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Abstract. The profile of a 10 mm wide and 3µm deep grinding imprint
is as unique as a human fingerprint. To utilize this for fingerprinting
mechanical components, a robust and strong characterization has to be
used. We propose a feature-based approach, in which features of a 1D
profile are detected and described in its 2D space-frequency represen-
tation. We show that the approach is robust on depth maps as well
as intensity images of grinding imprints. To estimate the probability of
misclassification, we derive a model and learn its parameters. With this
model we demonstrate that our characterization has a false positive rate
of approximately 10−20 which is as strong as a human fingerprint.

1 Introduction

For more than one century, many mechanical components are manufactured in-
terchangeable. This allowed mass production with enhanced quality at lower
costs. However interchangeable parts are usually indistinguishable and thus not
identifiable. This leads to problems with product plagiarism and the determi-
nation of origin of a component. Labeling components is often not a suitable
approach as labels may get lost, copied or change functional properties of a
component. Thus, the variation of inherent material properties is used for fin-
gerprinting in various fields, e.g. chemical fingerprints [10] for marking medicine

Fig. 1: Approach: Profile s(x) of a grinding imprint image is obtained and char-
acteristic features are extracted in the space-frequency domain S(x,f).
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or Physical Unclonable Functions [14] for the identification of computer chips.
In this work, grinding imprints are characterized for fingerprinting mechanical
components (cf. Fig. 1). They are created by a grinding wheel which is shifted in
grinding direction. The imprints here have a width of 10 mm and a depth stan-
dard deviation of σ ≈ 3µm. To enforce statistically independent fingerprints,
the grinding wheel is straightened before an imprint is created, which means
that several layers of abrasive materials are removed from its surface.

In this paper, we derive the framework to extract, to characterize and to
verify such imprints in order to identify components. There are four requirements
for the characterization. It should be (a) independent to geometric variations
of the imprint such as a shift or a scale, as a a highly-precise alignment of
extracted data should not be necessary, (b) robust to a few but maybe strong
local perturbations, and (c) unique like a human fingerprint. As we want to allow
that the characterization is computed from depth maps as well as from intensity
images, the characterization should also be (d) independent from a non-linear
scale in depth. In our approach, the characteristic feature constellation is learned
in the space-frequency domain of the imprint profile. Our contributions are

– the detection of features of a 1D grinding profile in the 2D continuous wavelet
space

– the characterization and matching of profiles using feature locations and
descriptions, and

– the analysis of the strength of our fingerprint characterization with respect
to false positive detection and surface perturbation.

By this, we demonstrate that our approach allows identification as secure as if
a human fingerprint was analyzed.

1.1 Related Works

Historically, fingerprints are characterized by the constellation of minutiae which
are ridge properties like crossings, bifurcations, dots and endings. The strength
of a fingerprint is due to the fact that the constellation of the minutiae is unique.
The probability of a false positive classification with only 12 correspondences is
that low (≈ 10−20) that it is sufficient as evidence in court [11].

In our approach we follow the idea of detecting minutiae. As the analyzed
imprint does not contain explicit patterns like ridge crossings, we use an approach
inspired by feature-based image analysis, where generalized salient features are
detected. These features may be maxima in the DoG scale space [6], anisotropic
blobs [9], homogeneous regions [8] or maxima of local entropy [5]. Then, analog to
the minutiae type, a descriptor is built which usually is an affine and illumination
invariant representation of the local image contents. To verify the constellation
of matching descriptors, usually an affine or projective transformation is fitted
to the correspondences using RANSAC [2]. However, grinding imprints are not
suitable for feature-based approaches as they vary slowly in the grinding direction
and abruptly orthogonal to it. This means that an imprint is better characterized
using its 1D profile. Thus, we focus on features of grinding imprint profiles.
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Traditionally, grinding imprints are characterized according to ISO 25178,
which describes the rules and procedures for the assessment of surface texture.
However, such global surface texture parameters such as the root mean square
height of the surface Sq or the maximum height of the surface Sz can neither be
used to distinguish nor to describe surfaces robustly.

