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Abstract

In this paper, we present Constrained Mean Shift (CMS),

a novel approach for mean shift clustering under sparse

supervision using cannot-link constraints. The constraints

provide a guidance in constrained clustering indicating that

the respective pair should not be assigned to the same

cluster. Our method introduces a density-based integration

of the constraints to generate individual distributions of

the sampling points per cluster. We also alleviate the

(in general very sensitive) mean shift bandwidth parameter

by proposing an adaptive bandwidth adjustment which

is especially useful for clustering imbalanced data sets.

Several experiments show that our approach achieves better

performance compared to state-of-the-art methods both

clustering synthetic data sets as well as clustering encoded

features of real-world image data sets.

1 Introduction

Cluster analysis is the general task of grouping data
samples based on the similarity of features. Such
similarity is often determined through a distance metric,
for example two data samples with real-valued features
close in Euclidean distance are considered to be similar.
Different approaches for cluster analysis are well known,
among the most famous is k-Means [18], which aims to
cluster data points into k clusters, such that the sum of
Euclidean distances within each cluster is minimal. k-
Means works by initializing k cluster centers randomly
from the data points. Each data point is then assigned
to the closest cluster center and the cluster center is
updated as the mean of its assigned points. These two
steps are repeated until convergence.

Mean shift [9] is another well-known clustering
algorithm which has been widely used in applications
like curve fitting, image segmentation, self-supervised
feature learning, and road network detection [5,8,11,15].
The method uses the data points to estimate the density
of the feature space. This is done for any point in
feature space by determining the mean of all data points
weighted by the kernel, effectively a window. Starting
from each data point, mean shift repeatedly shifts the
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(a) PCKMeans [3] (b) CMS (ours)

Figure 1: Comparison of state-of-the-art constrained
centroid-based clustering to our proposed method, con-
strained mean shift, on the aggregation data set [12]
using the cannot-link constraints shown as red lines.
Our novel approach to integrate cannot-link constraints
into mean shift enables weak supervision, eliminates
the common problem of correct bandwidth estimation,
and outperforms state-of-the-art constrained clustering
methods, especially on imbalanced data sets or for non-
linearly separable clusters. (Best viewed in color)

current point to the sample mean following the gradient
of the density estimation. Points settling in the same
local maxima, a mode, belong to the same cluster. Both
k-Means and mean shift are unsupervised. Mean shift
has well-known advantages compared to k-Means: the
ability to cluster along nonlinear decision boundaries
allowing complex cluster shapes and being less sensitive
to cluster imbalance.

In semi-supervised clustering, small amounts of
binary constraints are provided as weak supervision
[10]. Binary constraints are either must-link constraints,
indicating that two data points should belong to the
same cluster, or cannot-link constraints, expressing that
two points should belong to different clusters. While
some methods have been presented for k-Means that
integrate constraints [3,25], binary constraints were not
directly integrated into mean shift so far.

In this work, we present a novel constrained clus-
tering method called Constrained Mean Shift (CMS),
that combines the advantages of density-based mean
shift clustering and weak supervision through binary
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constraints (see Fig. 1). Our approach integrates con-
straints by reducing sampling attraction via the kernel
distance and generates an individual data distribution
per cluster point for sampling. We also propose scaling
the constraints to enable clustering on different scales
and alleviate the common mean shift problem of find-
ing a suitable bandwidth. Our contributions are:

• A novel constrained clustering method integrating
binary cannot-link constraints into feature space
mean shift clustering.

• Introduction of an adaptive bandwidth to enable
accurate clustering on different scales and imbal-
anced data.

• The proposed approach outperforms other
centroid-, density-, and eigenvalue-based clustering
methods in feature space on synthetic data sets
and real-world image embeddings.

• Our implementation of Constrained Mean Shift
clustering is published.1

2 Related Work

Many cluster algorithms can be classified as centroid-
based, density-based, hierarchical, and eigenvalue-
based. Centroid-based algorithms aim to represent each
cluster with a single prototype centroid and assign in-
stances by distance to these centroids, such as k-Means
[18]. Density-based approaches like mean shift [9], DB-
SCAN [6], or OPTICS [2] use a feature space density
estimation to assign cohesive areas of high density to
the same cluster. Hierarchical clustering approaches
such as Ward clustering [27] build a hierarchy of clus-
ters by using a linkage criterion based on a distance
metric. Eigenvalue-based approaches like spectral clus-
tering [26] use the eigenvalues of a similarity matrix of
instances for clustering. As our approach extends mean
shift, it falls in the category of density-based clustering.

