
Making Higher Order MOT Scalable: An Efficient Approximate Solver for
Lifted Disjoint Paths

Andrea Hornakova∗1 Timo Kaiser∗2 Paul Swoboda1 Michal Rolinek3

Bodo Rosenhahn2 Roberto Henschel2
∗Authors contributed equally, 1Max Planck Institute for Informatics, Saarland Informatics Campus, 2Institute for Information Processing,

Leibniz University Hannover, 3Max Planck Institute for Intelligent Systems, Tübingen

Abstract

We present an efficient approximate message passing
solver for the lifted disjoint paths problem (LDP), a natural
but NP-hard model for multiple object tracking (MOT). Our
tracker scales to very large instances that come from long
and crowded MOT sequences. Our approximate solver en-
ables us to process the MOT15/16/17 benchmarks without
sacrificing solution quality and allows for solving MOT20,
which has been out of reach up to now for LDP solvers due
to its size and complexity. On all these four standard MOT
benchmarks we achieve performance comparable or bet-
ter than current state-of-the-art methods including a tracker
based on an optimal LDP solver.

1. Introduction

Deriving high-level understanding from a video is a de-
sired task that has been studied in computer vision for a
long time. Nevertheless, solving the problem is a long way
off. A computer vision system able to extract the motions
of objects appearing in a video in terms of trajectories is
considered as a prerequisite for the goal. This task called
multiple object tracking (MOT) has numerous applications,
e.g. in the area of video surveillance [18], sports analysis
[2, 42], urban planning [3], or autonomous driving [39, 19].

Yet, solving MOT is challenging, especially for long and
crowded sequences. The predominant approach for MOT is
the tracking-by-detection paradigm, which splits the prob-
lem into two subtasks. First, objects are detected in all video
frames by an object detector. Then, the detections are linked
across frames to form trajectories. While the performance
of object detectors has improved considerably by latest ad-
vances of CNNs [47, 63, 46, 17], the latter task called the
data association remains challenging. The data association
reasons from pairwise costs, which indicate for each pair of
detections the likelihood of belonging to the same object.

Appearance and spatio-temporal information are often

ambiguous, especially in crowded scenes, so that pairwise
costs can be misleading. Moreover, object detectors pro-
duce more errors in crowded scenes due to partial occlu-
sions. To resolve these issues, it is crucial that the data as-
sociation incorporates global context.

The disjoint paths problem (DP) [65, 35] is a natural
model for MOT. Results are computed efficiently using a
min-cost flow algorithm that delivers the global optimal so-
lution. Unfortunately, the integration of long range tem-
poral interactions is limited, as DP obeys the first-order
Markov-chain assumption: for each trajectory, consistency
is ensured only between directly linked detections, which is
a strong simplification that ignores higher order consisten-
cies among multiple linked detections.

To fix this deficiency, [28] generalizes DP to lifted dis-
joint paths (LDP) by using additional connectivity priors
in terms of lifted edges. This makes the formulation much
more expressive while it maintains the feasibility set of the
DP (Sec. 3). The optimization problem enables to take into
account pairwise costs between arbitrary detections belong-
ing to one trajectory. It thus enables to incorporate long
range temporal interactions effectively and leads to consid-
erable improvement of recall and precision [28]. Similar ex-
tensions have been made for the multicut problem [56, 57].

While the integration of the global context by LDP is
crucial to obtain high-quality tracking results, it makes the
data association problem NP-hard. Still, [28] presented
a global optimal LDP solver usable for semi-crowded se-
quences with reasonable computational effort. However,
when applied to longer and crowded sequences, such ap-
proaches are not tractable anymore, due to too high de-
mands on runtime and memory.

In order to close this gap, we present the first approx-
imate solver for LDP. The resulting tracker scales to big
problem instances and incorporates global context with sim-
ilar accuracy as the global optimal LDP solver. Moreover,
our solver outputs certificates in terms of primal/dual gaps.

In particular, our solver is based on a Lagrangean (dual)
decomposition of the problem. This dual is iteratively opti-

mized by dual block coordinate ascent (a.k.a. message pass-
ing) using techniques from [54], see Sec. 4.1. The decom-
position relies on subproblems that are added in a cutting
plane fashion. We obtain high-quality primal solutions by
solving minimum cost flow problems with edge costs syn-
thesizing information from both base and lifted edges from
the dual task and improve them via a local search procedure.