Further, methods of statistical texture analysis could be used to character-
ize an imprint. E.g. in [13], the maxima locations of an entropy measure over
different orders and scales is used as characteristic fingerprint image. But as the
relevant information is contained in one dimension, statistical methods for signal
analysis in one dimension seem more adequate.

The differences between audio data and grinding profiles are the statistical
signal properties –grinding profile samples are highly transient– and the number
of samples –a profile consist only of 3200 samples whereas audio data usually of
10 s or more at 44 kHz. Most approaches tackle audio fingerprinting as a pattern
recognition problem where feature vectors are to be classified. These are usu-
ally regularly sampled from the distribution of spectral coefficients like Fourier
Coefficients, Mel Frequency Cepstral Coefficients or Wavelet Coefficients. For a
broad overview we refer to [1]. In contrast to this, we decided to detect specific
salient positions in the space-frequency domain and describe them locally. This
has the advantage that signals with change in scale or with partial differences
are better comparable.

A similar idea has recently been introduced for audio indexing [15]. They ana-
lyze the Short Time Fourier Transform (STFT) spectrogram and use customary
SIFT [6] features for its description. However as imprint profiles are more tran-
sient than audio data, the STFT is not a stable characterization. Further SIFT
is not a suitable approach for describing features as rotation invariance is not
desirable. Nonetheless, in Experiment 4.4, we use this method for a comparison
with our proposed approach.

There exist many applications in which the continuous wavelet transforma-
tion [7] (CWT) is used to compare 1D data. In [3], CWTs of two time series
are multiplied to analyze the correlation between different climatic effects. The
same method is applied in [12] to analyze economic relationships. However to
the best of our knowledge, besides [15], there is no approach in which salient
features in the space-frequency domain are detected and compared.

The outline of this paper is as follows: In Section 2, our feature-based profile
characterization approach is explained. We derive an estimate on the probability
of falsely matching two profiles in Section 3. We evaluate the properties of the
approach in experiments in Section 4. A conclusion is given in Section 5.

2 Feature-based Profile Characterization

2.1 Detection

First, the profile s(x) is extracted from the 2D depth map or intensity image
d(x,y) of the imprint (cf. Fig. 1). We assume that x is the dimension orthogonal
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to the grinding. To cancel out noise and outliers, s(x) is built by averaging over
ny image rows around y = y0:

s(x) =
1

ny

y0+ny/2∑
y=y0−ny/2

d(x, y) . (1)

s(x) is transformed to the space-frequency domain S(x,f) using the contin-
uous wavelet transform [7] (CWT) with the wavelet φx,f (ξ):

S(x,f) =

∫ ∞
−∞

s(ξ) · φx,f (ξ) dξ . (2)

φ is parametrized by x and f , where x is the translation the wavelet is centered
around and f is the dominant frequency in the power density spectrum of φx,f .
To cover a wide range of frequencies, the frequency is sampled logarithmically
between λ0 = sc/2 and λ1 = sx/2, where sx is the profile length and sc the
expected diameter of the imprint of one grain, which is 125µm here.

Like the filter response of every linear system, for a constant f , S(x,f) denotes
a local estimate of the cross correlation (cf. (2)) of the profile at position x and
the wavelet. Peaks in S at (xm,fm) indicate a high correlation between the
local neighborhood of s(xm) and φxm,fm . The distribution of peaks (cf. Fig. 1)
is specific for each profile and fulfills requirement (b) as local changes do not
change the global distribution (cf. Fig. 2).

Wavelets are useful here to obtain sharp-edged and stable peaks in S(x,f).
In principle, an arbitrary real-valued wavelet could be used. On the one hand,
sharp-peaked wavelet distributions are better locatable in x and f . Thus, a
wavelet should be shaped like a profile. On the other hand, peaks should occur at
different frequencies f , so the wavelet should be generic enough. We empirically
chose the Daubechies wavelet [7] of order 4 as it matches both criteria, but we
did not do extensive evaluation of different wavelets.

