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In this contribution we present a silhouette based human motion capture system. The system components contain silhouette
extraction based on level sets, a correspondence module, which relates image data to model data and a pose estimation
module. Experiments are done in different camera setups and we estimate the model components with 21 degrees of freedom
in up to two frames per second. To evaluate the stability of the proposed algorithm we perform a comparison of the motion
estimation system with a marker based tracking system. The results show the applicability of the system for marker-less
sports movement analysis. We finally present extensions for motion capture in complex environments, with changing lighting
conditions and cluttered background.
This paper is an extended version of [21] which was awarded the DAGM Main Prize on the annual symposium of the German
pattern recognition society (DAGM) in Vienna, 2005.

1 Introduction

Classical motion capture (or MoCap) comprises techniques for
recording the movements of real objects, usually humans [25].
A common application aims to analyze the captured data for
subsequent motion analysis purposes, e.g., clinical studies, diag-
nostics of orthopaedic patients or to help athletes to understand
and improve their performances. It has also grown increasingly
important as a source of motion data for computer animation.
Surveys on existing methods for MoCap can be found in [16, 12].
Well known (commercially available) marker-based tracking sys-
tems exist, e.g. provided by Motion Analysis, Vicon or Simi [15].
There are intrinsic problems in using surface markers, e.g. incor-
rect tracking of markers, tracking failures, the need for special
lab environments and lighting conditions and the fact, that peo-
ple do not feel comfortable with markers attached to the body.
This often leads to unnatural motion patterns. Marker-based
systems are also designed to track the motion of the markers
themselves and thus it must be assumed that the recorded mo-
tion of the markers is identical to the motion of the underlying
human segments. Since human segments are not truly rigid,
this assumption may cause problems, especially in highly dy-
namic movements typically seen in sporting activities. For these
reasons, marker-less tracking is an important field of research. It
requires knowledge in biomechanics, computer vision and com-
puter graphics.

Typically, researchers working in the area of computer vision
prefer simplified human body models, e.g., based on stick, ellip-
soidal, cylindrical or skeleton models [1, 14, 11, 13]. In computer
graphics advanced object modelling and texture mapping tech-
niques for human motions are well known [24, 8, 6, 26] but the
image processing and pose estimation techniques are often sim-
plified. Therefore we started to combine silhouette based pose
estimation with more realistic human models: These are repre-
sented by free-form surface patches and local morphing along
the surface patches is applied to gain a realistic human model
within silhouette based MoCap. Our previous works [22, 23] are
now extended to a complete human motion capture system. The

system consists of an advanced image segmentation method, dy-
namic occlusion handling and kinematic chains of higher com-
plexity (21 degrees of freedom). We perform a comparison of
the system with a commercial marker based tracking system [17]
used to analyze sports movements1. Exercises, such as push ups
or sit ups are analyzed. We further present an approach which
allows to track humans in cluttered scenes and changing light-
ing conditions. This is an extension of [2], where previously used
rigid objects are replaced with multiple free-form surface patches
connected by joint axes of various degrees of freedom.

The contribution is organized as follows: We will start with
the basic setup of the motion capture system. Then we will
continue with the system modules. Here we will briefly describe
image segmentation based on level sets, pose estimation and
the dynamic occlusion handling to deal with partial occlusion
in certain frames. The next section presents the experimental
results, the quantitative error analysis and motion capture results
in scenes with cluttered background. The contribution ends with
a brief summary.

2 The human motion tracking sys-

tem

A 3D object model builds the a priori knowledge of the system,
which is in this case given as two free-form surface patches with
two kinematic chains. Each kinematic chain consists of seven
joints (three for the shoulder, two for the elbow and two for
the wrist). Furthermore we added one back segment joint to
the torso surface patch. The estimation procedure is dealing
with 21 unknowns, six for the pose parameters (three for ro-
tation and three for translation), seven for each arm and one
backbone joint. During correspondence estimation (along four
frames) we collect around 5000 point correspondences (slightly

1Motion Analysis Corporation is one of the leading providers of
optical motion capture systems in entertainment, video-games, film,
broadcasting, virtual reality, medicine, sports, and research.
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Figure 1: The capture system consists of iterating the following
steps: Segmentation, correspondence estimation, pose estima-
tion.

varying dependent on the visible information) and still track in
two frames per second for four camera sequences. Using the 3D
model and images from a (triggered) calibrated multi-camera
sequence, the motion tracking system consists of three main
components, namely silhouette extraction, matching and pose
estimation. All components are iterated to stabilize segmenta-
tion on the one hand and pose estimation on the other hand.

2.1 Image segmentation

Figure 2: Silhouette extraction based on level set functions.
Left: Initial segmentation. Right: Segmentation result.

