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Abstract—Artificial neural networks achieve state-of-the-art
performance in many branches of engineering. As such they
are used for all kinds of tasks and nowadays are desired to
be used on mobile devices like smartphones. Due to limited
hardware resources or limited channel capacity on mobile de-
vices, compression of neural network models to reduce storage or
transmission costs is desired. Furthermore, reduced complexity
is of interest. This work investigates introducing the curvature
of the loss surface in the training of artificial neural networks
and analyzes its benefit for the compression of neural networks
through quantization and pruning of its weights. As proof-of-
concept, three small LeNet-based neural networks were trained
using a novel loss function consisting of a weighted average of
the cross-entropy loss and the Frobenius norm of the hessian
matrix. That way both, the loss as well as the local curvature,
are minimized concurrently. Using the proposed method, mean
test accuracies on the MNIST and FashionMNIST datasets after
quantization were considerably improved by up to about 47.6 %
for 1 bit quantization on MNIST and about 27.8 % on FashionM-
NIST compared to quantization after training without curvature
information. Additionally, pruning was found to benefit from
introducing curvature in the training as well with an increase of
up to about 14.6 % mean test accuracy compared to pruning after
training without curvature except for isolated cases. Training the
artificial neural networks first without curvature information
and subsequent training by only one epoch using curvature
information allowed to increase the mean test accuracy after
quantization at 1 bit by about 16 %. The proposed method can
potentially improve the accuracy after compression irrespective
of the compression method applied.

Index Terms—loss surface, curvature, compression, neural
networks

I. INTRODUCTION

Artificial neural networks (ANNs) nowadays are applied to
many tasks achieving state-of-the-art performance in many
branches of engineering. A common application is image
classification where an artificial neural network maps a given
image to one out of several classes [1]. Such an application
among others is desireable to also be used on e.g. mobile
devices [2]. Currently, a common approach is to send data to
a remote computer that runs an ANN and returns the result
to the mobile device [3]. This indirect application shifts the
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Fig. 1: Depicted are two example courses of a loss function
with respect to a single weight for illustration. The red curve
has higher curvature around its minimum but achieves a lower
value at its minimum than the blue curve. The red curve, while
prequantization allowing for the smallest loss, is more sensitive
around its minimum to quantization, yielding the loss value
L,_g, and thus after quantization the blue curve achieves the
lowest loss value La_, in this example.

computational burden to other devices and avoids the need
for greater hardware power. However, this approach requires
an internet connection, introduces delay due to the required
data transmission and gives rise to privacy issues. Therefore,
compression methods are investigated to allow the deployment
and application of artificial neural networks, which can have
up to hundreds of millions of parameters and more, on mobile
devices like smartphones or other devices with comparatively
little hardware resources. To tackle this issue, the Movie
Picture Expert Group (MPEG) recently standardized [4] a
collection of methods to compress ANNs. One of the most
common approaches to the compression of ANNs is certainly
pruning [5]. Pruning methods generally set a certain subset of
all weights of a given ANN to zero, usually those below some
given threshold or the smallest z % of the weights with respect
to their magnitude [6]. A large number of specialized pruning



methods exist like pruning using weight regularization, prun-
ing via loss sensitivity or pruning using first order derivatives
[5], [7]. Many other approaches to ANN compression have
been proposed like weight sharing [8], tensor decompositions
of weights [9], transform coding [10], knowledge distillation
[11] or quantization [12]. Quantization in the context of ANN
compression means the quantization of the weights of the
network. A proxy for the performance of an ANN is the (task
dependent) loss L = L(w) = L(w;x,y) which depends on
the input data x, output data y and the weights of the network
w = (wi,...,wy) € RV. N denotes the total number of
weights of the respective ANN.

Quantization of the weights is equivalent to adding a vector
Aw yielding the new weights

wo =W+ Aw (D

usually leading to an increase of the loss, i.e.

Lo :=L(wg;x,y) > L(w;x,y). 2)

Because, after training, the weights are set such that L(w) is
approximately (locally) minimal, quantization of the weights
will generally increase the loss and therefore, given a mean-
ingful loss function, decrease the performance of the ANN,
e.g. the accuracy in classification tasks.