As feature location, local maxima are chosen as they are locatable most
precisely and robustly under perturbation. The candidate m with coordinates
(xm,fm) is found using non-maximum suppression on |S(x,f)|. Then region Rm
is determined which describes the extents of feature m. In order to be scale
invariant, its extents are proportional to the wavelet wavelength λm = f−1m . In
spatial direction, the extent is x = xm ± λm/2. Similarly, in frequency direction
it is chosen such that f−1 = λm ± λm/2. Thus, the borders of Rm are

x = [xm − λm/2;xm + λm/2] , f = [2/3fm; 2fm] . (3)

2.2 Description

To avoid clusters in the profile characterization, all candidates j are discarded,
if their detected location (xj , fj) falls into the region of another candidate i with
higher absolute value in S:

|S(xj , fj)| < |S(xi, fi)| ∨ (xj , fj) ∈ Ri . (4)
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Fig. 2: Detected (black ellipses) and matching (green ellipses) features in the
continuous wavelet space S(x,f) between two profiles with partially similar local
(right half) but different global structure (lower half).

For all remaining candidates m, a descriptor Dm is built by sampling Rm
in equal intervals. In this work, we sample 3 frequencies with 9 samples each
resulting in a descriptor length of 27. Next, the descriptor is normalized, such
that E[Dm] = 0 and ‖Dm‖ = 1. As a scaling or a depth shift of the profile has
no influence on the descriptor, requirement (d) is achieved. Finally, we have a list
of feature locations (xm, fm = 1/λm) with one descriptor Dm for each feature.

2.3 Comparison

In this Section, we explain how the characterizations of two profiles s(1) and
s(2) are compared. First, all correspondence candidates (i,j) are found whose

descriptors D
(1)
i and D

(2)
j are similar under the cosine metric:

cos(∠(D
(1)
i ,D

(2)
j )) =

〈D(1)
i ,D

(2)
j 〉

‖D(1)
i ‖ · ‖D

(2)
j ‖

= 〈D(1)
i ,D

(2)
j 〉 > dt , (5)

where dt is a threshold set to 0.9 here.
Next, the spatial constellation of all candidates is verified. It is assumed that

profile s(1) and s(2) spatially differ by a shift ∆x and a wavelength ratio ∆λ.
Thus, the constellation of all correspondence pairs (i,j) must fulfill

l
(2)
j =

[
x
(2)
j

λ
(2)
j

]
= ∆λ ·

[
x
(1)
i +∆x

λ
(1)
i

]
= ∆λ · (l(1)i +∆x) . (6)

The two unknowns can be estimated from one correspondence pair. They are
optimized by minimizing the squared symmetric Euclidean distance

e2i,j =
1

2
|l(2)j −∆λ · (l(1)i +∆x)|2 +

1

2
|l(1)i − l

(2)
j /∆λ −∆x|2 (7)

over all candidates (i,j) using RANSAC [2]. Outliers are detected if ei,j is bigger
than an error radius r, which is set to 6 samples here. After this, correspondences
with the same geometric constellation have been found.
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3 False Positive Profile Matches

In this section, we derive a model on the probability pfp , prof of wrongly matching
two profiles of different components. We assume that the classification is based
on the numbers of correspondences k.