We refer to image segmentation as the estimation of the
closed object contour in the image. This task can become very
difficult, since noise, shading, occlusions, inhomogeneous ob-
jects, or background clutter may distort the segmentation. We
apply the level set technique [19, 7, 9, 3], in which a level set
function Φ ∈ Ω 7→ R splits the image domain Ω into two regions
Ω1 and Ω2, the object and the background. It holds Φ(x) > 0 if
x ∈ Ω1 and Φ(x) < 0 if x ∈ Ω2. The zero-level line thus marks
the boundary between the two regions. The segmentation is
sought to maximize the total a-posteriori probability given the
probability densities p1 and p2 of Ω1 and Ω2, i.e., pixels are as-
signed to the most probable region according to the Bayes rule.
Additionally, the boundary between both regions should be as

small as possible. This can be expressed by the following energy
functional that is sought to be minimized:

E(Φ, p1, p2) = −

Z

Ω

`

H(Φ) log p1 + (1 − H(Φ)) log p2

+ν|∇H(Φ)|
´

dx (1)

where ν > 0 is a weighting parameter and H(s) is a regularized
version of the Heaviside function, e.g., the error function. Min-
imization with respect to the region boundary represented by Φ
can be performed according to the gradient descent equation

∂tΦ = H
′(Φ)

„

log
p1

p2
+ ν div

„

∇Φ

|∇Φ|

««

(2)

where H ′(s) is the derivative of H(s) with respect to its argu-
ment. The probability densities pi are estimated according to
the EM principle: having the level set function initialized with
some contour, the probability densities within the two regions
are estimated by the gray value histograms smoothed by a Gaus-
sian kernel Kσ with standard deviation σ. The density estimates
are used in the gradient descent and the process is iterated until
it converges.

This rather simple and fast approach is sufficient for our
laboratory set-up. Figure 2 shows an example image and the
contour evolution over time. Obviously, the body silhouette is
well extracted, besides some deviations in the head region caused
by the dark hair. Such inaccuracies, however, can be handled by
the pose estimation procedure. Moreover, we have a tracking
assumption. Therefore, we can initialize the silhouette with the
pose of the last frame which greatly reduces the number of
iterations needed. This implementation is fast; the segmentation
algorithm needs 50 ms per frame, i.e., 200 ms in a four-camera
setup.

In more complex scenes, the segmentation is susceptible to
distracting artifacts like shadows, texture, or background clut-
ter. A grossly bad contour, however, makes the pose estimation
procedure fail. In [2] we therefore presented an approach for
iterative segmentation and pose estimation, where the shape
knowledge supports the segmentation procedure. The energy in
(1) is extended by an additional term

EShape(Φ, ξ) = λ

Z

Ω

(Φ − Φ0(ξ))
2
dx (3)

that penalises deviations of the contour from the projected
model surface with the pose parameters ξ given as level set
function Φ0. This term is minimized by drawing the contour
towards the projected surface on one hand, but also by adapting
the pose parameters such that the projected surface better fits
to the extracted contour. The energy functional therefore repre-
sents a variational model for the joint estimation of the contour
and the pose parameters.

Local optimization is achieved by alternating the minimiza-
tion with respect to the contour for fixed pose parameters

∂tΦ = H
′(Φ)

„

log
p1

p2
+ ν div

„

∇Φ

|∇Φ|
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+ 2λ (Φ0 − Φ). (4)
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and the minimization with respect to the pose parameters for a
fixed contour with the method described in section 2.3.

The model in [2] further extends the image gray value by
color and texture features from [4] in order to allow for tex-
tured objects. These additional features can be integrated into
the segmentation model via the probability density models [3].
Whereas in [2] the model has been restricted to rigid objects,
section 3.1 presents first results for motion capture of human
upper torsos with cluttered background. Due to its iterative
nature, the extended algorithm is considerably slower than the
basic one, and real-time performance is currently not available.

2.2 Correspondence estimation

After image segmentation, correspondences between the object
model and the extracted silhouettes have to be established. To
this end, we follow a modified version of an ICP algorithm [22]
and use a voting method to decide whether a point belongs to
the torso or to one of the arms. These correspondences are used
by the pose estimation module described in the subsequent sec-
tion to determine new pose parameters. The correspondences
are iteratively updated according to the new pose until the over-
all pose converges.

2.3 Pose estimation

For pose estimation we assume a set of point correspondences
(Xi, xi), with 4D (homogeneous) model points Xi and 3D (ho-
mogeneous) image points xi. Each image point defines a 3D
Plücker line Li = (ni, mi) (projective ray), with a (unit) direc-
tion ni and moment mi [18].