We validate the quality of the solver on four standard
MOT benchmarks (Sec. 5). We achieve comparable or bet-
ter performance w.r.t. the current state-of-the-art trackers in-
cluding the tracker based on the optimal LDP solver [28] on
MOT15/16/17 [37, 45]. Furthermore, our proposed tracker
performs on par with state-of-the-art on the more challeng-
ing MOT20 dataset [16] which is composed of long and
crowded sequences. Therefore, lightweight features and a
fast solver are crucial to perform tracking on such massive
sequences. Our work thus extends the applicability of the
successful LDP formulation to a wider range of instances.
Contribution of this work is in summary as follows:
• We make the LDP problem more accessible and appli-

cable by introducing an approximate solver with better
scalability properties than the global optimal LDP solver,
while resulting in similar tracking performance, and be-
ing independent of Gurobi [22].

• We present an MOT system that is scalable to challenging
sequences by using considerably less computationally de-
manding features than what is used in the state-of-the-art
tracker [28]. Our system incorporates higher order con-
sistencies in a scalable way, i.e. it uses an approximate
solver and provides a gap to the optimum.

We make our LDP solver1 and our MOT pipeline2 available.

2. Related Work

(Lifted) disjoint paths. The disjoint paths problem is a
natural model for multiple object tracking and is solvable
with fast combinatorial solvers [35]. It has been used for
the data association step of MOT in [6, 65]. Its extensions
have been used for fusing different object detectors [12] or
multi-camera MOT [27, 38]. Its main disadvantage is that it
does not allow to integrate long range information because
it evaluates only direct connections between object detec-
tions within a trajectory. The lifted disjoint paths problem
introduced in [28] enhances DP by introducing lifted edges
that enable to reward or penalize arbitrary connections be-
tween object detections. This incorporation of long range
information leads to a significant improvement of the track-
ing performance yielding state-of-the-art results on main
MOT benchmark but makes the problem NP-hard. The au-
thors provide a globally optimal solver using Gurobi [22].
Despite a lot of efficient subroutines, the general time com-

1https://github.com/LPMP/LPMP
2https://github.com/TimoK93/ApLift

plexity of the provided solver remains exponential. There-
fore, in order to extend LDP-based methods to highly dense
MOT problems as in MOT20 it is crucial to reduce the com-
plexity of the used LDP solver because the number of feasi-
ble connections between detections increases dramatically.
Multicut and lifted multicut. LDP is similar to (lifted)
multicut [14, 29]. Multicut has been used for MOT in [26,
33, 36, 51, 55, 56], lifted multicut in [5, 57]. These trackers
solve the underlying combinatorial problem approximately
via heuristics without providing an estimation of the gap to
optimality. Our approach, delivers an approximate solution
together with a lower bound enabling to assess the quality
of the solution. Additionally, LDP provides a strictly better
relaxation than lifted multicut [28].
Other data association models for MOT. Several works
employ greedy heuristics to obtain tracking results [9, 68,
7]. Such strategies normally suffer from occlusions or am-
biguous situations, causing trajectory errors. Others use bi-
partite matchings [31, 52, 69, 62, 61, 60] to assign new de-
tections with already computed trajectories of the past op-
timally. Since no global context is incorporated, they are
prone to errors if individual edge costs are misleading.

Higher order MOT frameworks ensure consistencies
within all detections of a trajectory. This can be done greed-
ily, by computing one trajectory at a time via a generalized
minimum clique problem [64], or globally using an exten-
sion to the maximum multi clique problem [15].

Several works employ continuous domain relaxation.
When MOT is formulated as a binary quadratic program
[23, 25, 58, 24], a modification of the Frank-Wolfe algo-
rithm adapted to the non-convex case has been used [23].
Some approximations for binary linear programs use an LP-
relaxation, optimize in the continuous domain and derive
a binary solution from the continuous one [32, 12, 11]. They
however do not provide the optimality gap, in contrast to
our work. Higher order MOT can be considered as a classi-
fication problem using graph convolutions [10]. It allows to
train features directly on the tracking task.

The multigraph-matching problem, a generalization of
the graph matching problem, has been used for MOT
[30]. Here, cycle consistency constraints of the multi-graph
matching ensures higher order consistencies of the trajecto-
ries. Message passing for higher order matching in MOT
has been used in [4] employing a variant of MPLP [20]. In
contrast to our formulation, [4] does not model occlusions
and does not allow for connectivity priors.

Probabilistic approaches to multiple-target tracking in-
clude multiple hypotheses tracking [34, 13], joint probabib-
listic data association [48, 53] and others [53, 44].

