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ABSTRACT

Current video coding standards use block-based motion es-

timation and compensation algorithms to exploit dependen-

cies between consecutive frames. It is a well-known fact that

decreasing the block size reduces the motion-compensated

frame difference, and thus reduces the data rate. However,

no theoretical evaluations are available to model this relation.

This paper derives a model for the prediction error vari-

ance of block-based motion compensation algorithms with

respect to the block size. It is shown that the variance of the

displaced frame difference of a block can be modelled with

the pixel position and only three additional parameters. It can

be observed that the variance increases almost linearly with

the block size.

Index Terms— Video coding, motion compensation,

block size, block matching, prediction error

1. INTRODUCTION

Although a lot of motion estimation techniques, like opti-

cal flow [1] or mesh-based [2] algorithms, were developed

and improved within the last years, the major video coding

standards, such as MPEG-1,2,4 video or ITU-T H.26x, use

block-based algorithms for performance and implementation

reasons. The block size in those algorithms highly affects the

quality of the predicted frame [3]. Large blocks can contain

several objects moving in different directions and thus, the

motion compensation fails. Smaller blocks can better adapt

to local motion, and would therefore result in a more accurate

prediction. However, the smaller the block size, the more mo-

tion vectors have to be coded and transmitted to the receiver.

Therefore, the block size is chosen by a rate distortion opti-

misation, where both the rate for the prediction error and the

rate for the motion vectors are taken into account.

Miscellaneous characteristics of the motion-compensated

frame difference are evaluated in the literature. In [4], the

frame to frame difference is empirically determined. The fact

that the prediction error caused by the motion compensation

is not homogeneous within a block is described in [5]. Fig-

ure 1 shows the mean prediction error of each pixel for a part

Fig. 1. Detail of the prediction error for the Kimono sequence

of the Kimono sequence which is notably larger at the block

boundaries.

However, the impact of the block size is not considered

in those evaluations. The relationship between the motion-

compensated frame difference and the block size allows for a

better understanding of current video coding standards. Fur-

thermore, the evaluation of small block sizes is of special in-

terest for methods like decoder-side motion estimation [6], as

no motion vectors are transmitted, and thus, no lower limit for

the block size exists.

Therefore, this paper proposes a model for motion-

compensated frame difference in Section 2, which takes

the block size into account. Section 3 shows experimental

results, and the paper finishes with conclusions in Section 4.

2. MODEL OF MOTION-COMPENSATED
PREDICTION ERROR

It is assumed that the image intensities of two consecutive

frames ft(x, y) and ft+1(x, y) are linked by

ft(x, y) = ft+1(x + dx(x, y), y + dy(x, y)) + n0(x, y) (1)

where �d(x, y)=(dx(x, y), dy(x, y)) is the motion vector field

between the two frames representing the true motion for each

pixel. To incorporate errors caused by non-translational mo-

tion and occlusion, a zero-mean noise variable n0(x, y) with

variance σ2
n0

is added.

In the following examination, the prediction error for a

M × N block within frame ft is derived. For simplification,

the coordinate origin is set to the middle of the block as shown

in Figure 2.
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Fig. 2. A block of size M × N in the image ft

It is assumed that the motion vector obtained by the block-

based motion estimation algorithm equals the vector at posi-

tion (p, q). Hence, the estimated motion vector is an element

of the set of true motion vectors of the particular block. If this

vector is used for motion compensation, the displaced differ-

ence for a pixel position (u, v) within this block results in the

following equation and can be approximated by a first order

Taylor polynomial:

ft(u, v) − ft+1(u + dx(p, q), v + dy(p, q))
= ft+1(u + dx(u, v), v + dy(u, v)) + n0(u, v)

−ft+1(u + dx(p, q), v + dy(p, q)) (2)

Taylor
= (dx(u, v) − dx(p, q)) ·

δ

δx
ft+1(u + dx(p, q), v + dy(p, q))

+ (dy(u, v) − dy(p, q)) ·
δ

δy
ft+1(u + dx(p, q), v + dy(p, q))

+nT (. . .) + n0(u, v) (3)