Every 3D rigid motion can be represented in an exponential
form

M = exp(θξ̂) = exp

„

ω̂ v

03×1 0

«

(5)

where θξ̂ is the matrix representation of a twist ξ ∈ se(3) =
{(v, ω̂)|v ∈ R

3, ω̂ ∈ so(3)}, with so(3) = {A ∈ R
3×3|A =

−A
T }. The Lie algebra so(3) is the tangential space of the

3D rotations. Its elements are (scaled) rotation axes, which can
either be represented as 3D vector

θω = θ

0

@

ω1

ω2

ω3

1

A , with ‖ω‖2 = 1 (6)

or as screw symmetric matrix

θω̂ = θ

0

@

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

1

A (7)

In fact, M is an element of the one-parametric Lie group SE(3),
known as the group of direct affine isometries. A main result
of Lie theory is that to each Lie group there exists a Lie alge-
bra which can be found in its tangential space, by derivation
and evaluation at its origin; see [18] for more details. The cor-
responding Lie algebra to SE(3) is denoted as se(3). A twist
contains six parameters and can be scaled to θξ with a unit

vector ω. The parameter θ ∈ R corresponds to the motion
velocity (i.e., the rotation velocity and pitch). For varying θ,
the motion can be identified as screw motion around an axis in
space. To reconstruct a group action M ∈ SE(3) from a given
twist, the exponential function exp(θξ̂) = M ∈ SE(3) must be
computed. This can be done efficiently by using the Rodriguez
formula [18],

exp(ξ̂θ) =

„

exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT
vθ

01×3 1

«

,

for ω 6= 0 (8)

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂
2(1 − cos(θ)). (9)

Note that only sine and cosine functions of real numbers need
to be computed.

For pose estimation we combine the reconstructed Plücker
lines with the screw representation for rigid motions and apply
a gradient descent method: Incidence of the transformed 3D
point Xi with the 3D ray Li = (ni, mi) can be expressed as

(exp(θξ̂)Xi)3×1 × ni − mi = 0. (10)

Indeed, Xi is a homogeneous 4D vector and after multiplication
with the 4×4 matrix exp(θξ̂) we neglect the homogeneous com-
ponent (which is 1) to evaluate the cross product with ni. We

now linearize the equation by using exp(θξ̂) =
P

∞

k=0
(θξ̂)k

k!
≈

I + θξ̂, with I as identity matrix. This results in

((I + θξ̂)Xi)3×1 × ni − mi = 0 (11)

and can be re-ordered into an equation of the form Aξ = b.
Collecting a set of such equations (each is of rank two) leads
to an overdetermined system of equations, which can be solved
using, for example, the Householder algorithm. The Rodriguez
formula can be applied to reconstruct the group action M from
the estimated twist ξ. Then the 3D points can be transformed
and the process is iterated until the gradient descent approach
converges.

Joints are expressed as special screws with no pitch of the
form θj ξ̂j with known ξ̂j (the location of the rotation axes as
part of the model representation) and unknown joint angle θj .
The constraint equation of a jth joint has the form

(exp(θj ξ̂j) . . . exp(θ1ξ̂1) exp(θξ̂)Xi)3×1 × ni − mi = 0

(12)

which is linearized in the same way as the rigid body motion
itself. It leads to three linear equations with the six unknown
pose parameters and j unknown joint angles. Collecting a suf-
ficient number of equations leads to an overdetermined system
of equations.

Note, that since we work with reconstructed 3D lines we can
gain equations from different cameras (calibrated with respect
to the same global coordinate system) and merge them into one
system of equations and solve them simultaneously. This is the
key idea to deal with partial occlusions: A joint that is not visible
in one camera must be visible in another one to get a solvable
system of equations. A set of four cameras around the subject
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covers a large range and allows the analysis of quite complex
motion patterns.

In order to deal with larger motions during pose tracking
we use a sampling method that applies the pose estimation al-
gorithm for different neighboring starting positions. From all
results we then choose the one with the minimum error between
the extracted silhouette and the projected surface mesh. This is
important to avoid local minima during tracking.

3 Experiments

Figure 3 shows pose results of a 3-camera sequence. For visual-
ization, the surface patches are transformed (with the estimated
pose and joint angles) and projected onto the images. In this
sequence the subject performs a 360 degrees rotation. It results
in partial occlusions which can be handled from the algorithm.

A lack of many studies is that only a visual feedback about
the pose result is given, by overlaying the pose result with the
image data, e.g. [22, 14]. To enable a quantitative error

Figure 3: A 360 degrees rotation during a 3-Camera sequence.
The algorithm is able to handle partial occlusions.

