
Non-Rigid Self-Calibration Of A Projective
Camera

Hanno Ackermann and Bodo Rosenhahn

Leibniz University Hannover

Abstract. Rigid structure-from-motion (SfM) usually consists of two
steps: First, a projective reconstruction is computed which is then up-
graded to Euclidean structure and motion in a subsequent step. Reliable
algorithms exist for both problems. In the case of non-rigid SfM, on the
other hand, especially the Euclidean upgrading has turned out to be
difficult. A few algorithms have been proposed for upgrading an affine
reconstruction, and are able to obtain successful 3D-reconstructions. For
upgrading a non-rigid projective reconstruction, however, either simple
sequences are used, or no 3D-reconstructions are shown at all.

In this article, an algorithm is proposed for estimating the self-calibration
of a projectively reconstructed non-rigid scene. In contrast to other algo-
rithms, neither prior knowledge of the non-rigid deformations is required,
nor a subsequent step to align different motion bases. An evaluation with
synthetic data reveals that the proposed algorithm is robust to noise and
it is able to accurately estimate the 3D-reconstructions and the intrin-
sic calibration. Finally, reconstructions of a challenging real image with
strong non-rigid deformation are presented.

1 Introduction

Approaches for rigid structure-from-motion (SfM) usually consist of two steps.
Given 2D-feature correspondences between several images, a projective recon-
struction is estimated which is identical to the true solution up to a projective
transformation. In a second step, usually referred to as self-calibration or auto-
calibration, this projective distortion is removed by imposing a certain structure
on the motion matrices [1]. Assuming the basis model introduced by Bregler et
al. in [2], we consider the problem of computing the self-calibration of a projective
camera which observes a non-rigidly deforming body or scene. We assume that
this camera has an unknown focal length which may vary or be constant, zero
skew and principal point at the origin. Furthermore, the proposed algorithm is
more general than other works as particular non-rigid deformations need not be
known.

Self-calibrating a projective camera can be considered a mature field if the
observed body is rigid [3–6].

In the case of a non-rigid body observed by an affine camera, Xiao et al.
[7] proposed a linear solution. Brand [8] suggested an algorithm in which the



2 Ackermann, Rosenhahn

motion constraints are first imposed for a particular, arbitrarily chosen defor-
mation mode, and all other deformation modes are corrected with respect to the
initially chosen one, an approach which is non-optimal as the error is concen-
trated in all deformation modes but the reference one. Olsen and Bartoli [9] used
a smoothness prior on the camera motion to determine the self-calibration. Tor-
resani et al. [10] imposed the prior knowledge that the coefficients of non-rigid
deformation satisfy a Gaussian distribution. In a seminal work, Paladini et al.
[11] introduced an iterative projection algorithm which alternates unconstrained
optimization with projection of the motion matrices to the required structure.

To this day, only two algorithms consider the problem of self-calibrating a
projective camera observing a body deforming non-rigidly. Xiao and Kanade [12]
extended their work from [7] to a projective camera with constant focal length.
Hartley and Vidal [13] proposed a method which requires that the intrinsic cam-
era parameters are fixed and known. Similar to [8] they first correct a particular,
arbitrarily chosen deformation mode. Remaining modes are subsequently esti-
mated with respect to the previously corrected ones. While being an elegant,
non-iterative solution, no 3D-reconstructions are shown in this article.

In this article, an algorithm is presented for self-calibration of a projective
camera observing a non-rigidly deforming object. It is assumed that the skew is
zero, the focal length unknown while varying or being constant throughout the
sequence, and the principal point is at the origin. Though seemingly similar to
the requirements in [12], the current work does not demand particular non-rigid
deformation coefficients to be known. Furthermore, the proposed algorithm does
not require a second step (Orthogonal Procrustes Analysis) to enforce identi-
cal rotations. The advantage is that the error should be more fairly distributed
between the bases. To align the bases, additional constraints are necessary. We
therefore generalize the equations introduced by Brand [14] to the projective
camera model. It is proven that the solution is unique up to a global rotation
and reflection of the world coordinate system and individual scalings of each
basis. The accuracy of the proposed algorithm is evaluated with experiments on
synthetic data. Furthermore, 3D-reconstructions are presented for a challeng-
ing real-image sequence showing a body with strong local and global non-rigid
deformation.

