Block matching based 2D-3D pose estimation

Bodo Rosenhahn, Harvey Ho and Reinhard Klette

Center for Imaging Technology and Robotics (CITR)
The University of Auckland
Private Bag 92019 Auckland
New Zealand

bros028Qcs.auckland.ac.nz

abstract

This article presents an approach for 2D-3D pose estimation which relies on texture information on

the surface mesh of an object model.

The textured surface mesh is projected in a virtual image

and a modified block matching algorithm is used to determine correspondences between midpoints

of surface patches and locations in the image data.

This is applied to a point based 2D-3D pose

estimation algorithm to determine the pose and orientation of a 3D object with respect to given image
data. We present experiments on various image sequences and show the potential of the chosen approach.

Keywords: 2D-3D pose estimation, block matching

1 Introduction and preliminary work

Pose estimation has been studied in computer vi-
sion since its beginnings. It is crucial for many

[R]t]

Figure 1: Basic sketch of the 2D-3D pose esti-
mation problem: The task is to find such a rigid
motion, defined by a rotation R and translation
t, which leads to a best fit between observed 2D
image data and a predefined 3D object model.

computer and robot vision tasks. Object grasping,
manipulation and recognition, or self-localization
of mobile robots are typical examples for the use
of pose estimation. For a definition of the pose
problem, we quote [2]: By pose we mean the
transformation needed to map an object model from
its inherent coordinate system into agreement with

Figure 2: Example images taken from a silhouette
based approach for pose estimation.

the sensory data. This article addresses the 2D-
3D pose estimation problem which is defined as
follows: We assume an image of an object taken
by a calibrated camera as 2D sensory data, and we
assume a 3D representation of an object model.
With 2D-3D pose estimation we calculate a rigid
motion (i.e., containing both 3D rotation and 3D
translation) which fits the object data with the
image data. The basic scenario is visualized in
Figure 1.

A crucial question for pose estimation is the object
representation, and the literature deals with point
and line based representations, kinematic chains,
higher order curves or surfaces, up to free-form
contours or free-form surfaces; see [1, 8] for
overviews. Figure 2 shows example images
taken from a silhouette based approach for pose

Figure 3: The principle for block matching based
pose estimation

estimation of free-form surface models. As it can
be seen, just the rim contour in the images is used
as feature for pose estimation, and all internal
structure information is lost. In this contribution
we want to introduce a pose estimation algorithm
which relies on texture information on rendered
objects. The reason is that using texture
information minimizes image pre-processing (e.g.,
corner extraction, silhouette estimation, etc.), and
it allows for the use of as many correspondences
as there are visible, in contrast to silhouette
based pose estimation, which relies on the object
rim. The basic idea is visualized in Figure 3: we
assume the representation of a 3D object model
as surface mesh and assume a texture mapped
onto the object (upper right image). We further
observe the represented object in an image of a
calibrated camera (upper left image). Now the
idea is to render the object with the projection
matrix into a virtual image and to perform a
2D block matching between the virtual projected
object and the observed object (lower right). This
leads to a set of 2D-2D correspondences by using
the midpoints of the surface patches. Since we can
further determine the midpoint of a 3D surface
patch to its projected 2D surface patch, this leads
to a set of 2D-3D point correspondences. We use
this set of correspondences in a point based pose
estimation algorithm to determine the pose of the
object model with respect to the image data. We
call this procedure 2D-3D block matching based
pose estimation. A pose result is shown in the
lower left image of Figure 3 by overlaying the
corners of the 3D surface mesh with the input
image. The basic principle can be compared with
a least-square correlation technique, widely used
for matching images and estimating a geometric
transformation yielding to the closest similarity
between images. Even 3D shape knowledge can
be incorporated [3], but instead of minimizing
within the space of image signals, we propose to

estimate a local flow-field and apply a feature
based pose estimation algorithm, since a faster
(real-time) algorithm can be achieved this way.
Before we explain the algorithm in detail, we
want to point out that it is basically an approach
which combines capabilities known from computer
graphics within a computer vision application.
Though these two disciplines are often treated
separately, similar to [5] we propose a fusion
of both disciplines which leads to advanced
possibilities for various applications, such as pose
estimation. We continue with an introduction to
block matching and pose estimation. In the next
section we introduce the 2D-3D block matching
based pose estimation algorithm and explain
the algorithmic steps in detail. Section three
continues with first experiments on this approach
and section four concludes the contribution with
a brief discussion.