Constrained Clustering One of the earliest
works integrating binary cannot-link and must-link con-
straints into the k-Means algorithm was COP-k-Means
[25], which uses the constraints as a hard prior by pre-
venting assignment of instances to a cluster center which
would violate a constraint. Since assignments are made
sequentially with random order, an instance may have
no assignable cluster without violation, in which case
the algorithm fails. PCKMeans [3] improves stability
by integrating constraint violation into the assignment
cost function so that violations do not result in fail-
ure but only higher cost. Regular DBSCAN finds clus-
ters by identifying strongly connected neighborhoods

1https://github.com/m-schier/cms

of points. C-DBSCAN [21] extends DBSCAN with bi-
nary constraints by breaking apart such clusters along
cannot-link constraints and merging clusters with must-
link constraints. Binary constraints have also been in-
tegrated into spectral clustering [26] by encoding soft
constraints as a constraint matrix which is used as an
auxiliary condition when solving the minimum graph
cut for the regular spectral clustering problem.

Kernel & Deep Clustering Since clustering is
largely dependent on the quality of features, different
transformations were proposed to improve overall clus-
tering results. Semi-supervised kernel clustering trans-
forms the input space using a learned kernel into kernel
space in a way that must-link instances are likely to
be clustered alike and cannot-link instances differently.
Kulis et al. [16] were among the first combining such
a kernel with k-Means clustering improving results for
nonlinearly separable clusters. For mean shift cluster-
ing Anand et al. [1] have proposed a similar method
called SKMS, which learns a kernel using the binary
constraints and performs unsupervised mean shift clus-
tering in kernel space. Thus, the constraints are not
directly used in the mean shift phase of the algorithm,
but rather used to shape an easy to cluster kernel space.

More recently, cluster algorithms have been com-
bined with deep learning. In Deep Embedding Cluster-
ing (DEC) [29] an autoencoder network is trained on an
image data set, then its embeddings are hardened using
a k-Means like loss function. Semi-supervision through
binary constraints as a soft prior was integrated into
this procedure by Ren et al. [20] by adding a constraint
violation loss.

3 Mean Shift

We briefly summarize regular mean shift [9] in this sec-
tion. Mean shift is a density-based clustering algorithm
estimating the d-dimensional feature space density us-
ing a kernel K and shifting cluster centers by ascending
the gradient of this estimation. Valid kernel functions
K : Rd → R must have a profile k : [0,∞]→ [0, 1] such
that K(x) = k(‖x‖22) and k is monotonically decreasing,
piecewise continous, and its integral finite. Given n data
points X = {x1, . . . ,xn} ⊂ Rd, the sampling points S
and cluster centers T(0) are commonly initialized with

the data points, i.e. si = xi, t
(0)
i = xi. Using a specified

bandwidth h, intuitively the scale of the kernel, mean
shift estimates the new sample mean of any point x in
feature space as:

(3.1) m(x) =

∑n
j=1 k

(∥∥∥ sj−x
h

∥∥∥2) · w(·) · sj∑n
j=1 k

(∥∥∥ sj−x
h

∥∥∥2) · w(·)
,
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(a) KDE of regular mean shift (b) KDE of CMS when shifting i (c) KDE of CMS when shifting j

Figure 2: Influence of constraints on kernel density estimation (KDE) in (constrained) mean shift. Grey circles
mark the cluster centers where the size indicates the weighting w(·). Sampling points are identical to the cluster
centers. For CMS, the current cluster center is marked as a white diamond. CMS estimates kernel density
individually for each cluster center, reducing the weight of sampling points close to a cannot-link constraint.

where w(·) is a function for weighting each sample sj . In
the common case it is simply a constant w = 1. We will
later use w(·) for our proposed integration of cannot-
link constraints. The clustering is performed by shifting
all cluster centers to their sampling mean in each

iteration u: T(u) =
{
m
(
t
(u−1)
1

)
, . . . ,m

(
t
(u−1)
n

)}
.