Therefore methods are required to minimize

AL :=Lg — L. 3)

Hessian-aware or loss-aware quantization has been proposed
for this purpose [13]-[16]. These methods attempt to apply
quantization such that the distortion of the weights due to
quantization is not minimized with respect to the mean-
squared error, the most common metric, but with respect to
the respective loss function.

In contrast, in this work we investigate using curvature
information in the loss function to directly yield weights wopt
such that the network is intrinsically more robust to the error
Aw of the weights induced by quantization or pruning.

Curvature is a property of curves and, more prominently,
surfaces [17], a special case being the loss surface described by
L(w). Obviously, the impact of Aw decreases with decreasing
curvature of L(w). Therefore we would like the training
of the ANN to yield weights w,,; which minimize L(w),
and therefore the performance of the ANN, but concurrently
minimize the curvature of L (interpreted as a surface) at
and around this very point w,,;. This should yield ANNs
intrinsically more robust to changes of theirs weights and
thus intrinsically more robust to quantization or any other
compression algorithm that affects the weights of an ANN
after training. It turns out that this can be achieved by using
a weighted average of the original loss function and a term
related to the curvature of the loss function.

As a proof of concept, three small ANNS, all based on LeNet
[18], were trained on the MNIST [19] and FashionMNIST [20]
dataset and their performance before and after quantization
investigated with respect to the training method. Two baseline
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Fig. 2: Mean accuracy and standard deviation of the LeNet-496
model on a) MNIST and b) FashionMNIST across codebook
size of the quantizer when training with A = 1 and A\ = 0.999
with X as in Eq. 5. The value 232 denotes the uncompressed
networks. A substantial decrease of the mean test accuracy
occured only for codebook sizes of 16 or less suggesting to
limit the investigations to these codebook sizes.

methods were considered and compared to the proposed ap-
proach with respect to classification accuracy achieved across
compression ratios. Additionally, the potential of combining
our approach with pruning was investigated. The proposed idea
is, when implemented with standard frameworks like pytorch,
very expensive to compute due to the large number of second
order derivatives required. This issue is discussed at the end
of this manuscript.

The structure of this manuscript is as follows: Section II
explains the datasets used as well as in detail the general idea
of this work. Furthermore the baseline methods are outlined.
Section III shows the impact of quantization on the classi-
fication accuracy of the ANNs for all methods considered.
The results as well as methods to decrease the computational
complexity are discussed in Section IV and the paper is
concluded in Section V.

II. METHODS AND MATERIALS
A. Proposed Method

The approach investigated in this work makes use of the
fact that quantization acts effectively like an addition of a
vector to the weights of a given ANN. Assuming for simplicity
the existence of only one minimum, then, the smaller the
curvature of the loss function especially around that minimum,
the smaller the increase of the loss will be if we move from the

TABLE I: LeNet-model with 2026 parameters. For each con-
volution layer, ReLu is applied as activation function. Other
models were structurally identical but with smaller number of
weights per layer. The number of weights specified includes
biases.

Layer Weights  Kernel Size ~ Stride ~ Channels In  Channels Out
Convolutional Layer 208 5x%5 2 1 8

Max Pooling - 2x2 1 - -
Convolutional Layer 1168 3x3 1 8 16

Max Pooling - 2x2 1 - -

Fully Connected 650 -
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Fig. 3: Histograms showing the distribution of the values of the
hessian matrix for the LeNet-496 model with (a,c) A = 0.999
and (b,d) A = 1 after one and after five epochs of one example
training. For A = 0.999 the values of the hessian matrix remain
tightly distributed around zero.

location of the minimum A to some other location B. Due to
this, it is natural to consider the curvature of the loss surface. It
is evident that the value of the loss function, and thus the entire
ANN, should be (locally) more robust towards quantization of
the ANN’s weights if the loss surface is of smaller curvature,
i.e. more flat with respect to the weights. The general idea
is conveyed in Figure 1. While possibly achieving greater
performance, i.e. a smaller loss, before quantization, after
quantization it is possible that the lesser curved loss yields
better performance.