Surface model

Stick figure model

Stick model coordinate system

Surface model coordinate system

Lab coordinate system

Basler Camera

Falcon Camera

Figure 4: The coordinate systems in the lab setup.

Figure 5: The coordinate systems of the markers in the lab
setup. Within the Solver Interface 2.0, the markers are (manu-
ally) connected to a skeleton model.

analysis, we use a commercial marker based tracking system for
comparison. Here, we use the Motion Analysis software [17],
with an 8-Falcon-camera system. For data capture we use the
Eva 3.2.1 software and the Motion Analysis Solver Interface 2.0
for inverse kinematics computing [17]. The solver interface ex-
tracts Euler angles which are transferred to angles representing
the kinematic chain structure of the used surface model. In this
system a human has to wear a body suit and retro-flective mark-
ers are attached to it. Around each camera is a strobe light led
ring and a red-filter is in front of each lens. This gives very strong
image signals of the markers in each camera. These are treated
as point markers which are reconstructed in the eight-camera
system. The system is calibrated by using a wand-calibration
method. Due to the filter in front of the images we had to use
a second camera set-up which provides real image data. This
camera system is calibrated by using a calibration cube. After
calibration, the offsets and rotations between both world coor-
dinate systems are calculated. Then we generate a stick-model
from the point markers including joint centers and orientations.
This results in a complete calibrated set-up we use for a system
comparison. It is visualized in figure 4. Some reconstructed
markers of the Motion Analysis system are shown in figure 5.
The skeletons are connected manually in Eva 3.2.1 by connect-
ing the reconstructed points. Using this setup we then grabbed
a series of test sequences.

The images in the upper left of figure 1 show the body-suit
with the attached markers. These lead to minor errors during
silhouette extraction, which are omitted here. Figure 6 shows
the first test sequence, where the subject is just moving the arms
forwards and backwards. The diagram shows the estimated an-
gles of the right elbow. The marker results are given as dotted
lines and the silhouette results in solid lines. The overall er-
ror between both angles diagrams is 2.3 degrees, including the
tracking failure between frames 200 till 250.

Figure 7 shows the second test sequence, where the subject
is performing a series of push-ups. Here the elbow angles are
much more characteristic and also well comparable. The overall
error is 1.7 degrees. Both sequences contain partial occlusions
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Figure 6: Tracked arms: The angle diagrams show the elbow
values of the Motion analysis system (dotted) and the silhouette
system (solid).

in certain frames. But this can be handled by the algorithm.

3.1 Tracking in complex environments

While the basic segmentation and pose estimation model is suf-
ficient to capture the human upper torso under controlled lab
conditions nearly in real-time, more challenging scenes with clut-
tered background need the enhanced model with joint segmenta-
tion and pose estimation to yield reliable tracking results. Figure
8 shows an example stereo frame and highlights some proper-
ties of the sequence which are challenging during tracking: the
subject is wearing a loose shirt which causes problems in the seg-
mentation and does not fit accurately to the surface model which
is generated from a person wearing a slim body suit. The hands
are sometimes difficult to separate from the background and
clutter offers many possibilities for the contour to be distracted.
Finally, light from the right leads to a brightly illuminated face
on one side, while it is dark on the other. Pose results of the
sequence are shown in figure 9. The person is moving in the
scene and shaking his arms. The upper images show the pose
results overlaid with the image data and the lower images show
the segmentation results. The experiment indicates the possi-
bility to track humans even under more difficult conditions with
cluttered background, which is required, for instance, in outdoor
scenes.

4 Summary

The contribution has presented a human motion estimation sys-
tem. It extracts silhouettes by using level set functions. The
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Figure 7: Tracked Push-ups: The angle diagrams show the elbow
values of the Motion analysis system (dotted) and the silhouette
system (solid).

silhouettes are used for model fitting with 21 degrees of freedom
in a four-camera set-up. We have further performed a compari-
son of the marker-less approach with a commercial marker based
tracking system. In [20] eight bio-mechanical measurement sys-
tems are compared (including the Motion Analysis system) show-
ing that the root mean square (RMS) errors are typically within
three degrees. The errors we achieve with our system fit in this
range quite well. The method thereby achieves almost real-time
performance.

We have further presented an extended version of the system
that allows for human motion tracking in more complex environ-
ments with textured objects, shadows and cluttered background.
This shows that our work in [2] can be extended to kinematic
chains and that we have the foundations for motion capturing
in complex outdoor environments. Marker-less human motion
tracking is highly challenging for sports, exercise, and clinical

Figure 8: Tracking with cluttered background.
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Figure 9: Pose and segmentation results.

analysis. The system evaluation of our approach revealed very
promising results. Future works will continue with experiments
on high-speed sports movement tracking in outdoor scenes.
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