This shifting is repeated until the maximum number of
iterations umax or convergence. The outlined approach
of mean shift is often referred to as nonblurring [5]
as the sampling points S remain stationary. The
approach proposed by Fukunaga and Hostetler [9] uses
the previous cluster centers T(u−1) as sampling points S
in each iteration u, except for the first iteration, where
the data points X are used. Since the sampling points
are fully blurred, this version is commonly referred to
as blurring mean shift. Our proposed approach for
constraints works on both methods and only requires
sampling points and cluster centers of the current
iteration, therefore the time indices are omitted for
readability in the following.

4 Constrained Mean Shift

Our proposed method enables semi-supervised density-
based clustering with mean shift. In this section we
describe our main contributions: integrating binary
cannot-link constraints into the sample mean, con-
straint scaling, and adaptive bandwidth.

4.1 Integrating Constraints Given n data points
in d-dimensional space X = {x1, . . . ,xn} ⊂ Rd, let
C be the binary relation of cannot-link constraints,
i.e. (i, j) ∈ C indicates that the i-th and j-th data
point must not be assigned to the same cluster. Since
both the sampling points S and cluster centers T are
initialized with the data points X, the cannot-link
constraints C can relate between cluster centers directly,
but also between cluster centers and sampling points.
Therefore, (i, j) ∈ C indicates ti and tj should not
be close and that ti should not sample from sj and

vice versa. In Eq. (3.1), we highlighted the use of
a weighting function w(·) during the mean shift. We
introduce the integration of constraints by designing
a weighting function w(ti, sj) returning the sampling
weight of sj when sampling for the cluster center ti.
A naive approach would be not sampling from sj if a
constraint exists: w(ti, sj) = [(i, j) 6∈ C], where [·] is
the Iverson bracket operator. However, this would not
prevent sampling in the vicinity of sj , in which case a
high density region close to sj would still be sampled
from and heavily influence ti, despite being very similar
in features to a sampling point which ti should not
attract to.

Therefore we present a distance-based integration of
constraints to determine individual attractions between
cluster centers and sampling points. Given a constraint
(x, y) ∈ C, with increasing closeness of cluster centers
ti to tx and tj to ty the sampling weight of sj should
be reduced. This idea is illustrated in Fig. 2. For
regular mean shift, all samples are weighted equally so
that the kernel density estimation is influenced equally
by all sampling points and is identical for all cluster
centers. When introducing a constraint between the
points labeled x and y, cluster centers on the right side
of the constraint should attract less to sampling points
on the left side and vice versa. Since this constraint-
driven reduction should become 0 (and therefore the
weighting w(·) becomes 1) as soon as either the cluster
center or the sampling point are no longer close to the
constraint as determined by the kernel, we can multiply
both kernel responses and subtract the result from
1. Thus, we propose the constraint-based weighting
function R(ti, sj , (x, y)) to calculate the multiplicative
weight reduction caused by the constraint (x, y) ∈ C
when sampling sj for cluster center ti:
(4.2)

R(ti, sj , (x, y)) = 1−k

(∥∥∥∥tx − ti
hc

∥∥∥∥2
)
k

(∥∥∥∥ty − tj
hc

∥∥∥∥2
)

,

where hc is the bandwidth that should be used for
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Figure 3: CMS integrates cannot-link constraints (dashed red lines) by reducing the kernel density estimation
(KDE) on opposite ends of constraints. Background contour shows KDE for the cluster center (diamond)
highlighted in white. As the bandwidth h is increased with the iterations through our proposed adaptive
bandwidth (left to right), the local structures converge to a stable global clustering. KDE in CMS completely
ignores all points of the opposite cluster in this stable state through our proposed weighting.

the constraint. We have found it beneficial to use
a different bandwidth than the global bandwidth h
and will provide details on individual bandwidths per
constraint in the next section. Note that we are
measuring the distance of cluster centers on both the
side of the cluster center (ti to tx) and the side of the
sampling point (tj to ty). Since the cluster centers
are updated during iterations of mean shift while the
sampling points remain stationary in nonblurring mean
shift, the cluster centers better reflect the density of
the data. Thus, when calculating constraint weights on
cluster centers, the constraints move with the evolving
estimation of the data density. This is apparent when
viewing Fig. 3 where the constraints anchored at the
cluster centers are moving inwards through iterations,
thus at the end all cluster centers are very close to one of
the two cluster centers on either moon with a constraint.