There are several measures of curvature known and investi-
gated in mathematics like gaussian curvature, mean curvature
and so on. Gaussian curvature seems to be the curvature of
interest in this regard, albeit, due to its locality, total curvature,
i.e. the integral across some surface area A of the gaussian
curvature, could be even more suitable.

The gaussian curvature GC(w) of a (loss) surface £ can be
calculated according to [21]

detH,(w)
(IIVLW)II5 +1)?

which becomes detH,(w) at local optima. Hy(w) is the
hessian at point w corresponding to the loss surface £. While
this is in principle implementable in standard frameworks, the
determinant is difficult to tract. Sufficient for the vanishing of
GC(w) is the vanishing of ||H||22, the Frobenius norm of
the hessian matrix, which can be implemented in a straight-
forward manner in the training of artificial neural networks.
In this work we considered standard classification problems
to test our idea and thus used the cross-entropy loss function

GC(w) = “)

L¢c g to measure the performance of the ANNs. Therefore, to
consider the curvature of the cross-entropy loss surface during
training, the loss function was changed to

0L
ZZ awcgw )
=1 j=1 v J

=N Lep(w)+ (1 - >\)||H||§2 (©)

with A € [0,1] and the number of weights N of the ANN.
||H||2,2 is the Frobenius norm of the hessian matrix of the
cross-entropy loss Log(w). A = 1 yields the vanilla cross-
entropy loss, while A < 1 adds curvature information to the
loss function.

Lnew =X LCE(

B. Datasets and Neural Networks

The approach was tested using two different image datasets,
the well known MNIST dataset [19] consisting of images
of handwritten digits and the FashionMNIST [20] consisting
of images of common cloths. While MNIST is certainly
the most used dataset to test classifiers, FashionMNIST was
selected due to consisting of ten classes like MNIST but
being considered somewhat more difficult to classify. This
allowed investigating the impact of the dataset on the proposed
compression method.

Both datasets have a dedicated training set consisting of
60,000 images and a dedicated test set consisting of 10,000
images.

The neural networks used were based on LeNet-5 [18]
but used three layers to reduce the computational complexity
and had 496, 1306 and 2026 parameters/weights, respectively.
These models were respectively labeled LeNet-496, LeNet-
1306 and LeNet-2026. The general structure, identical for all
three models, is given in Table I with the number of weights
corresponding to LeNet-2026.

C. Baselines

Two baseline methods were considered: direct quantization
of the weights of the ANNSs trained using the regular cross-
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Fig. 4: Heatmaps showing the elements of the hessian matrix
of the LeNet-496 model after training for 5 epochs on MNIST
using (a) A = 0.999 and thus introducing curvature in the
training and (b) A = 1. No clear change in the pattern
was observed and both hessians see an approximately linear
increase of values of the diagonal elements.
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Fig. 5: Mean test accuracies of the three models investigated across five repetitions for several values of A on MNIST. Little
difference between A values was observed for eight and more quantization levels. However, a significant difference was observed
at two quantization levels, where the mean test accuracy could vary by about 5 — 7%. A = 0.935 was included to show how
the proposed method breaks down if the curvature is emphasized too much in the loss function.

entropy loss, i.e. using Eq. 5 with A = 1, also called naive
training method, and pruning with fine-tuning of the weights.
For pruning, using Pytorch’s prune function a percentage p was
specified and p % of the weights with the smallest magnitude
were then set to zero after training using Eq. 5 with A = 1.
Then, to optimize the performance, the ANN was fine-tuned,
i.e. was trained again for a few epochs using the smaller
network obtained through pruning. Fine-tuning was always
peformed using A = 1.

D. Quantization

Initially, minimum mean-square error quantization using the
well known Max-Lloyd algorithm and uniform quantization
were investigated. However, uniform quanization was found to
perform considerably better and thus was the only quantization
type investigated further. The stepsize of the mid-rise uniform
quantizer was optimized for a given number of quantization
levels using all the weights of the ANNs after training, i.e.
weights were not distinguished by e.g. the layers they belonged
to.

E. Training and Evaluation

Each ANN was trained five times, i.e. five random initial-
izations with subsequent training were performed, using the
adam solver with a learning rate of 0.001 and a weight decay
of 0.0001 unless otherwise specified as well as a batchsize of
1024. A 80%/20 % training/validation split of the dedicated
training data was used, while all results reported were achieved
on the dedicated test sets. All ANN were trained for 30 epochs.