1.1 Block matching

Block matching (BM) is employed to measure sim-
ilarities between two images, or portions of im-
ages, on a pixel-by-pixel basis [9]. It is widely
used in visual tracking, stereo vision and video
compression applications. To compare two blocks
(a block is a subarea of an image), two common
criteria are the sum of square difference (SSD) and
the sum of absolute difference (SAD). Although
adopted for various computer vision tasks, block
matching in 2D space has some weaknesses, e.g. in
its inaccuracy in 3D rotation estimation: the block
motion vector is computed relatively precisely for a
translational movement, but if an object rotates in
3D, its blocks should be deformed with a perspec-
tive transformation to handle the scene. But no 3D
information is entirely embedded in 2D-2D block
matching, since only rectangular shaped blocks are
commonly used. This leads to inaccuracies and
therefore unsatisfactory matching results. One as-
pect of this contribution is to couple 3D model
information with block matching to handle scenes
with rotations, as well as partially or fully occluded
surface patches.

Searching a block inside of a search window fol-
lows some search patterns, which can be classi-
fied in two categories, Full Search and Step Search
(e.g., Three-Step Search, Four-Step Search or New
Three Step Search). During our research, we im-
plemented Full Search, Three-Step search and the
Four-Step Search. As the block matching accuracy
is the primary requirement, we use full search as
the main approach. It still leads to a fast algo-
rithm, and we can process the images in 5 frames
per second on a standard Linux PC. We use block

matching to compare texture mapped patches on
a surface model with 2D image data.

1.2 Pose estimation

To deal with geometric aspects of the pose prob-
lem, we use Clifford or geometric algebras [10] as
mathematical language. Here we will not give a
theoretical introduction into the concepts of Clif-
ford algebras but want to point out a few prop-
erties which are important for this problem. The
elements in geometric algebras are called multivec-
tors which can be multiplied by using a geomet-
ric product. Euclidean, projective and conformal
geometry [7] can all be expressed in geometric al-
gebra without limiting their potentials. Geometric
algebra also enables a coordinate-free and symbolic
representation. To model the pose problem, we
use conformal geometric algebra (CGA). CGA is
build up on a conformal model (i.e., geometry on
the sphere) which is coupled with a homogeneous
model to deal with kinematics and projective ge-
ometry simultaneously. This enables us to deal
with the Euclidean, kinematic and projective space
in one framework in a unified manner and therefore
to cope with the pose problem. Unknown rigid mo-
tions are expressed as motors which can be applied
on different entities (e.g., points or lines) by the use
of the geometric product. This leads to compact
and easily interpretable equations. In equations we
use the inner product -, the outer product A, the
commutator, X and anticommutator product X,
which can be derived from the geometric product.
Though we will also present equations formulated
in conformal geometric algebra, we only explain
these symbolically and want to refer to [8] for more
detailed information.

For 2D-3D point based pose estimation, we are
using constraint equations which compare 2D im-
age points with 3D object points. To compare a
2D image point x with 3D object points X, the
idea is to reconstruct from the image point a 3D
projection ray, L, = e A (O A z) as a Pliicker line
[4]. The motor M is the exponential of a twist, ¥,
M = exp(—g\Il); it formalizes the unknown rigid
motion as a screw motion [4]. The motor M is
applied on th/g/ object point X as a versor product,
X' = M XM, where M represents the reverse
of M. Then the rigidly transformed object point
X' is compared with the reconstructed line L, by
minimizing the error vector between the point and
the line. The representation of such a constraint
equation in geometric algebra takes the form

(MXM) xeA(OAz) = 0.