As R(·) is 1, the multiplicative identity, if a con-
straint has no reduction on sampling, the reduction
through all constraints can be combined by multipli-
cation. Thus, the weight function w(ti, sj) is defined
as:

(4.3) w(ti, sj) =
∏

(x,y)∈C

R(ti, sj , (x, y)).

Because the relation of C is symmetric, all con-
straints are covered for both points.

4.2 Constraint Scaling In Eq. (4.2), we defined the
constraint bandwidth hc, the bandwidth of the kernel
when measuring proximity to a constraint. If hc would
always be equal to the global bandwidth h and a given
constraint would be of very small scale compared to
h, then any point surrounding the constraint would be
nearly equally close to both ends of the constraint as
measured by the kernel. Such a constraint would pro-
vide no useful information and only hinder convergence,
reducing all sampling weights in its proximity equally.
However, the weak supervision of the constraint pro-

vides additional information regarding the local scale
of the data distribution. To enable clustering on data
sets with largely varying constraint scales, we introduce
an individual bandwidth per constraint. Intuitively, the
bandwidth used to determine proximity to a constraint
should scale with the length of the constraint. Thus,
given two cluster centers tx and ty connected through a
constraint, we propose scaling by λ ·‖tx−ty‖2 with λ as
a constant factor. Since the bandwidth per constraint
should never exceed the global bandwidth h and not
become zero, we clip the bandwidth to the valid range:

(4.4) hc((x, y)) = max{ε,min{h, λ · ‖tx − ty‖2}}

with ε as some reasonably small minimum value depend-
ing on the computing platform. We study the influence
of λ in our experiments and ablation studies.

4.3 Adaptive Bandwidth The regular mean shift
uses a constant global bandwidth h for all iterations of
the process. This bandwidth influences the number of
clusters by defining the number of modes of the kernel
density estimation. With low h many undesired clusters
are formed, in the trivial case of h being close to 0 every
sampling point has its own mode. If h is too large,
modes which should be distinct will collapse. Thus, a
key problem of mean shift is estimating the parameter
h correctly, such that it is as large as possible without
causing mode collapse.

In CMS, our introduced constraints prevent mode
collapse, therefore we enable starting with a low band-
width and increasing the bandwidth until it is large
enough for all cluster centers to converge on modes only
separated by constraints. This approach is illustrated in
Fig. 3. By starting with a low bandwidth, the first iter-
ations shift points towards local modes, which is benefi-
cial if constraints do not cover the entire feature space.
In the final step, a stable clustering is reached, as for
arbitrarily high bandwidths our introduced constraints
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moons aggregation jain s4
Method

Data set
ARI NMI ARI NMI ARI NMI ARI NMI

Mean shift 0.878 0.799 0.777 0.838 0.464 0.495 0.112 0.346
C-DBSCAN 1.000 1.000 0.969 0.968 0.958 0.937 0.430 0.653
Constrained Spectral 0.207 0.194 0.774 0.766 0.995 0.989 0.071 0.243
MPCKMeans 0.627 0.542 0.729 0.832 0.868 0.785 0.597 0.717
PCKMeans 0.872 0.793 0.751 0.854 0.921 0.856 0.627 0.732
CMS (ours) 0.996 0.996 0.987 0.983 1.000 1.000 0.618 0.728

Table 1: Comparison of the performance on commonly used synthetic ”toy” data sets. Best results are highlighted
in bold, second best are underlined. Our proposed method CMS performs best or close to the best on all tested
data sets. CMS always improves upon the unsupervised baseline, mean shift.

prevent further collapse. We propose interpolating lin-
early between an initial low bandwidth hmin and final
large bandwidth hmax from iteration 0 to the final it-
eration umax. The bandwidths hmin and hmax can be
determined by taking the smallest nonzero and largest
Euclidean distance between data points, respectively.