3. Problem Formulation
The lifted disjoint paths problem (LDP) introduced

in [28] is an optimization problem for finding a set of

vertex-disjoint paths in a directed acyclic graph. The cost
of each path is determined by the cost of edges in that path
as in the basic disjoint paths problem (DP), but additionally
there are higher order costs defined by lifted edges. A lifted
edge contributes to the cost if its endpoints are part of the
same path. This problem is a natural formulation for multi-
ple object tracking (MOT), where lifted edges allow to re-
identify the same objects over long distance.

While of greater expressivity, the LDP is NP-hard [28] in
contrast to DP which is reducible to the minimum cost flow.
Below, we recapitulate the formulation of LDP from [28].

3.1. Notation and Definitions.

Flow network: a directed acyclic graph G = (V,E).
Start and terminal: nodes s, t ∈ V .
Lifted graph: a directed acyclic graph G′ = (V ′, E′),
where V ′ = V \{s, t}.
The set of paths starting at v and ending in w is

vw-paths(G) =
{
(v1v2, . . . , vl−1vl) :

vivi+1 ∈ E,
v1 = v, vl = w

}
.

(1)
For a vw-path P its edge set is PE and its node set is PV .
Reachability relation for two nodes v, w ∈ V is defined
as vw ∈ RG ⇔ vw-paths(G) ̸= ∅. We assume that it is
reflexive and su ∈ RG, ut ∈ RG ∀u ∈ V , i.e. all nodes can
be reached from s and all nodes can reach the sink node t.
Flow variables: Variables y ∈ {0, 1}E have value 1 if flow
passes through the respective edges.
Node variables z ∈ {0, 1}V denote flow passing through
each node. Values 0/1 forces paths to be node-disjoint.
Variables of the lifted edges E′ are denoted by y′ ∈
{0, 1}E′

. y′vw = 1 signifies that nodes v and w are con-
nected via the flow y in G. Formally,

y′vw = 1⇔ ∃P ∈ vw-paths(G) : ∀ij ∈ PE : yij = 1 .
(2)

Lifted disjoint paths problem. Given edge costs c ∈ RE ,
node cost d ∈ RV in flow network G and edge cost c′ ∈
RE′

for the lifted graph G′ the lifted disjoint paths problem
is

min
y∈{0,1}E ,y′∈{0,1}E′

,

z∈{0,1}V

⟨c, y⟩+ ⟨c′, y′⟩+ ⟨d, z⟩

s.t. y node-disjoint s, t-flow in G,
z flow through nodes of G
y, y′ feasible according to (2)

(3)
Set E′ can be arbitrary. It makes sense to create a lifted

edge vw only if vw ∈ RG due to Formula (2) and only if
v and w do not belong to neighboring frames. We describe
our choice in Sec. 5.2.

Other notation and abbreviations are in Appendix 8.1.

4. Lagrange Decomposition Algorithm for
LDP

Below we recapitulate Lagrange decomposition and the
message passing primitive used in our algorithm (Sec. 4.1).
Then, we propose a decomposition of the LDP problem (3)
into smaller but tractable subproblems (Sec. 4.2-4.4). This
decomposition is a dual task to an LP-relaxation of (3).
Therefore, it provides a lower bound that is iteratively in-
creased by the message passing. We solve Problem (3) in
a simplified version of Lagrange decomposition framework
developed in [54]. Our heuristic for obtaining primal solu-
tions uses the dual costs from the subproblems (Sec. 4.6).

4.1. Lagrange Decomposition

We have an optimization problem minx∈X ⟨c, x⟩ where
X ⊆ {0, 1}n is a feasible set and c ∈ Rn is the objec-
tive vector. Its Lagrange decomposition is given by a set of
subproblems S with associated feasible sets X s ⊆ {0, 1}ds

for each s ∈ S. Each coordinate i of X s corresponds to
one coordinate of X via an injection πs : [ds] → [n] al-
ternatively represented by a matrix As ∈ {0, 1}ds,n where
(As)ij = 1 ⇔ πs(i) = j. For each pair of subproblems
s, s′ ∈ S that contain a pair of coordinates i, j such that
πs(i) = πs′(j), we have a coupling constraint xsi = xs

′

j for
each xs ∈ X s, xs

′ ∈ X s′ .
We require that every feasible solution x ∈ X is feasible

for the subproblems, i.e. ∀x ∈ X ,∀s ∈ S : Asx ∈ X s.
We require that the objectives of subproblems are equiv-

alent to the original objective, i.e. ⟨c, x⟩ =
∑

s∈S⟨θs, Asx⟩
∀x ∈ X . Here, θs ∈ Rds defines the objective of subprob-
lem s.