= ne(u, v)

with nT (. . .) specifying the error caused by the first or-

der Taylor approximation. This error term depends on

the difference �d(u, v) − �d(p, q) and the image gradient

( δ
δxft+1,

δ
δy ft+1). For simplification, it is assumed that

nT (. . .) is proportional to the first two addends of Equa-

tion (3). The experimental results in Section 3 show that

this simplification is appropriate. Thus, a block size depen-

dent factor k is introduced for the Taylor polynomial, and

Equation 3 results in

ne(u, v) = k
[

(dx(u, v) − dx(p, q))

δ

δx
ft+1(u + dx(p, q), v + dy(p, q))

+ (dy(u, v) − dy(p, q))
δ

δy
ft+1(u + dx(p, q), v + dy(p, q))

]
+n0(u, v). (4)

In [5], a statistical model for the relation of neighbouring

motion vectors is introduced:

dx(u, v)−dx(p, q)∼N
(
0, c2

H

(
(u − p)2 + (v − q)2

))
(5)

dy(u, v)−dy(p, q)∼N
(
0, c2

V

(
(u − p)2 + (v − q)2

))
(6)

where cH and cV are constants representing the amount of

motion changes in horizontal and vertical directions, respec-

tively. It was shown in [5] that block matching using the

squared sum of differences (SSD) will result in motion vec-

tors that are most likely to be the motion vectors at block cen-

tres (E[p] = E[q] = 0).

However, to get the prediction error to depend on the

block size, a closer look on the distribution of p and q is

needed. The probability distributions of the two variables are

considered Gaussian with block size dependent variances σ2
p

and σ2
q :

p∼N(0, σ2
p) (7)

q ∼N(0, σ2
q ) (8)

Evaluations with the synthetic sequences Yosemite (global

motion) and Street (global and local motion), for which the

motion vectors are known for each pixel, have shown that the

probabilities P (|p| < M/2) and P (|q| < N/2) are indepen-

dent of the block size. In other words, the probability that the

estimated motion vector equals a vector within the block is

nearly constant:

Sequence 4x4 8x8 16x16
Yosemite 92% 88% 91%

Street 98% 94% 99%

Although the accuracy of the motion estimation decreases

for larger block sizes, the amount of possible candidates in-

creases and the overall probability does not change signifi-

cantly.

Therefore, the variances of the probability density func-

tions for p and q are proportional to the block size, as shown

for p in Figure 3. Thus, the Equations (7) and (8) can be writ-

ten as

p∼N(0, M2σ2
p0) (9)

q ∼N(0, N2σ2
q0) (10)

where σ2
p0 and σ2

q0 are variances independent of the block

size.

After all parameters in Equation (4) are specified, it is

possible to calculate the variance of the motion-compensated

frame difference for each pixel position within a block:

σ2
e(u, v) = E

[
n2

e(u, v)
] − E2 [ne(u, v)] (11)

The mean of ne(u, v) is zero, since it is assumed that the gra-

dients δ
δxft+1 and δ

δy ft+1 are statistically independent of the
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Fig. 3. Example of the probability distributions of p for dif-

ferent block sizes.

motion model (Equation (5) and (6)) and the noise term σ2
n0

.

Furthermore, the second moment E[(. . .)2] can be calculated

independently for each component of Equation 4 because of

these assumptions.

In contrast to [5], the variances of the motion vector dif-

ferences dx(u, v) − dx(p, q) and dy(u, v) − dy(p, q) depend

on the statistics of the variables p and q due to the assump-

tions of Equations (9) and (10). The second moments of the

differences dx(u, v) − dx(p, q) and dy(u, v) − dy(p, q) lead

to

E
[
(dx(u, v)−dx(p, q))2

]
= c2

H

(
u2+σ2

p+v2+σ2
q

)
(12)

E
[
(dy(u, v)−dy(p, q))2

]
= c2

V

(
u2+σ2

p+v2+σ2
q

)
(13)

and thus, the variance results in

σ2
e(u, v) = k

[
c2
H

(
u2+σ2

p+v2+σ2
q

)
σ2

H

+c2
V

(
u2+σ2

p+v2+σ2
q

)
σ2

V

]
+σ2

n0
(14)

where σ2
H and σ2

V are the variances of the image gradients:

σ2
H = E

[(
δ

δx
ft+1(x, y)

)2
]

(15)

σ2
V = E

[(
δ

δy
ft+1(x, y)

)2
]

(16)

For quadratic blocks M ×M , Equation (14) can be mod-

elled with three independent parameters A, B and σ2
n0

, the

block size M and the pixel position (m, n) within a block:

σ2
e(u, v) = kA

(
u2 + v2

)
+ kAM2B + σ2

n0
(17)

with the constants A =
(
c2
Hσ2

H + c2
V σ2

V

)
and B = σ2

p0+σ2
q0.