This work is structured as follows: In Section 2, the problem of self-calibrating
a projective camera observing a non-rigidly deforming body or scene is defined.
Constraints by which the problem can be determined are derived in Section 3. It
will be proven that these constraints are necessary and sufficient to obtain the
required structure of the motion matrices. Synthetic and real image experiments
are presented in Section 4 before a summary and conclusions in Section 5.

Capital letters denote matrices, bold capital letter scalar constants and bold
lower-case letters vectors. Normal lower-case letters denote scalar variables or
counters.
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2 Problem Definition

Let there be K 4 × n basis shape matrices Xk, k = 1, . . . ,K, consisting of
n homogeneous 3D-points Xj , j = 1, . . . ,N, each, M images with the 3 × 4
projection matrices P i, i = 1, . . . ,M and mixing coefficients αi

k blending the K
basis shapes

λijxij = P i

(
K∑

k=1

αi
kXk

)
. (1)

The linear mixing model was introduced by Bregler et al. [2] for an affine camera
model. Here, the scalars λij are the projective depths necessary for Eq. (1) to
hold true under perspective projection. The projection matrices P i consist of
the orientations Ri, positions ti and calibrations Ki of the cameras1

P i = Ki
[
Ri|ti

]
, Ki =

fi 0 0
0 fi 0
0 0 1

 (2)

with fi being the unknown focal length of the ith camera.
It can be seen that the measurement matrix W consisting of all 2D-features

xij rescaled with the correct projective depths λij has rank 3K + 1 if the two
matrices P and X each have rank 3K + 1

W =

 λ11x11 · · · λ1nx1N

...
. . .

...
λM1xM1 · · · λMxMN

 =

 α1
1K

1R1 · · · α1
KK

iR1 Kit1

...
...

αm
1 K

MRM · · · αM
KKMRM KMtM


︸ ︷︷ ︸

P

·


X1

...
XK

1


︸ ︷︷ ︸

X

(3)
Given all projective depths λij , for instance by the algorithms proposed in

[15, 16], the matrix W can be factorized by singular value decomposition by
Eq. (1)

W = UΣV >, (4)

where U ∈ R3m×(3K+1), Σ ∈ R(3K+1)×(3K+1), and V ∈ R(3K+1)×n. We may
consider U as projectively distorted camera matrices P , and ΣV as structure
matrix X perturbed by the inverse distortion.

The problem of non-rigid projective self-calibrating is to determine a (3K +
1) × (3K) matrix A which transforms U such that UA satisfies the required
structure of the first 3K columns of P , i.e. each row triple of UA must consist
of scaled instances of a rotation Ri distorted by some Ki.

1 With some risk of confusion, we use the symbol Ki for the intrinsic camera cal-
ibration in the ith image whereas the bold letter K denotes the number of basis
shapes.
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3 Deriving Constraints on Non-Rigid Self-Calibration

Let U i denote the ith row triple of U . Straightforwardly applying the derivation
of the dual absolute quadric of rigid scenes to the non-rigid case, we arrive at

ωi = K

f2
i 0 0
0 f2

i 0
0 0 1

 =
1

γ2
i βi

U iAA>U i> (5)

where ωi denotes the dual image of the absolute conic ωi = KiK
>
i at image i,

βi =
(
(αi

1)2 + · · ·+ (αi
K)2

)
, and the scalars γi account for the perspective projec-

tion in image i. The positive-semidefinite (3K+1)×(3K+1) matrix Ω∞ = AA>

of rank 3K is the extension of the dual absolute quadric to the non-rigid case.
It is obvious that Eq. (5) is ambiguous: any change in γi, for instance can

be compensated by a scaling of βi. Similarly, and scaling of all αi
k, i = 1, . . . ,M

requires an inverse scaling on the kth structure basis Xk.
Given ω as defined in Eq. (5), we can obtain four equations per image for

determining Ω∞ = AA>

ui
a

>
AA>ui

b = 0, (6a)

ui
a

>
AA>ui

a − ui
bAA

>ui
b = 0 (6b)

where ui>
{a,b}, a 6= b, denotes the first, second, or third row of U i. Equations (6)

are the so-called orthogonality constraints derived by Xiao et al. for the problem
of self-calibrating an affine [7] or projective camera [12].