For each possible correspondence, there are two criteria in order to be re-
garded as inlier: According to Section 2.3, first the descriptors have to match.
We call the probability of one false descriptor match pfp , desc. Second, a corre-
spondence has to fulfill spatial constraints with a probability of pcstl in order
to be considered as inlier to RANSAC. Assuming statistical independence, the
probability of fulfilling both constraints for a random correspondence inlier is

pri = pfp , desc · pcstl . (8)

If there are n1 features detected in the first profile and n2 in the second, there
may be n = n1n2 correspondences. Assuming n� k, the probability of exactly
k inliers meeting the inlier criteria out of n correspondences can be expressed
using the binomial distribution

B(k,n,pri) =

(
n

k

)
· pkri · (1− pri)n−k . (9)

However, one of the k correspondences always fulfills the RANSAC motion model
as this model is derived from it. This correspondence matches with pfp , desc and
there may be n2 possible motions derived from it. So the probability of obtaining
exactly k correspondences is

pk , prof(k) = 1− (1− pfp , desc ·B(k − 1,n− 1,pri))
n2 , k ≥ 2 . (10)

Thus, the distribution of two independent profiles to match using a threshold
of k filtered correspondences is

pfp , prof(k) =

n∑
i=k

pk , prof(i), k ≥ 2 . (11)

4 Experiments

4.1 Evaluation of false positive detections

We use the model from Section 3 in order to determine the probability of two
independent fingerprints to match. The profiles are extracted from depth images
taken with a confocal white light microscope which uses depth from focus [4]. Its
lateral sampling distance is 3.1µm, so there are 3200 samples for the 10 mm wide
profile. The a priori probabilities pfp , desc and pcstl from Eq. (8) are estimated
from depth images of 45 different grinding imprints. Of each depth image d(i),

two profiles s
(i)
1 and s

(i)
2 are taken of each at a distance of 1 mm. All descriptors
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(a) (b)

Fig. 3: (a) Confusion matrix C with number of matches C(i,j) = k between

profile d
(i)
1 and d

(j)
2 . (b) Probability for two different fingerprints having exactly

k correspondences: p̂k , prof(k) vs. normalized histogram r(k) from C.

from s
(i)
1 are compared with all descriptors from s

(j)
2 . As the descriptors should

only match, if i = j and if their position is not altered, we get an estimate for
pfp , desc by counting false positive correspondences nfp versus true negative corre-
spondences ntn. Regarding pcstl, which is the probability for a random RANSAC
inlier, we compare the inlier area si with the area of possible feature locations sp.
As nearly all mismatches from the descriptor matching occur at small frequency
differences, we chose to compare the areas in the 1D space domain and not in
the 2D space-frequency domain:

p̂fp , desc =
nfp

ntn + nfp
= 1.54% , p̂cstl =

si
sp

=
2r

sp
= 0.48% . (12)

In Fig. 3a, the confusion matrix C(i,j) with the number of correspondences

k between d
(i)
1 and d

(j)
2 is displayed. For enhanced visibility, C is scaled between

k = 0 and k = 10. Please note that true positives on the diagonal have a higher
expected match count of E[C(i,i)] = 26. For i 6= j, only up to k = 6 false
correspondences occurred with E[C(i,j)] = 1.9. The normalized histogram r(k)
of C(i,j) = k is displayed in Fig. 3b. It is visible that our estimate p̂k , prof(k)
follows r(k). To compare the strength of our approach to natural fingerprints,
we extrapolate using p̂k , prof(k) up to k = 19, which is a reasonable value as
classification border as the expected true positive match count is significantly
higher. We receive a profile false detection probability of p̂fp , prof(k = 19) ≈
10−20. Thus, we have shown that such grinding imprints are as strong as human
fingerprints for identification.

4.2 Corrosion

In this experiment, we analyze the influence of corrosion to the redetection of an
imprint. Salt spray corrosion tests (DIN EN ISO 9227) were used to artificially
age the component: 1.5 ml/h of a 5% NaCl salt solution are sprayed onto the
surface for a certain duration τ of aging. Afterward, the surface is acid cleaned.
From the surface views in Fig. 4, it can be seen, that two different effects occur:
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Fig. 4: Corrosion on the grinding imprint after aging for a time span τ .