Fig. 4. Fitted function (red) and measured data (black grid)

for the Kimono sequence with a block size of 4 × 4.

Fig. 5. Fitted function (red) and measured data (black grid)

for the Kimono sequence with a block size of 8 × 8.

3. EXPERIMENTAL VERIFICATION

This section deals with the verification of the model proposed

in the previous section. A conventional block-based motion

estimation algorithm with half-pel accuracy which minimises

the sum of squared differences (SSD) is used to calculate a

prediction of the current frame. This prediction is subtracted

from the original frame, yielding the prediction error. For

each pixel in a M × M block, the variance of the predic-

tion error is calculated over all blocks of the sequence. To fit

Equation (17) to the measured data, the least squares method

is used. For the HD sequence Kimono, the fitting for differ-

ent block sizes are shown in Figures 4, 5 and 6. Other test

sequences give similar results.

The model in red approximates the measured data in

black very well. However, the accuracy slightly decreases for

larger blocks, since the statistical motion model (Equation (5)
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Fig. 6. Fitted function (red) and measured data (black grid)

for the Kimono sequence with a block size of 16 × 16.

Sequence M kA B σ2
n0

FE(%)

4 0.418 0.343 1.356 2.12

Kimono 8 0.261 0.343 1.356 4.42

16 0.134 0.343 1.356 5.75

4 2.679 0.324 3.801 3.38

People on Street 8 1.259 0.324 3.801 5.20

16 0.615 0.324 3.801 6.40

4 0.385 0.989 0.692 3.93

Foreman 8 0.159 0.989 0.692 5.18

16 0.063 0.989 0.692 9.86

Table 1. Results of data fitting.

and (6)) is only appropriate for small coordinate differences.

To get a quantitative evaluation of the fitting accuracy, the

fitting error

FE =

⎡
⎣ 1

M2

M−1
2∑

u=−M−1
2

M−1
2∑

u=−M−1
2

|σ2
e,1(u, v) − σ2

e,2(u, v)|
σ2

e,2(u, v)

⎤
⎦·100%

(18)

as proposed in [5], is computed, where σ2
e,1(u, v) is the mea-

sured variance and σ2
e,2(u, v) is the calculated variance of

the displaced frame difference. The results are shown in Ta-

ble 1. Kimono and People on Street are HD sequences with

1920 × 1080 and 2560 × 1600 pixel resolution, respectively.

The size of the Foreman sequence is CIF.

The fitting error FE increases with the block size, since

the motion model is more accurate for small intervals as pre-

viously mentioned and fitting with less points can lower the

fitting error. For the Foreman sequence and a block size of

16 × 16, FE increases significantly due to the small image

resolution.

The parameters A, B and σ2
n0

depend only on the motion

and frame content and thus, only k depends on the block size.

Interestingly, k is proportional to 1
M and doubles for halved

blocks. Therefore, Equation 17 can be written as

σ2
e(u, v) =

A

M

(
u2 + v2

)
+ AMB + σ2

n0
(19)

and it can be noticed that the error variance in the middle of

the block increases linearly with larger block sizes.

The error variance σ2
n0

caused by non-translational mo-

tion and occlusion is higher for the People on Street sequence,

where several people are crossing a street. The Kimono se-

quence contains a camera pan and only one moving person,

and thus has less occlusion.

4. CONCLUSIONS

In this paper, a model to calculate the error variance for

block-based motion compensation is proposed. Only three

sequence-dependent parameters are needed to get an accurate

approximation of the motion-compensated frame difference.

This analysis gives an insight into the relation between the

block size used during motion estimation and the variance

of the displaced frame difference. It was observed that the

variance at the block centre increases in a linear way with

respect to the block size.
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