While it seems straightforward to determine Ω∞ by solving Eq. (6), it was
shown that even the affine problem is indeterminate [7, 17]. With a slight risk of
confusion, denote by P i the row triple corresponding to image i of matrix P in
Eq. (3). In the case of a projective camera, we obtain for the ambiguity:

Lemma 1. Let there be a 3K× 3K matrix D,

D =

d11O1 d12O2 d13O3

d21O1 d22O2 d23O3 · · ·
...

 , (7)

where dab are scalar factors and the 3×3 matrices Oc, c = 1, . . . ,K, are arbitrary
elements of the orthogonal group, i.e. OcO

>
c = I.

Then, Eqs. (6) are always satisfied for Ω∞ = DD>, yet P i and P iD are not
invariant up to a similarity transformation.

Proof. Assume a general deformation matrix

D =

 d11D11 · · · d1KD1K

...
. . .

...
dK1DK1 · · · dKKDKK

 , (8)
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where the 3×3 matricesDab, and the scalars dab are arbitrary. Letting S = DD>,
Sab 3× 3 blocks of S, lab be sums of the dab, and

S′ =
[(
li1l

i
1S11 + · · ·+ liK l

i
1SK1

)
+ · · ·+

(
li1l

i
KS1K + · · ·+ liK l

i
KSKK

)]
, (9)

we obtain the three equations

γ2
i βif

2
i = ri>

1 S
′ri

1 (10a)

γ2
i βif

2
i = ri>

2 S
′ri

2 (10b)

0 = ri>
a S
′ri

b, a 6= b, (10c)

where ri
{1,2,3} denotes the first, second, or third row vector of Ri.

If we take the 3 × 3 matrices Dak = Ok, a = 1, . . . ,K, all the matrices
Sab are scaled identity matrices, Sab = sabI, for arbitrary scalars sab, hence
Equations (10) are always satisfied. ut

Please notice that the third rows of the rotation matrices are only constrained
by the orthogonality constraint (10c). Since ri>

3 S
′ri

3 = γ2
i βi, the lengths of the

third rows are arbitrary. As the equations including the focal length depend on
depend on the third row (by γ2

i and βi), the focal lengths are also arbitrary,
therefore2.

Furthermore, the Equations (10) do not define constraints between Ak1 and
Ak2 , k1 6= k2, A =

[
A1 · · · AK

]
. Brand gave such constraints in [14] for an affine

camera. Due to the affine model, they only define constraints on the first two
rows, hence the ambiguity between focal lengths and projective depths as well
as non-rigid mixing coefficients remains.

The problem is thus to define constraints between the different Ak1 and Ak2 ,
and on the third rows ui

3
>
Ak. We now arrive at the central contribution of this

article, namely additional constraints for constraining the self-calibration matrix
A of a projective camera.

Theorem 1. Given projectively distorted 3 × (3K + 1) matrices U i, a matrix
A =

[
A1 · · · AK

]
satisfying Eqs. (6) and(

ui
a

>
Ak1A

>
k2

ui
a

)2

−
(
ui

a

>
Ak1A

>
k1

ui
a

)
·
(
ui

a

>
Ak2A

>
k2

ui
a

)
= 0 (11a)(

ui>
1 Ak1A

>
k1

ui
1

)
·
(
ui>

3 Ak2A
>
k2

ui
3

)
−(

ui>
1 Ak2A

>
k2

ui
1

)
·
(
ui>

3 Ak1A
>
k1

ui
3

)
= 0 (11b)

for a = {1, 2, 3} and k1 6= k2 in the unknown column triples Ak of A transforms
a projectively distorted U to the structure required by Eq. (3). Equations (11)
are necessary and sufficient to transform matrices U iA such that the column
2 Such an indeterminacy could be attractive to fit a non-rigid model if some or all

focal lengths are a-priorily known.
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triples U iAk constitute aligning orthogonal systems, and the lengths of the first
two vectors ui>

{1,2}Ak1 of any basis k1 and the lengths of the first two vectors of
any other basis k2 are related by multiplication with (αi

k2
)2 and (αi

k1
)2.