The lower bound of the Lagrange decomposition given
the costs θs for each s ∈ S is∑

s∈S
min
xs∈X s

⟨θs, xs⟩ . (4)

Given coupling constraint xsi = xs
′

j and γ ∈ R, a se-
quence of operations of the form θsi += γ, θs

′

j −= γ is
called a reparametrization.

Feasible primal solutions are invariant under
reparametrizations but the lower bound (4) is not. The
optimum of the dual lower bound equals to the optimum of
a convex relaxation of the original problem, see [21].
Min-marginal message passing. Below, we describe
reparametrization updates monotonically non-decreasing in
the lower bound based on min-marginals. Given a variable
xsi of a subproblem s ∈ S, the associated min-marginal is

ms
i = min

xs∈X s:xs
i=1
⟨θs, xs⟩ − min

xs∈X s:xs
i=0
⟨θs, xs⟩ (5)

i.e. the difference between the optimal solutions with the
chosen variable set to 1 resp. 0.

Proposition 1 ([54]). Given a coupling constraints xsi =

xs
′

j and ω ∈ [0, 1] the following operation is non-decreasing
w.r.t. the dual lower bound (4)

θsi −= ω ·ms
i, θs

′

j += ω ·ms
i . (6)

The goal of reparametrization is two-fold. (i) Improving
the objective lower bound to know how far our solution is
from the optimum. (ii) Using reparametrized costs as the
input for our primal heuristic yields high-quality primal so-
lutions. The key components are efficient computations of
(i) optima of subproblems for obtaining lower bound (4),
(ii) constrained optima for obtaining min-marginals (5)
and (iii) a primal heuristic using the reparametrized costs
(Sec. 4.6). Lagrange decomposition has been used for other
problems but the subproblem decomposition and minimiza-
tion procedures are problem specific. Therefore, developing
them for LDP is an important contribution for solving LDP
in a scalable way while keeping a small gap to an optimum.

4.2. Inflow and Outflow Subproblems

For each node v ∈ V of the flow graph, we intro-
duce two subproblems: An inflow and an outflow subprob-
lem. The subproblems contain all incoming resp. outgoing
edges of node v together with the corresponding node. For-
mally, inflow resp. outflow subproblems contain the edges
δ−E (v) ∪ δ−E′(v), resp. δ+E(w) ∪ δ

+
E′(w) . Here, we adopt

the standard notation where δ−E (v), resp. δ+E(v) denote all
base edges incoming to v, resp. outgoing from v. Simi-
larly, δ−E′(v), δ

+
E′(v) denote lifted edges incoming to, resp.

outgoing from v.
The feasible set X out

v of the outflow subproblem for node
v is defined as

zoutv ∈ {0, 1}, yout ∈ {0, 1}δ
+
E(v), y′out ∈ {0, 1}δ

+

E′ (v) :
(zoutv , yout, y′out) = 0 ∨
∃P ∈ vt-paths(G) s.t. zoutv = 1

youtvw = 1⇔ vw ∈ PE

y′outvu = 1⇔ u ∈ PV

 .

(7)
Consequently, either there is no flow going through vertex v
and all base and lifted edges have label zero. Alternatively,
there exists a vt-path P in G labeled by one. In this case
the base edge adjacent to v corresponding to the first edge
in P is one. All lifted edges connecting v with vertices
of P also have value one. All other base and lifted edges
are zero. Each feasible solution of the outflow subproblem
can be represented by a path vt-path P . The feasible set
of the inflow subproblem X in

v is defined analogously. We
sometimes omit the superscipts out for better readability.
Constraints between inflow and outflow subproblems.
For node variables, we add the constraint zinv = zoutv . For
an edge vw ∈ E ∪ E′ we require the shared edge in the
outflow subproblem of v and in the inflow subproblem for

w to agree, i.e. youtvw = yinvw if vw ∈ E and y′outvw = y′
in
vw if

vw ∈ E′.
Optimization of in- and outflow subproblems. Given
costs θout, the optimal solution of an outflow problem for
node v can be computed by depth-first search on the sub-
graph defined by the vertices reachable from v.
The algorithms rely on the following data structures:
• lifted costs[u] contains the minimum cost of all ut-paths

w.r.t. to costs of all lifted edges connecting v with the
vertices of the path.