The compression ratio in this work was defined as the ratio
of the model size before and after compression.

A network with n weights, each weight encoded with b
bits before quantization, requires a total storage of nb bits.
After quantization with k clusters/quantization levels, only
loga (k) bits are needed to encode the index, the total storage
is thus nlogs(k). In addition, the codebook of the quantizer
has to be transmitted. For uniform quantization, the codebook
is determined once the stepsize and the center of the quantizer

is known. Thus, 2b additional bits have to be transmitted. The
compression ratio g was therefore computed according to

- nb
@~ nloga (k) +2b°

b = 32 was used in this work which is the default
precision in Python. For pruning, the compression ratio r,
was calculated according to

)

N
N-B)(1-pr)+ B

with the total number of weights IV, the total number of
biases B and the pruning rate pr € (0,1]. The biases were
excluded from pruning as it is common practice due to their
usually large impact on the ANNs performance, and thus pr =
1 corresponds to the pruning of all network weights except for
the bias. pr = 1 was used when the desired compression ratio
Ttarget WoOUld require to prune more than N — B weights. This
occured only for LeNet—496.

When comparing pruning to quantization the networks were
first quantized with a given number of quantization levels and
the corresponding compression ratio 7o was computed. Then,
the required pruning rate pr was determined such that the
compression ratio 7p was as close to 7g as possible.

®)

’r‘p:(

III. RESULTS

First, the rough range of interest of the quantization levels
were investigated. For several quantizer levels ranging from 2
to 64, including the uncompressed reference denoted by 232,
the respective mean test accuracy across five repetitions of
the LeNet-496 model on MNIST is given in Fig. 2 together
with the standard deviation. A major drop in accuracy started
to occur for all networks and datasets at about 4 bit or 16
quantization levels. The standard deviation was found to be
greatly reduced when training with A < 1 and the results
were found to very repeatable. Additionally, standard deviation
decreased with increasing number of parameters and tended to
increase from MNIST to FashionMNIST.

To investigate the impact of the loss function on the
networks in more detail, the distribution of the values of the
hessian matrix when training with A = 0.999 and A = 1 was



u
)
g8y e

Accuracy (%)
<
d
Accuracy (%)

= s s s = T T

39/0776 450808 5200841 6.20.873 7.8/0.906 860919 9.30.928 10200.93811.8/0.952 1500971 28310  abo7es 4
Compression Ratio / Pruning Rate

(a) LeNet-496 on MNIST

530829 630861 79089 880906 950914 1050925
ompression Ratio / Pruning Rate

(b) LeNet-1306 on MNIST

4.0/0.762 4600794 5.30.825 6.4/0.857 7.9/0.889 880,902 950910 10.6/0.92112200.934 15.8/0.95231.0/0.984
Compression Ratio / Pruning Rate

(c) LeNet-2026 on MNIST

21093 1560956 3050968

Accuracy (%)
!

! L L L L L L -
0841 620873 760906 860,919 9.3/0928 10.2/0.938 118/0952 15000.971 2831
Compression Ratio / Pruning Rate

(d) LeNet-496 on FashionMNIST

3.910.776

thod A= i i i I L L
3082 63081 79089 88006 G081 105082 12109 1560856 30808 4507
Compression Ratio / Pruning Rate

(e) LeNet-1306 on FashionMNIST

| I I | | |
857 790869 860302 950910 1060821 1220834 1580852 310084
Compression Ratio / Pruning Rate

(f) LeNet-2026 on FashionMNIST

el Ty gthor
360798 530825

Fig. 6: Mean test accuracy of the three models investigated across five repetitions and both datasets after quantization and training
with A =1 and A = 0.999. Additionally, results for pruning after five and 30 epochs are depicted, too. For pruning, A = 1 was
used. Quantization proved to considerably superior with respect to the achieved mean test accuracy after quantization/pruning
of the networks. The mean test accuracy on MNIST for the LeNet-2026 model was about 80 % larger after quantization than

after pruning at a compression ratio of 31.0.

assessed for the LeNet-496 model expecting a tight distribution
of the values around zero. This was confirmed and an example
comparing the distributions of the values of the hessian after
one epoch and after five epochs is depicted in Fig. 3. A
heatmap of the hessian matrix is shown in Fig. 4. Interestingly,
the diagonal elements appeared to linearly increase for either
method. No clear difference in the heatmap patterns were
apparent, only the magnitude of the weights was one order
less when training with A = 0.999.