Note that we work with a 3D formalization of the
pose problem. The constraint equations can be

solved by linearization (i.e., solving the equations
for the twist-parameters which generate the screw
motion) and by applying the Rodrigues formula for
reconstruction of the group action [4]. Iteration
leads to a gradient descent method in 3D space.
This is presented in [8] in more detail. There we
also introduce similar equations to compare 3D
points with 2D lines (3D planes), and 3D lines
with 2D lines (3D planes). Pose estimation can be
performed in real-time; we need 2ms to estimate
a pose containing 100 point correspondences on a
Linux 2GHz machine.

2 2D-3D Block matching

The basic flow chart is visualized in Figure 4. We

Surface
Model
Original + textures
Image

projection matrix:
Rendered
object

2D Block matching

p -~y

Establish 2D-3D
correspondences

‘ pose estimation

update projection matrix

Figure 4: Flow chart of the algorithm.

assume an object model, given as surface mesh and
equipped with texture information. Furthermore,
we assume an image with the visible object and a
projection matrix, which relates the surface mesh
to the camera. The projection matrix with respect

to the image data should give us a tracking as-
sumption, else the search space for block matching
will be too large (e.g., in this case up to 10 pixels).
Then the algorithm starts with rendering the ob-
ject model in a virtual image by using the given
projection matrix. After this we perform a 2D
block matching from the rendered object model to
the image data. Note that background is automat-
ically eliminated, since we perform block matching
from the virtual image to the given image, and
not vice versa. Furthermore, we do not work with
rectangular shaped 2D blocks, but with deformed
search windows along the surface mesh. This is

000000000000000000000000[1]00000000
00000000000000000000T1111/00000000
000000000000000[11111111111[0000000
000000000011111211111111111]000000
00000[1111111111111111111111[000000

0/1111111111111111111111111111[0000
oft1111111211121211111121121111111f000

000[1111111111211211111111111111111J0

00000/111111111111111111111111[0000
000000[11111111111111111113[00000000
0000000/11111111111111[000000000000
0000000[1111111111[0000000000000000
00000000/22111[00000000000000000000

Figure 5: A deformed block mask.

shown in Figure 5. To model a perspective block,
we use a rectangular box with a block-mask ob-
tained through the so-called Ray-Crossing algo-
rithm(e.g., introduced in [6]). Therefore we use
the bounding box of each search pattern, where
the height and width are calculated for each patch
at each frame. Then the Ray-Crossing algorithm
is applied to check whether a point is inside or
outside the bounding box. If a point is inside the
deformed block, its corresponding flag is set to 1,
else to 0. When comparing the deformed block
from one frame to the next frame, the mask is
tested for each point on the block. If the flag is 1,
a comparison is performed, else not. Note that we
apply a standard 2D-2D block matching algorithm
and only use an additional filter mask to gain a
deformed block. After the block matching, we de-
termine from the 2D-2D correspondences the 2D-
3D correspondences. This set of correspondences is
used in our point based pose estimation procedure,
and we can use the estimated rigid body motion to
update the projection matrix for the next frame.

Note that, when the box moves, its six faces can
become visible or invisible dynamically. In other
words, if a face is present in the first frame, it might
be occluded in the second frame. Consequently,
the number of correspondences are changing dy-
namically.