5 Experiments

The performance of our proposed constrained mean
shift (CMS) algorithm is evaluated on synthetic data
sets and encoded features of real-world image data sets.
We compare CMS with regular mean shift and several
state-of-the-art constrained clustering algorithms oper-
ating directly in feature space. The following methods
are used for comparison:

Mean shift [9] Unconstrained regular mean shift us-
ing the same kernel as CMS (included as baseline)

PCKMeans [3] k-Means [18] clustering with the addi-
tion of binary must-link and cannot-link constraints
as soft prior

MPCKMeans [4] Extension of PCKMeans which
also estimates a suitable metric in the form of a
Mahalanobis distance

C-DBSCAN [21] Constrained version of regular
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [6]

Constrained Spectral [26] A constrained spectral
clustering approach introduced by Wang et al.

5.1 Evaluation We follow Ren et al. [20] and use
Adjusted Rand Index (ARI) [13] and Normalized Mu-
tual Information (NMI) [23] for performance analysis.
The ARI is a modification of the Rand Index (RI) [19]
comparing the number of pairs of instances correctly
assigned to the same class and correctly assigned to dif-
ferent classes divided by the total number of pairs. This
measure is adjusted using the expectation of the RI such

that the ARI is in range [−1, 1], where 1 corresponds to a
perfect assignment, 0 is random, and lower is worse than
random. The NMI is a comparison metric of the mutual
information between a predicted class assignment and
ground truth classes normalized by the entropy of both
distributions. NMI lies in the range [0, 1] where 1 cor-
responds to a perfect assignment. Both these metrics
better reflect the quality of the clustering result than
clustering accuracy, especially on imbalanced data.

5.2 Experimental Setup In order to generate bi-
nary constraints, the ground truth class labels are used.
For a desired number of constraints nc, pairs of data
points are sampled and added as must-link constraints if
they belong to the same class, otherwise as cannot-link
constraints, until a total of nc constraints is reached.
During sampling, we ensure that at least one cannot-
link constraint exists between all pairs of classes. This
allows a fair comparison between cluster methods which
are given the correct number of clusters as input and
those determining cluster count from data. Similar to
other authors [3, 25] we calculate the transitive closure
of the constraints to explicitly add knowledge logically
implied by the given constraints. For preprocessing min-
max normalization is performed on all features indepen-
dently before clustering. All experiments are repeated
10 times. For each repetition, the used subset of the
data set and the constraints are randomly sampled.

Unless noted otherwise, we set the hyper-
parameters of CMS constraint scale λ = 0.5, number of
iterations umax = 80, and use a truncated radial basis
function (RBF) kernelKtrunc(·) with truncation c = 0.2:

Ktrunc(x) =

{
exp

(
−‖x‖22

)
if exp

(
−‖x‖22

)
> c

0 otherwise.

For other algorithms, we determine a set of hyperparam-
eters with best average ARI over all data sets through
grid search, as tuning on a data set level would be unre-
alistic given the lack of ground truth data in real appli-
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MNIST Fashion-MNIST GTSRB
Method

Data set
ARI NMI ARI NMI ARI NMI

Mean shift 0.336 0.567 0.387 0.572 0.331 0.572
C-DBSCAN 0.271 0.561 0.249 0.490 0.263 0.532
Constrained Spectral 0.003 0.043 0.008 0.057 0.007 0.056
MPCKMeans 0.605 0.676 0.418 0.545 0.445 0.549
PCKMeans 0.650 0.708 0.407 0.542 0.472 0.573
CMS (ours) 0.754 0.783 0.452 0.611 0.553 0.654

Table 2: Performance of constrained mean shift and compared methods on image embeddings of real-world
data sets measured by Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). Best results are
highlighted in bold.

cations. For regular mean shift, we estimate the band-
width h to be the 15th percentile of all pair-wise dis-
tances. For C-DBSCAN we set minpts = 2 and ε = 0.1
for synthetic and ε = 0.31 for image data sets as no
setting is well suited for both classes of data.