Fig. 5: Number of correspondences k after aging for time span τ .

continuous perturbation of the surface, and the complete destruction of local
spots which is best visible for τ = 19 h. We compare the number of correspon-
dences k between original and corroded imprint over τ in Fig. 5.

It can be seen that the outcomes are lowering unsteadily, which is a result
of local destruction. However k is still significantly higher than for different
imprints as our representation allows partial matches in space and frequency.
This can be observed in Fig. 2, in which the correspondences between original
and a corrosion of τ = 19 h are displayed.

4.3 Optical Fingerprint Comparison

In this experiment, we will demonstrate that the here-presented approach is
able to identify imprints obtained from the plain image intensities. As input,
we use diffusely-illuminated images from the same imprint which were taken
with a customary camera at a resolution of 1000 × 1000 pel2. In contrast to
Experiment 4.1, we focus on a high detection rate here for an optical on-line
comparison, as a positive detection could be verified by a depth map if a low false
detection rate is needed. Thus, we set the correspondence threshold to k = 10,
which is reasonable as the number of samples is only one third compared to
depth profiles. Apart from this, only dt from (5) was adopted to 0.8.

In Fig. 6a, images from the same profile with varying brightness, camera
pose (up to 10% shift) and scaling (up to 30% zoom) were taken. Similar to

Experiment 4.1, we match every profile s
(i)
1 obtained from the upper image half

to every profile s
(j)
2 from the lower half. In Fig. 6b, the number of correspondences

between i and j is displayed. In total, we receive a detection rate of 44%, which
is very good for this challenging task. If we fix the pose and only vary the
illumination, we even get 77% detection rate.
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(a) (b)

Fig. 6: (a) Intensity images d(i) with varying camera pose and estimates of

(∆x/pel;∆f ) for profile s
(i)
1 with respect to profile s

(6)
2 with smallest zoom.

(b) Confusion matrix with number of matches between s
(i)
1 and s

(j)
2 .

Fig. 7: Depth profile spectrograms of the same surface. Unlike the data of [15],
there is no coarse structure which could be used for SIFT matches (Cf. Fig. 2).

4.4 Comparison to SIFT matching

We now compare our results to the approach of [15], in which customary SIFT
features are used on an audio signal STFT spectrogram. We use the provided
parameters and input the depth profiles from Experiment 4.1 instead of audio
data. As the signal length is much shorter (3200 samples compared to 441000 for
a 10 s block) and as the profiles are more transient than audio signals, we chose
a window length of 32 samples to obtain the spectrogram. Feature extraction
and comparison was carried out as described in [15].

In Fig. 7, spectrograms from two measurements s
(i)
1 and s

(i)
2 of the same

depth profile are displayed. It can be seen that there are only 3 correspondences

detected, which is one of the best results of this method. In total, if profile s
(i)
1 is

matched with itself, an average of 84 correspondences were found, if it is matched

with the second measurement s
(i)
2 at 1 mm distance, this value drops to 0.36 (for

different profiles s
(i)
1 and s

(j)
2 , it is 0.03). This shows that the spectrogram is not

suitable to robustly and uniquely describe transient profiles.

5 Summary and Conclusion

In this paper we have shown an approach to extract and compare robust and
precise characterizations of grinding imprints. It is based on features obtained
from the continuous wavelet transformation. This allows a shift and scale in-
variant characterization of the profile. For the comparison of two fingerprints,
the number of corresponding features with consistent geometric constellation is
used and compared with a threshold k. In experiments we have shown that the
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approach is robust to perturbations like corrosion. We have shown that a similar
approach which uses an STFT spectrogram in combination with SIFT is not
suited for this data. We further have demonstrated that our approach works on
intensity images as well as on depth maps, even under variation of illumination
and pose. To estimate the strength of the proposed approach, a model on the
false positive detection probability p̂fp , prof(k) was derived and its parameters
trained. This model indicates that a reasonable amount of k ≥ 19 matches leads
to as few false positive detections as if human fingerprints were compared.
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