Proof. Necessity : By Eqs. (6), the six vectors ui>
{1,2,3}Ak1 and ui>

{1,2,3}Ak2 form
two systems of orthogonal vectors. Provided sufficiently many images,

ui>
a Ak1A

>
k2

ui
a

‖ui>
a Ak1‖ · ‖ui>

a Ak2‖
= 1 (12)

holds true if and only if each pair of vectors ui>
a Ak1 and ui>

a Ak2 points into the
same direction, thus Equation (11a) imposes that the two systems of orthogonal
vectors align for a = {1, 2, 3}. Equations (3) and (5) further require that

ui>
1 Ak1A

>
k1

ui
1

ui>
3 Ak1A

>
k1

ui
3

=
ui>

1 Ak2A
>
k2

ui
1

ui>
3 Ak2A

>
k2

ui
3

= (φi)2 (13)

for some scalar variables φi from which we obtain Eq. (11b).
Sufficiency : If A satisfies the Eqs. (11), the matrix U iA has the following struc-
ture

U iA =

φi 0 0
0 φi 0
0 0 1

 [σi
1R

i · · · σi
KR

i
]

(14)

for some scalars σi. ut

Please notice that Eq. (11a) has to be imposed for all three vectors ui
a, a =

{1, 2, 3} in order to define a constraint on γ2
i βi.

If the focal length is known to be constant yet unknown, we can impose that
constraint by requiring that σ1φ1 = · · · = σMφM. In the following, denote by i1
and i2 two different image numbers.

Corollary 1. The equation(
ui1>

1 AkA
>
k ui1

1

)
·
(
ui2>

3 AkA
>
k ui2

3

)
−(

ui2>
1 AkA

>
k ui2

1

)
·
(
ui1>

3 AkA
>
k ui1

3

)
= 0 (15)

for i1 6= i2 imposes constant focal length throughout the images.

Proof. We must require that any φi1 equals any other φi2 for i1 6= i2, hence we
obtain from Eq. (11)

ui1>
1 AkA

>
k ui1

1

ui1>
3 AkA>k ui1

3

=
ui2>

1 AkA
>
k ui2

1

ui2>
3 AkA>k ui2

3

(16)

from which Eq. (15) follows directly. ut
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The set of Eqs. (6) and (11) impose the required structure on the matrices
U i. The question is the remaining ambiguity.

Lemma 2. Given a transformation A satisfying the sets of Eqs. (10) and (11)
which brings each U i to the required structure, scalars dk, k = 1, . . . ,K, and
an arbitrary 3 × 3 matrix Og which is an element of the orthogonal group, i.e.
OgO

>
g = I, then A is ambiguous up to multiplication with a matrix D

D =

d11Og d12Og

d21Og d22Og · · ·
...

 . (17)

Proof. To satisfies Eqs. (10), we may assume that D has the structure as defined
lemma (1). Let Dk denote the kth column triple of D, and let

Skk = DkD
>
k =

 d2
11I d1kd2kI · · · d1kdKkI

...
dKkd1kI dKkd2kI · · · d2

KkI

 and (18a)

Sk1k2 = Dk1D
>
k2

=

 d1k1d1k2Ok1O
>
k2
· · · d1k1dKk2Ok1O

>
k2

...
dKk1d1k2Ok1O

>
k2
· · · dKk1dKk2Ok1O

>
k2

 (18b)

where I denotes the 3× 3 identity matrix, and Ok1 and Ok2 , k1 6= k2, are 3× 3
matrices of the orthogonal group.

Let P i denote the row triple of P corresponding to the ith image. Then, we
have

P iSk1k2P
i> =

(
(αi

1)2d1k1d1k2 + . . .

+(αi
K)2dKk1dKk2

)
KiRiOk1O

>
k2
Ri>Ki> and (19a)

P iSkkP
i> =

(
(αi

1)2d2
1k + . . .+ (αi

K)2d2
Kk

)
KiKi> (19b)

From Eq. (19a) and Eq. (11a), we can see that Ok1 and Ok2 must be identical if
there are sufficiently many images. Equation (11b) imposes no further constraints
on the structure of D. ut

Lemma 2 implies that any matrix A satisfying Eqs. (6) and (11) is unique up
to a global rotation and reflection of the world coordinate system. Furthermore,
the bases are unique up an individual scaling of each basis.