For our evaluation on image data we do not use the
raw pixel features, since previous work has shown that
feature space clustering approaches do not scale well to
high dimensional image data [29]. Therefore, we gen-
erate features using an established deep neural network
autoencoder architecture [20, 29]. The autoencoder is
a multi-layer perceptron. Encoder dimensions are d-
500-500-2000-10, where d is the flattened input shape
and the latent space dimension is 10. The decoder has
a mirrored architecture. All layers have ReLU activa-
tions, except for the layers predicting the latent space
and the reconstructed output, which have no activation.
One instance of the autoencoder is trained per data set
using a stacked denoising approach [24] as described by
Xie et al. [29] with the reconstruction loss, constraints
or class labels are not used for supervision. The embed-
dings of all images per data set are predicted and serve
as features for clustering of the images.

5.3 Synthetic Data Sets We compare CMS with
other state-of-the-art clustering algorithms on well-
known toy examples: the regular moons data set already
shown in Fig. 3, a version with one moon of much lower
density, jain [14], a data set of Gaussian clusters con-
nected through single links, aggregation [12] as shown
in Fig. 1, and a data set of overlapping Gaussians with
axis-independent scaling, s4 [7]. For comparison, we use
the full data set as made available by the respective au-
thors, except for moons, which is dynamically generated
with 500 instances. Per data set, we sample a number
of constraints equal to the number of instances.

The results are shown in Tab. 1. CMS achieves
near-perfect score on the moons data set and per-
fect score on jain. These results highlight that CMS

improves on the strength of mean shift in clustering
along nonlinear decision boundaries. Regular mean shift
achieves lower performance as the tips of the moons are
likely to be incorrectly clustered without constraints.
aggregation has clusters of varying extent and quan-
tity. k-Means-based methods do not perform well in
such cases. CMS, however, achieves very good perfor-
mance by determining suitable bandwidths locally and
globally through our proposed bandwidth scaling. On
s4, which is a harder example due to overlapping clus-
ters, CMS performs slightly worse than PCKMeans, but
better than all other tested methods. Overall, CMS reli-
ably performs best or close to best and always improves
upon the results obtained by regular mean shift.

5.4 Image Data Sets We compare semi-supervised
clustering performance on real-world image data sets.
The greyscale data sets MNIST [17] consisting of hand-
written digits and Fashion-MNIST [28] consisting of
clothing and fashion products are used. Both data
sets contain ten mostly balanced classes and have an
image resolution of 28 × 28 pixels. We also use the
German Traffic Sign Recognition Benchmark (GTSRB)
[22] consisting of colored images of traffic signs. Since
GTSRB includes 43 classes, we use a subset of 10 classes
shown in Fig. 5. Furthermore, we scale all GTSRB
images to 32× 32 pixels and normalize brightness using
histogram stretching.

First, we compare the performance of all cluster-
ing algorithms on the generated ten-dimensional embed-
dings in terms of ARI and NMI by randomly sampling a
subset of 2,000 image embeddings and 2,000 constraints.
The results are shown in Tab. 2. CMS achieves an ARI
of 0.754 on MNIST, which is 0.418 better than uncon-
strained mean shift with an ARI of 0.336, and 0.104 bet-
ter than the next best constrained clustering method.
On GTSRB, CMS reaches an ARI of 0.553 compared
to 0.331 of unconstrained mean shift and also outper-
forms the next best constrained clustering algorithm by

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 4: Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) of several constrained cluster
methods on MNIST [17], Fashion-MNIST [28], and GTSRB [22] embeddings for varying numbers of constraints.

Figure 5: German Traffic Sign Recognition Benchmark
(GTSRB) classes used in the experiments. Top row:
pictograms of the classes, below: two random examples
from the data set after preprocessing.

a margin of 0.081 ARI. Overall, CMS achieves the best
performance in terms of both metrics on all data sets.

Next, the impact of the amount of constraints is
evaluated. Again 2,000 embeddings are sampled while
the number of generated constraints is varied from the
minimal amount of 45 up to 4,000. The results are
shown in Fig. 4. On MNIST and GTSRB, CMS achieves
the best performance starting from a constraint ratio
of 0.1, which corresponds to 200 constraints. For less
constraints k-Means-based methods perform better. On
Fashion-MNIST, CMS outperforms all other methods
from a range of 200 to 3,000 constraints in ARI, for
a larger number of constraints PCKMeans performs
slightly better. Fashion-MNIST is difficult to cluster as
many of the classes are highly overlapping in feature
space. Adding many constraints causes individual
clusters to be formed by CMS in these overlapping
regions which are not merged. Thus, the number of
clusters increases, negatively impacting ARI. For this
reason, ARI decreases starting from a constraint ratio
of 0.4. In terms of NMI, however, CMS performs best
starting from very few constraints.

