribution, 1, ~ N (0, o),
hence (with Equation (4)) we have E{n} ~ N (0, ﬁ(l + % +
ot ,(;7)0).

Motivated by the higher signal-to-noise ratio (SNR) for longer
exposure times [22], [23], we can reduce the impact of sampling
errors from earlier sampling steps by assuming a non-uniform
probability distribution function wy for the expectations in
Eq. (5),

.k

S

We would like to emphasize that the modeled sampling
errors are not particular to our algorithm but apply for all HDR
algorithms relying on several images independently of how the
single images were acquired.

(6

Wik

IV. EXPERIMENTAL RESULTS

We present simulated results for synthetic images in Sec-
tion IV-A and present real-world photos in Section I'V-B.

A. Simulation

In this section, we show the precision with which the
proposed models reconstruct pixel values outside the valid
dynamic range. Three different models are compared: First, a
naive extrapolation by Eq. (1) only using a single under-exposed
image. This model is most similar to what photographers do
without using special HDR tools. Obviously, any noise present
in the used image will be extrapolated as well. Second, the
model based upon the expectation using a uniform distribution
in Eq. (5). It is intended to reduce noise not caused by the
quantization. Third, the model based upon expectations using
non-uniform distributions in Egs. (5) and (6).
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(a) HDR with MatLab HDRs toolbox

(b) Proposed algorithm

(©)

(@

Figure 3: (Figure best viewed in color.) Processed images: (a) Result of HDR processing using the HDR toolbox of MatLab 2016b
and magnifications in (c) and (e); (b),(d),(f) proposed algorithm with temporal averaging and weighting (Egs. (2) and (6)).
Higher-frequency details are lost by the HDR composition of MatLab, whereas they are preserved by the proposed approach

both in dark and bright areas.

Artificial images are created by randomly choosing a number
in [0, 1], scaling it to 255 - dg, before rounding to the nearest
integer number. Here, dg > 1 denotes the factor with which the

image is supposed to exceed the dynamic range of the sensor.

Thus, setting dg = 2,4,8, ... increases the sensor resolution by
1,2,3,... bits. All pixels beyond the physical limit of vpax =
255 were estimated using the proposed models. For the first
model we used s = 10 and k = 1, for the other two s = 10
and k=1,...,5 — 1. Normally distributed noise is added to
each of the intermediate images with mean zero and standard
deviations o in percent of the maximal pixel value, oy =
0.01 - 255 dR%O'. The estimation error is given by the root
mean square error (RMSE) between the estimated and the true
values. The experiment was repeated 1000 times with random

images and increasing dynamic range dg = { 1.0, 1.25, ... 8 }.

The plot in Fig. 2 shows the results (figure in color). The
horizontal axis corresponds to the dynamic range factor dg,
the vertical axis indicates the RMSE. The black lines indicate
the results of a noise-free experiment with o = 0, while the red
lines indicate an experiment with noise o~ = 3. The dash-dotted
lines indicate the naive extrapolation by Eq. (1), the dashed
lines the reconstruction by Eq. (5) and uniform probability
distributions, and the solid lines by non-uniform probability
distributions using Egs. (5) and (6).

It can be seen that the errors grow while the dynamic range
factor increases for all models. This is not surprising since
increasing the extrapolation also enhances both quantization
errors and noise. The two models based upon the expectation
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perform much better than the naive approach. The model using
non-uniform probability distributions consistently outperforms
the others. For conservative values of dg, the reconstructions
of the latter two models improve the RMSE by more than a
factor of 2 compared to the first model.

B. Real World Proof-of-Concept

We captured photos of the main entrance of a historical
building at night-time with a Canon EOS 5D MARK III DSLR
and simulated intermediate read-outs by taking several photos
from a tripod with manually set exposure times. Figure 3a
shows the HDR processed image using the HDR toolbox of
MatLab 2016b (functions “makehdr” and “tonemap”). We used
MatLab’s automatic processing using default settings. The
result of the proposed algorithm using Eqgs. (5) and (6) is
shown in Figure 3b. The colored boxes in Figs. 3c-3f show
magnifications of the areas in Figs. 3a and 3b, respectively.

It can be seen that high-frequency information is lost if the
baseline algorithm is used. In areas with large luminance, for
instance near the lamps, artifacts occur (cf. lower image in
Fig. 3a) whereas the proposed algorithms is not susceptible
to this error. Furthermore, by limiting the total timespan for
image acquisition, i.e. only one image has to be taken with
exposure time 7g for our approach in contrast to taking several
images, our method is less prone to ghosting artifacts.

V. CONCLUSIONS

This paper is concerned with the acquisition of high dynamic
range images using a conventional, low dynamic range camera
sensor. Here, we claim that taking a single image is sufficient
for HDR image creation if it is the image with longest exposure
time and the camera allows to read intermediate pixel values
during exposure. Thus, carefully determining multiple exposure
times is not necessary anymore. This not only eliminates a
possible cause of errors but also reduces the overall time of
exposure, thereby reducing the requirement for the scene to
be static. An error model is proposed to assess the effects of
sampling error and noise. Since most or all HDR algorithms
are based upon some form of extrapolation, these two types of
errors are not a feature of the proposed algorithm but common
to other algorithms as well.

Since current consumer cameras do not permit read-outs
during exposure without reset, we introduced an approximation
to intermediate read-outs. A quantitative evaluation shows that
the proposed solutions indeed reconstruct HDR images while
the errors are relatively low. By a qualitative comparison with
the HDR toolbox from Matlab 2016b as a representative of
state-of-the-art algorithms, it was demonstrated that the created
HDR image has better quality and that higher-frequency details
are preserved.
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