Minimizing Eqs. (10) and (11) amounts to minimizing the Frobenius-norm∥∥∥ U iAA> U i> −Ki Ki>
∥∥∥

F
. (20)

Since minimizing the Frobenius-norm ofA is equivalent to minimizing its singular
values3, it is necessary to prevent a rank-degeneracy of A. We therefore impose
3 Since ‖A‖F =

pP
i σ(A)2i where σ(A)i is the ith singular value of A.



8 Ackermann, Rosenhahn

(a)

(b)

Fig. 1. (a) Six images of a sequence of 25 images showing an ellipsoid morphing into
a sphere. At each image the 3D-shape rotates by 7.2◦ around the y-axis (upwards)
and translates in direction of the x-axis. The focal length is constant throughout the
sequence. (b) Same structure and motion while the focal length changes between images
1-12 and 13-25.

the constraint that the smallest singular value of A is larger than 0.1. This
constraint also prevents the trivial solution due to the scalar factors γi and βi

in Eq. (5).

−5000 500
−400−2000200400

−200

0

200

−500

0

500

−400−2000200400

−500 0 500−400−2000200400
−200

0

200

Fig. 2. Example of a 3D-reconstruction if the data is contaminated with normally
distributed noise (blue: reconstructed shape; red: ground truth shape). The standard
deviation was set to 1% of the maximum variation in x, y, and z-direction.

4 Experiments

4.1 Synthetic Image Experiments

For synthetic evaluation we created a 25-image sequence consisting of 726 3D-
points of an ellipsoid morphing into a sphere. Six images of this sequence are
shown in Fig. 1(a). At each image the 3D-shape rotates by 7.2◦ around the y-axis
while translating in direction of the x-axis.
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To measure the influence of noise, we added normally distributed noise with
standard deviation set to 0% to 3.0% in steps of 0.5% of the maximum variation
in x, y and z-direction. For each noise level, we created 10 contaminated data
sets to compute average errors. As error measure, we took the average of the
Euclidean distance between the 3D-points of the ground truth shape and the
reconstruction after translating it so that the centroids of both point clouds
coincide since the dual absolute quadric constraint ignores the (3K+1)st column
of matrix P in Eq. (3). We normalized this number by the Frobenius norm of
the ground truth shape

ε =
1
n

‖Xgt −Xest‖F
‖Xgt‖F

. (21)

Here, Xgt denotes the matrix consisting of the ground truth 3D-points (for sim-
plicity we omitted an index denoting the image number), and Xest the matrix
consisting of the the estimated 3D-points. The symbol ‖ · ‖F denotes the Frobe-
nius norm.

For optimization, we use semi quadratic programming. Since the algorithm
is susceptible to local minima, we randomly initialize it 40 times and take the
best result.

We reconstructed 3D-shapes using two basis shapes (K = 2). Figure 3, left
plot, shows a the average error as the noise increases. As can be seen, the pro-
posed method is quite robust with respect to noise. In the right plot of Fig. 3,
we show average errors per image for noise levels 0%, 1% and 2%. The error is
not evenly distributed yet there are no exceptional spikes.

For a second experiment, we used the same structure and motion shown in
Fig. 1(a) yet changed the focal length between images 1-12 and 13-24. This
sequence is shown in Fig. 1(b). The left plot of Fig. 4 shows the reconstruction
errors. The right plot of this figure shows the reconstruction errors per image.

To evaluate the estimated calibration matrices we computed the following
error metric

εi =
1
9

∥∥∥∥ 1
γ2

i βi
U iAA> U i> −Ki Ki>

∥∥∥∥
F

. (22)

The left plot in Fig. 5 shows the calibration errors for constant focal length
(corresponding to the sequence shown in Fig. 1(a)), the right plot for varying f
(Fig.1(b)). Apparently, the proposed algorithm can handle constant and chang-
ing focal lengths well.