Finally, we evaluate the performance on imbalanced
data sets. Similar to Xie et al. [29], we sample with a re-
tention rate r, where samples of the first class are given
a weight of r during random selection, samples of the
last class a weight of 1, and all classes in between have a
linearly interpolated sampling weight. The order of the
classes is also randomized for each run of the experi-
ment. We always sample 2,000 instances and 1,000 con-
straints. The results on the MNIST data set are shown
in Tab. 3. CMS achieves the best performance for all
amounts of imbalance tested, showing that the high per-
formance achieved on balanced data can be maintained
for very unbalanced clusters as well.

5.5 Ablation Studies To study the importance of
our main contributions, we individually disable the
cannot-link sampling weighting (Sec. 4.1), the con-
straint scaling (Sec. 4.2), and the adaptive bandwidth
(Sec. 4.3) while clustering GTSRB embeddings. With
no adaptive bandwidth we determine an optimal con-
stant global bandwidth h by grid search. Without con-
straint scaling, all constraints are scaled by the global
bandwidth h. The results are shown in Tab. 4. With-
out constraints (M1), CMS works like a regular mean
shift. Using an adaptive bandwidth without constraints
causes a mode collapse (M2). Integrating constraints
without scaling (M3 and M4) does not exceed the base-
line, as constraints start blocking clustering. With a
constant bandwidth, constraint scaling shows improved
performance over the previous results (M5). Combin-
ing all contributions (M6), the best performance is
achieved. Thus, each of our main contributions plays
an important role in the good performance of CMS.

Furthermore, we evaluate the performance impact
of different kernels as well as both blurring and nonblur-
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Method
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean shift 0.370 0.361 0.439 0.374 0.354 0.304 0.373 0.351 0.344 0.362
C-DBSCAN 0.263 0.293 0.323 0.299 0.266 0.312 0.294 0.303 0.285 0.305
Constrained Spectral 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MPCKMeans 0.542 0.559 0.556 0.492 0.575 0.510 0.580 0.560 0.585 0.569
PCKMeans 0.591 0.584 0.609 0.585 0.625 0.603 0.649 0.606 0.637 0.638
CMS (ours) 0.755 0.764 0.777 0.734 0.752 0.732 0.770 0.756 0.736 0.765

Table 3: Adjusted Rand Index (ARI) on imbalanced subsample of MNIST [17] embeddings. Imbalance increases
with lower retention rate r. Best results are highlighted in bold. CMS performs best on all imbalances tested and
is not adversely affected.

Figure 6: Adjusted Rand Index (ARI) of CMS over a range of constraint scales λ on GTSRB [22] embeddings for
different mean shift kernels as well as nonblurring and blurring mean shift. CMS generalizes well to other kernels
as well as other modes, performing comparably well for suitable values of λ.

CL CS AB ARI NMI
M1 0.405 0.596
M2 X 0.000 0.000
M3 X 0.346 0.541
M4 X X 0.000 0.447
M5 X X 0.529 0.645
M6 X X X 0.574 0.677

Table 4: Impact of our individual contributions - in-
tegrating cannot-link constraints (CL, Sec. 4.1), con-
straint scaling (CS, Sec. 4.2), adaptive bandwidth (AB,
Sec. 4.3) - on the performance of CMS on GTSRB [22]
embeddings. Best results are highlighted in bold.

ring mode on CMS to study its adaptability. Two new
kernels are used, the ball kernel with profile kball(x) =
[x < 1] and the radial basis function kernel with pro-
file kRBF(x) = exp(−x). For all kernels and modes, the
performance for λ values is shown in Fig. 6. CMS per-
forms best using a truncated RBF kernel, although both
other kernels are only slightly worse if a suitable λ value
is selected for both the blurring and nonblurring vari-
ant. Thus, CMS generalizes well to different common
mean shift kernels. Furthermore, the range of nearly
optimal values of λ is quite large, therefore CMS is not
very sensitive to this hyper-parameter.