2.1 Optimizations

One problem during the comparison between the
texture mapped object model and the image are

the changing lighting conditions which result in
the need for a color calibration, or on-line texture
updating. We use a process of texture updating,
which also allows that reflections on the object
can be handled. To achieve an on-line texture
updating, we use the pose result of the last pro-
cessed image frame and take the last frame for new
texture coordinates on the object model. Matching
in the image domain is not even stable with a static
scene, since an error propagation at the object
boundaries can occur during mapping the textures
next to the object on the object grid. To avoid
this problem, we use a hybrid method and perform
texture updates just for the inner surface patches,
whereas the boundary patches remain unchanged.
This hybrid approach between matching in the im-
age and world domain proves to be much more
stable than using constant textures.

3 Experiments

We start our experiments with a simple scene. As
object model we use a box with six textured faces.
The box has the height, width and depth of 405 x
280 x 255 mm. We calibrate the scene using Tsai-
calibration. The camera has a distance of approxi-
mately 2m to the object and is grabbing the images
with a resolution of 384 x 288 pixels. We imple-
mented the sources in C,C++ and use OpenGL for
rendering and visualization.

The result of a first sequence, dealing with a trans-
lational movement of the object, is shown in Figure
6: the object is at the beginning not moving over
40 frames. Then the object is moved along the
x-axis of the world coordinate system for 160mm
(till frame 120), and then it remains constant till
frame 160. The images above the diagram show
a few examples of the sequence. The frames are

0L ARALCRAL Before optimization

After optimization:

-100 -

1201

X coordinates of P (Unit: mm)

-140 1

-160

-180
0

Image sequence (Unit: frame)

Figure 6: Translation along the x-axis.

grabbed from a static camera observing the object.

200

180
Process time (Unit: seconds)
1601

140

1201
Variance of Y coord of P (Unit: x 0.1mm)

100 s

! L L L L L
22 x4 6x6 8x8 10x10 15x15 25x25 30x30

Mesh resolution

Figure 7: Variance versus computing time.

Different occlusion percentage:

Y coord of P (Unit: mm)

Image sequence (Unit: frame)

Figure 8: Different occlusions during an image
sequence containing a non-moving object

The diagram in Figure 6 shows the frame number
along the z-axis and the value of the z-coordinate
in the world coordinate system along the y-axis.
For the parts of the sequence where the object is
not moving, the pose result should be a constant
function as ground truth. The other frames should
be nearly linear, but due to the manual motion of
the object, it is not possible to gain a real ground
truth. The estimations of the z-coordinate values
during the sequence using the standard approach
(without optimization) are shown as thin line in
Figure 6. It can be seen that a small object motion
can be observed, caused by errors during camera
calibration, object measurement and block match-
ing. It varies between —4...4 mm in space. Af-
ter applying our optimization methods, we gain a
variance between —2...2 mm in space (shown as

thick line). Also the frequency of object motion is
reduced.

We continue our experiments with an analysis
based on mesh resolution: each side of the box is
subdivided in n x n patches. Obviously, varying
the mesh-resolution leads to different results: the
more patches are used, the more correspondences
for pose estimation can be established, but with
increasing number of patches the computing time
will increase, too. The aim is to find a suitable
mesh resolution with tolerable processing time.

Therefore we analyze the number of patches on
the surface grid and compare the computing time
versus the accuracy of block matching and the pose
result. As a scene, we use the translational move-
ment between frame 40 and 120 of the sequence
(with the non texture updating) shown in Figure
6. The results are shown in Figure 7.

On the sequence we apply different mesh sizes
(sampled on the x-axis) and compare the
coordinates of the pose result with the ground
truth. The variance of the Y-coordinate is shown
on the y-axis (in 0.1 mm) in the diagram. The
second line shows the computation time for the
different patch sizes (over the whole sequence).
It can be seen, that a mesh resolution between
4 x 4 and 15 x 15 does not change the variance
too much, but the computing time is increasing
significantly beginning at 10 x 10. Therefore we
use a mesh resolution of 6 x 6, or 8 x 8 patches for
the experiments as in the previous experiment.