The average estimated focal lengths per image are shown in Fig. 6. The left
plot shows the estimations for constant f = 5 whereas the right plot shows them
for f = 4 in images 1 until 12 and f = 6 in images 13 until 25. It can be seen
that under noise, the algorithm deviates more from the true values as each image
induces its own estimate of the focal length.

Figure 2 shows an example of the reconstructed 3D-shape in the first if the
data is perturbed with noise of standard deviation 1%. Blue points denote esti-
mated 3D-points, red points the ground truth. Apparently, the estimated points
and the ground truth points almost coincide.
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Fig. 3. Left: Average 3D-errors for increasing levels of noise with constant yet unknown
focal length (corresponding to the sequence shown in Fig. 1(a)). Right: Average 3D-
error per image for noise levels of 0% (solid blue line), 1% (dash-dotted green line) and
2% (dashed red line).
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Fig. 4. Average 3D-errors for a changing focal length and the sequence shown in
Fig. 1(b). Left: Average 3D-errors for increasing levels of noise. Right: Average 3D-
error per image for noise levels of 0% (solid blue line), 1% (dash-dotted green line) and
2% (dashed red line).

4.2 Real Image Experiments

Figure 7 shows six images of a 25-image sequence. It shows a box whose sides and
top paper deform non-rigidly. Please notice that the top paper exhibits strong
deformations which cannot be explained by a multi-body or articulated chain
model. A total of 375 points were tracked throughout the sequence.

For projective 3D-reconstruction we used the algorithms proposed in [15,
16] which amounts to camera resectioning and intersectioning. We assumed two
rigid basis shapes (K = 2) and thus optimized for a rank of 7 of the observation
matrix.

3D-reconstructions of the shapes observed in every fifth image are shown in
Fig. 8. From left to right are shown the image number, the 3D-reconstruction
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Fig. 5. Left: Average calibration errors for different levels of noise (blue: no noise,
green: σ = 1.0, red: σ = 2.0) per image. Left: constant focal length; right: focal length
varies between images 12 and 13.
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Fig. 6. Left: Average focal lengths for different levels of noise (blue: no noise, green:
σ = 1.0, red: σ = 2.0) per image. Left: constant focal length f = 5; right: focal length
varies: f = 4 in images 1 until 12 and f = 6 in images 13 until 25.

corresponds to, the image, a top view of the estimated shape, a side view (from
left), a frontal view, and another side view from the right.

The planar sides of the box show a strong perspective distortion. This is
due to the estimated projective depths. The configuration of the frontal and the
left plane to each other closely reflect the shape of the box in the images. The
non-rigid bending of the 3D-points on the top structure also closely resembles
the shape of the top paper in the images. Overall, the reconstruction looks
reasonable.

5 Summary and Conclusions

The contributions made in this article can be summarized as follows: Considering
a pinhole camera with unknown focal length which may be varying or constant,
the problem considered in this work was to determine the Euclidean upgrading
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Fig. 7. Six images of a 25-image sequence with 375 trajectories showing a box deform-
ing non-rigidly. The top paper deforms non-rigidly, so a multi-body model would not
be satisfied.

if this camera observes a non-rigidly deforming object or scene. To align all
motion bases simultaneously during optimization, i.e. enforce identical rotations,
constraints were derived which allow joint estimation of all motion bases. In
terms of error distribution such a joint estimation should be more fair with
respect to the different bases.

It was proven that the upgrading transformation is unique up to rotation and
reflection of the world coordinate system and individual scalings of each basis.
By evaluation of synthetic data as well as a 3D-reconstruction of a difficult real
image sequence in which the object exhibits highly non-rigid distortion, it was
shown that the proposed algorithm is indeed quite robust to increasing noise
and able to reconstruct accurate 3D-shapes.

In future works we will focus on generalizing the camera model to a fully
projective model whose intrinsic parameters are all varying and unknown. Fur-
thermore, means of global optimization will be investigated.
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Fig. 8. Six images of a 25-image sequence with 375 trajectories showing a box deform-
ing non-rigidly. The top paper deforms non-rigidly, so a multi-body model would not
be satisfied. Shown from left to right are image number, image, top view, left side view,
frontal view and right side view of the reconstructed 3D-shape corresponding to each
image.