6 Conclusion

In this paper, we presented the integration of cannot-
link constraints into mean shift to combine density-
based clustering and weak supervision. Our novel ap-
proach reduces the sampling weight depending on the
proximity of current cluster center and sampling point
to a constraint as estimated by the kernel. Furthermore,
we introduced an additional constraint scaling to enable
clustering on different scales, without small constraints
preventing shifting on a globally large scale. Using an
adaptive bandwidth, we integrate the local feature den-
sity while also settling into a globally stable clustering.
We evaluated the performance of our proposed method,
CMS, on synthetic data sets and features of real-world
image data sets, obtained by an autoencoder. CMS
achieves the best performance or very close to best per-
formance on all synthetic data sets and performs much
better than other state-of-the-art methods on image em-
beddings of MNIST and GTSRB. On highly imbalanced
data sets, CMS also outperforms all other tested meth-
ods. We showed that CMS is stable in performance
regarding changes to its single major hyper-parameter
and generalizes well to different mean shift kernels.

Future work on CMS might focus on better integrat-
ing must-link constraints, which are currently only used
for a transitive closure of the constraint preprocessing,
and treating constraints as a soft prior.
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[10] P. Gançarski, B. C. Thi-Bich-Hanh Dao,
G. Forestier, and T. Lampert, Constrained clus-
tering: Current and new trends, A Guided Tour of Ar-
tificial Intelligence Research, (2020), pp. 447–484.

[11] Y. A. Ghassabeh and F. Rudzicz, Modified subspace
constrained mean shift algorithm, Journal of Classifica-
tion, 38 (2021), pp. 27–43.

[12] A. Gionis, H. Mannila, and P. Tsaparas, Cluster-
ing aggregation, 21st International Conference on Data
Engineering, (2005), pp. 341–352.

[13] L. Hubert and P. Arabie, Comparing partitions,
Journal of classification, 2 (1985), pp. 193–218.

[14] A. K. Jain and M. H. Law, Data clustering: A
user’s dilemma, in International conference on pattern

recognition and machine intelligence, Springer, 2005,
pp. 1–10.

[15] S. A. Koohpayegani, A. Tejankar, and H. Pirsi-
avash, Mean shift for self-supervised learning, in Pro-
ceedings of the ICCV, 2021, pp. 10326–10335.

[16] B. Kulis, S. Basu, I. Dhillon, and R. Mooney,
Semi-supervised graph clustering: a kernel approach,
Machine learning, 74 (2009), pp. 1–22.

[17] Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE, 86
(1998), pp. 2278–2324.

[18] J. MacQueen et al., Some methods for classification
and analysis of multivariate observations, in Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, vol. 1, Oakland, CA, USA,
1967, pp. 281–297.

[19] W. M. Rand, Objective criteria for the evaluation of
clustering methods, Journal of the American Statistical
association, 66 (1971), pp. 846–850.

[20] Y. Ren, K. Hu, X. Dai, L. Pan, S. C. Hoi,
and Z. Xu, Semi-supervised deep embedded clustering,
Neurocomputing, 325 (2019), pp. 121–130.

[21] C. Ruiz, M. Spiliopoulou, and E. Menasalvas, C-
dbscan: Density-based clustering with constraints, in
International workshop on rough sets, fuzzy sets, data
mining, and granular-soft computing, Springer, 2007.

[22] J. Stallkamp, M. Schlipsing, J. Salmen, and
C. Igel, The german traffic sign recognition bench-
mark: a multi-class classification competition, in The
2011 international joint conference on neural networks,
IEEE, 2011, pp. 1453–1460.

[23] A. Strehl and J. Ghosh, Cluster ensembles—a
knowledge reuse framework for combining multiple par-
titions, JMLR, 3 (2002), pp. 583–617.

[24] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,
P.-A. Manzagol, and L. Bottou, Stacked denoising
autoencoders: Learning useful representations in a deep
network with a local denoising criterion., JMLR, 11
(2010).

[25] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl,
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