Figure 8 shows the stability of our approach with
respect to disturbed image data: for a sequence
with a non-moving object we add a blue stripe
over each frame and move it from the left to the
right in the image. We further estimate the pose
of the object during the sequence. The images on
top show a few examples for a blue stripe leading
to 70% occlusion. The diagram shows the frame
number at the z-axes and the value of the esti-
mated y-coordinate (in mm) at the y-axes during
the sequence. The different curves show the y-
coordinates for different stripe widths leading to
0%-70% occlusion of the object. Since the object
is not moving in the sequence, the ground truth is
a zero function, which is nearly given by the values
for no occlusion. The more occlusion occurs, the
more noisy are the results, but as can be seen, we
are able to track an object successfully even with
70% occlusion.

Figure 9 shows another image sequence during ro-
tation of the object along the y-axis. It can be
seen that we are able to handle the visible and
non-visible surface patches adaptively. When the
right-hand side of the object is coming into view

Figure 9: Rotation along y-axis. As can be seen,
our algorithm is able to handle non-visible and
visible surface patches, adaptively.

(and providing the algorithm with additional im-
age patches), they are automatically taken into
account. The white crosses in the upper left frames
indicate the matching quality between the object
and image data by projecting the corners of the 3D
object model into the image.

4 Discussion

This contribution presents an approach for model
based pose recovery, which is based on textures
mapped onto the object. We adopt a standard
block matching algorithm to a 2D-3D version
and use correspondences from midpoints of
surface patches to the image data as 2D-3D point
information for pose estimation. @ We present
experiments with rotational and translational
movements, and analyze the pose quality for
“more or less controlled” scenes. We performed
experiments on various image sequences, including
free motions, and achieved good pose results in
the range of a few millimeters. For many tasks,
like object grasping, this is sufficient, and we
will continue our experiments with more complex
objects and scenes.

Acknowledgments

This work has been supported by the EC Grant
1ST-2001-3422 (VISATEC) and by the DFG grants
RO 2497/1-1, RO 2497/1-2.

References

[1] Goddard J.S. Pose and Motion Estimation
From Vision Using Dual Quaternion-Based
Extended Kalman Filtering. University of
Tennessee, Knoxzville, Ph.D. Thesis, 1997.

[2] Grimson W. E. L. Object Recognition by
Computer. The MIT Press, Cambridge, Mas-
sachusetts, 1990.

[3] Koch R. Dynamic 3D scene analysis through
synthesis feedback control. IEEE Pattern
Analysis and Machine Intelligence, Special
issue on analysis and synthesis. Vol 15, No 6,
pp. 556-568, June 1993.

[4] Murray R.M., Li Z. and Sastry S.S. A Mathe-
matical Introduction to Robotic Manipulation.
CRC Press, Inc. Boca Raton, FL, USA, 1994.

[6] Netravali A.N., Salz J. Algorithms for esti-
mation of three-dimensional motion. AT& T
Technical Journal, Vol. 64, No.2, pp. 335-346,
1985.

[6] ORourke J. Computational Geometry in C.
Cambridge University Press, Cambridge, UK,
1998.

[7] Perwass C. and Hildenbrand D. Aspects
of Geometric Algebra in Euclidean, Projec-
tive and Conformal Space. An Introductory
Tutorial. Technical Report 0310, Christian-
Albrechts-Universitat zu Kiel, Institut fir In-
formatik und Praktische Mathematik, 2003.

[8] Rosenhahn B. Pose Estimation
Revisited Technical Report 0308,
Christian-Albrechts- Universitat 2u
Kiel, Institut fir Informatik und

Praktische Mathematik, 2003. Available at
http://www.ks.informatik.uni-kiel.de

[9] ShiY. and Sun H. Image and Video Compres-
sion for Multimedia Engineering: Fundamen-
tals, Algorithms, and Standards. CRC Press,
Boca Raton, FL, USA, 1999.

[10] Sommer G., (ed.), Geometric Computing with
Clifford Algebra. Springer, Berlin, 2001.