Initially, values of A ranging from O to 1 in steps of 0.1
were investigated. But values below 0.9 turned out to generally
emphasize the curvature too much resulting in very poor
accuracies prior to quantization. Thus Fig. 5 depicts for all
three models the mean test accuracies across five repetitions
on MNIST for values of X very close to 1 as well as A = 0.935.
The latter value was chosen as an example where the benefit
of reduced curvature turned into affecting the overall accuracy
negatively. The sweet spot at which the proposed method
broke down appeared to be around A = 0.95. A = 0.99 and
A = 0.999 were found to perform the best across all models
and datasets with a minor advantage for A = 0.999 on the
FashionMNIST for the LeNet-496 model.

For reasonable values of A < 1 the mean accuracy after
quantization was found to be up to 40 % better than when
training with A = 1, i.e. without considering curvature, on
MNIST and up to 25 % better on FashionMNIST irrespective
of the network model.

The decrease in mean test accuracy with decreasing number
of quantization levels was observed to decrease with increas-
ing number of parameters of the networks. On MNIST and

A = 0.99, for the LeNet-496 the mean test accuracy decreased
from about 93 % for the uncompressed network to about 75 %
at two quantization levels or 1 bit. For the LeNet-1306, the
mean test accuracy decreased from about 96 % to 91 % at two
quantization levels and for the Lenet-2026 from about 97 %
to 95 % at two quantization levels.

On FashionMNIST and A = 0.999, for the LeNet-496
the mean test accuracy decreased from about 78.2 % for the
uncompressed network to about 60.2% at two quantization
levels. For the LeNet-1306, the mean test accuracy decreased
from about 81.7% to 67.0% and for the Lenet-2026 from
about 83.9 % to 63.6 %.

Fig. 6 depicts mean test accuracies for all models and
both datasets and all compression methods investigated. For
pruning, A = 1 was used before and after pruning the networks
and accuracies for fine-tuning with five and 30 epochs are
given. Generally, pruning was found to perform the worst out
of all methods investigated but improved considerably with
increasing model size.

On MNIST, the difference between quantization for A\ =
0.999 and pruning was up to 80 % for LeNet-2026 and about
47 % on FashionMNIST for two quantizer levels correspond-
ing to a compression ratio rg = 31.0. However, pruning
can be considered a special kind of quantization. Thus it was
expected to improve when A was set to values smaller than
one. This assumption was confirmed by our investigations and
results are given for all models on FashionMNIST in Fig. 7.
Except for the LeNet—2026 model for two and four quantizer
levels corresponding to compression ratios rg of 31.0 and
15.8, respectively, pruning after training with A = 0.999
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Fig. 7: Mean test accuracy of the three models investigated across five repetitions on FashionMNIST after pruning and training
with A = 1 and after pruning and training with A = 0.999. The subsequent fine-tuning was always performed using A\ = 1.
Additionally, mean test accuracy after quantization and training with A = 0.999 is shown as well. Except for few cases pruning
after training with A = 0.999 achieved considerably increased mean test accuracy with up to 11 % increased mean test accuracy
for the LeNet-2026 model at a pruning rate of 0.934. The improvements in mean test accuracy were observed to be on average

greater for the more complex FashionMNIST.

yielded superior accuracies of between about 1% and 11 %
compared to training with A = 1, the precise value depending
on model and compression ratio. Similar results were achieved
on MNIST but were left out to shorten the presentation of the
results somewhat. Some results for pruning and quantization
are summarized in Table II. For simplicity, compression ratios
in the table are given which correspond to the LeNet-1306
model. The corresponding true compression ratios for the
LeNet-496 and LeNet-2026 model were slightly different as
can be seen in e.g. Fig. 7.

Finally it was investigated, using the LeNet-496 model and
the MNIST dataset, if the training could be sped up by first
training with A = 1, avoiding the costly computation of the
hessian and subsequent training for a few epochs with A <
1 potentially considerably improving the robustness towards
quantization. Thus the LeNet-496 model was trained for 30
epochs using A = 1 and then was trained further for one to ten
epochs using A = 0.9999 with a learning rate of 0.008. These
particular values were found to yield superior performance for
this specific task after a few initital tests and sweeps across
possible parameter values. A larger learning rate should be
able to speed up training at the cost of potentially worse final
accuracy. The result is depicted in Fig. 8.

As references, the mean test accuracies achieved after 30
epochs of training with A = 1 as well as 30 epochs of training
with A = 0.999 were included, too. After only one epoch, the
accuracy improved by about 16 % for two quantization levels.
However, the accuracy did not increase considerably for more
epochs, actually going down slightly for some. Furthermore,
the accuracy of this speed up was considerably lower than
when training right from the start with A = 0.999 and a
learning rate of 0.001, which achieved a mean test accuracy
of 74.5% compared to 59.5% for the speed up after one
epoch. Nonetheless, for six or more quantizer levels the mean
test accuracy of the speed up almost reached the mean test
accuracy when training with A = 0.999 from the start.

IV. DISCUSSION

This work investigated the feasibility of training artificial
neural networks such that the curvature is minimized yielding
artificial neural networks automatically more robust to quanti-
zation. It was found that considering the Frobenius norm of the
hessian of the cross-entropy loss function can make artificial
neural networks considerably more robust to quantization,
especially at small numbers of quantization levels and also
improves performance after pruning.

The reduced impact of quantization on the mean test accu-
racy on MNIST and FashionMNIST with increasing modelsize
which can be seen in Fig. 6 can be explained by increasing
overparametrization of the networks. As expected, this impact
is greater for the more complex FashionMNIST compared
to the classic MNIST dataset. A smaller neural network is
expected to lose more of its expressive power than a large
neural network. One would expect this impact to decrease
further for larger networks which is in line with results
obtained by [14], who considered loss-aware quantization, a
method closely related to ours, who saw a decrease of accuracy
at 1 bit quantization of only —0.1 % for considerably larger
networks.

The lower mean test accuracy of the LeNet-2026 model
compared to the LeNet-1306 model on FashionMNIST can be
explained by the number of epochs we trained. By loss curve
inspection we noticed that for FashionMNIST the LeNet-
2026, and less so the LeNet-1306, network had not completely
converged. Because training with A < 1 was very time
consuming, and the focus did not lie on maximizing accuracy
but rather investigating the impact of network compression,
for comparability we decided to not increase the number of
epochs further.

While the proposed method improved the mean test accu-
racy after pruning as well, its benefit was not as great as
for quantization. In a few cases a decrease in performance
was even observed. One reason for its reduced effectiveness
could be the reduced network size after training. In contrast
to quantization this can limit greatly the network’s expressive



power irrespective of the retained resolution of the weights
of 32 bits. The few cases of reduced network performance
after pruning could be due to the locality of our method. Our
training method minimizes the local curvature only and cannot
guarantee that the curvature remains small in wider areas
around the weights w,,;,; found after training. To do this, total
curvature or similar quantaties would have to be considered.
However, for quantization, a decrease in performance when
training with the proposed method was never observed.

While values of A larger than about 0.95 generally, for
all models and datasets, yielded at least somewhat improved
robustness towards quantization, the question regarding gener-
alization of reasonable choices of A depends on the generaliza-
tion of the elements of the hessian H. This itself depends on
the network structure and the data. While datasets or batches
of data can be normalized and thus are potentially having little
impact on the choice of A, the structure of the network could
largely affect the values of the hessian. Here a normalization
of the hessian could be beneficial in the future.

The most important feature of the proposed approach is
that it can improve any post-training compression method that
affects the weights of the artificial neural network. Due to
the intrinsic robustness to weight-changes due to the smaller
curvature of the loss surface the proposed method could have
very broad application. This makes it different to all other
methods known to the authors.

A. Comparison to Other Work

As far as we know nobody attempted to minimize the
curvature of the loss function during training. Also, as we
applied our method to rather small networks, comparison is
difficult. The publication most similiar to ours is [16] as well
as [14], [22], [23]. All of these attempt to make quantization
loss-aware and not in a sense the other way around, i.e. the
loss quantization-aware, which is another way of looking at
curvature-aware training. While quantization-aware training
was mentioned in [24], it means introducing quantization
during training which is entirely different from our approach.
[16] finds that the curvature of the loss surface becomes very
steep at two and four bits and thus quantization had a very
large impact on the network performance. This is exactly
where we see the greatest benefit of our approach in line
with their findings. Hou et al. [14], in their best result, saw a
decrease of only —0.1 % at 1 bit quantization when using loss-
aware quantization. This minor decrease corresponds well to
the general trend seen in our work, where the decrease of the
mean test accuracy decreased with increasing model complex-
ity and was only 2% on MNIST for the LeNet-2026 model.
While the drop in accuracy was larger on the more complex
FashionMNIST, considerably larger networks are expected to
see a considerably lower impact of their performance due to
quantization and their increasing overparametrization.

Most importantly, the proposed method allows to be com-
bined with the other compression techniques discussed here.
Due to the proposed novel loss function, the ANN is brought
automatically into a state more robust to quantization (or any
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Fig. 8: Depicted are the mean test accuracies across five
reptitions using the LeNet-496 model and the MNIST dataset
when training first with A = 1 and subsequently training
for one to five and ten additional epochs using A = 0.9999,
i.e. curvature is introduced in a secondary training step. The
learning rate for the secondary training step was set to 0.008.
As reference, mean test accuracies when training for 30 epochs
using A = 1 only as well as 30 epochs using A = 0.999
are depicted, too. After only one epoch of training with
A = 0.9999 the accuracy after quantization with 1 bit or two
quantizer levels increased by about 17 % and slightly more
when using six and eight quantizer levels.

other method affecting its weights) but no quantization method
is specified and thus any could be applied.

B. Dealing with the Computational Burden

As explained, the computation of ||H||3 , prevented going
beyond small toy networks in this work due to the large
number of trainings performed. While networks with at least
10° weights are trainable in a reasonable time frame with a
direct implementation and regular computers, larger networks
pose a bigger problem. The complexity of computing the
hessian is O(N?), with the number of weights N of the ANN.
As the number of weights in state-of-the-art networks can be
up to one billion, this would yield a complexity of the order of
10'8. Additionally, the operations per element of the hessian
could be rather large depending on the architecture, adding
considerably to the computational burden.

Nonetheless this approach appears feasible. Super comput-
ers achieve above 10'° floating point operations per second
(FLOP) [25] approaching one exaflop. Furthermore is the
rectified linear unit commonly used in deep neural networks
which yields a very simple form of the gradient and thus of the
hessian. Additionally, the elements of the hessian usually are
greatly connected with each other due to the layer structure of
artificial neural networks. Finally, alot of computations could
be parallelized. If additionally it was recognized that there
were certain second order derivates of greater importance than
others, the computational costs would decrease considerably.
As it is not necessary to store all elements of the hessian, as the
weight update according to Eq. 5 can be done componentwise,
memory requirements are not a large issue.



V. CONCLUSION

This work proposed a curvature-aware cross-entropy loss
function for the training of quantization-robust artificial neural
networks (ANNSs). For three small LeNet-based toy networks
and on two datasets, namely MNIST and FashionMNIST,
the ANNs after training with the proposed loss functions
were compared with respect to the decrease of the mean
test accuracy to two baseline methods, pruning as well as
quantization after training with the regular cross-entropy loss.

It was found that adding curvature information in the
training (“curvature-aware training”) considerably increased
the robustness of the ANN to quantization of their weights,
increasing the mean test accuracy at two quantization levels by
up to about 47 % compared to training without curvature infor-
mation. The proposed method considerably outperformed the
baseline pruning method by about 40 % to about 80 % at two
quantization levels. Pruning after curvature-aware training was
also found to perform better than curvature-unaware training,
increasing in mean test accuracy by 5 — 11 %. Additionally,
training for only one additional epoch with the proposed loss
function after training with the regular cross-entropy loss was
found to improve the mean test accuracy after quantization by
about 17 % at 1 bit.
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