• next[u] contains the best neighbor of vertex u
w.r.t. values in lifted cost. That is, next[u] =
argminw:uw∈δ+E(u) lifted cost[w]

Algorithm 1 Opt-Out-Cost

Input start vertex v, edge costs θ̃
Output optimal value opt, lifted cost ∀w : vw ∈ δ+E(v)
optimal solution for vw active αvw

1: for u ∈ V : vu ∈ RG do
2: lifted cost[u] =∞, next[u] = ∅
3: end for
4: lifted cost[t] = 0, next[t] = t
5: Lifted-Cost-DFS-Out(v, v, θ̃, lifted cost, next)
6: ∀w : vw ∈ δ+E(v) : αvw = θ̃v + θ̃vw + lifted cost[w]
7: opt = min(minvw∈δ+E(v) αvw, 0)

Algorithm 2 Lifted-Cost-DFS-Out

Input v, u, θ̃, lifted cost, next
Output lifted cost, next

1: α = 0
2: for uw ∈ δ+E(u) do
3: if next[w] = ∅ then Lifted-Cost-DFS-Out(v, w, θ̃)
4: if lifted cost[w] < α then
5: α = lifted cost[w], next[u] = w
6: end if
7: end for
8: if next[u] = ∅ then next[u] = t
9: lifted cost[u] = α+ θ̃′vu

Alg. 1 and 2 give a general dept first search (DFS) pro-
cedure that, given a vertex v, computes optimal paths from
all vertices reachable from v. Alg. 1 takes as input vertex v
and edge costs θ̃. Its subroutine Alg. 2 computes recursively
for each vertex u reachable from v the value lifted cost[u].
The overall optimal cost min(z,y,y′)∈Xout

v
⟨θ̃, (z, y, y′)⟩ of

the subproblem is given by the minimum of node and base
edge and lifted edges costs minvu∈δ+E(v) θ̃

out
v + θ̃outvu +

lifted cost[u]. We achieve linear complexity by exploiting
that subpaths of minimum cost paths are minimal as well.
The optimization for the inflow subproblem is analogous.
Message passing for in- and outflow subproblems. We

could compute one min-marginal (5) by adapting Alg. 1 and
forcing an edge to be taken or not. However, computing
min-marginals one-by-one with performing operation (6)
would be inefficient, since it would involve calling Alg. 1
O(|δ+E(v)|+|δ

+
E′(v))| times. Therefore, we present efficient

algorithms for computing a sequence of min-marginals in
Appendix 8.2. The procedures save computations by choos-
ing the order of edges for computing min-marginals suitably
and reuse previous calculations.

4.3. Path Subproblems

The subproblem contains a lifted edge vw and a path P
from v to w consisting of both base and lifted edges. They
reflect that (i) lifted edge vw must be labelled 1 if there ex-
ists an active path between v and w, and (ii) there cannot
be exactly one inactive lifted edge within path P if vw is
active. The reason is that the inactive lifted edge divides P
into two segments that must be disconnected. This is con-
tradictory to activating lifted edge vw because it indicates a
connection between v and w. Path subproblems are similar
to cycle inequalities for the multicut [14].

In order to distinguish between base and lifted edges of
path P , we use notation PE = P ∩ E and PE′ = P ∩ E′.
For the purpose of defining the feasible solutions of path
subproblems, we define strong base edges E0 = {vw ∈
E|vw-paths(G) = {vw}}. That is, base edge vw is strong
iff there exists no other vw-path in graph G than vw itself.
The feasible set XP of the path subproblem for vw-path
P is defined as

y ∈{0, 1}PE , y′ ∈ {0, 1}PE′∪{vw} :

∀kl ∈ PE′ ∪ {vw} : (8)∑
ij∈PE

(1− yij) +
∑

ij∈PE′∪{vw}\{kl}

(1− y′ij) ≥ 1− y′kl ,

∀kl ∈ PE ∩ E0 : (9)∑
ij∈PE\kl

(1− yij) +
∑

ij∈PE′∪{vw}

(1− yij) ≥ 1− ykl .

Equation (8) requires that a lifted edge in PE′ or vw can
be zero only if at least one other edge of the subproblem is
zero. Equation (9) enforces the same for strong base edges.
The optimization of path subproblems is detailed in
Alg. 12 in the Appendix. The principle is as follows. It
checks whether there exists exactly one positive edge and
whether it is either a lifted or a strong base edge. If so,
the optimal solution is either (i) all edges except the two
largest ones or (ii) all edges, whichever gives smaller objec-
tive value. If the above condition does not hold, the optimal
solution can be chosen to contain all negative edges.

We use a variation of the path optimization algorithm
with an edge fixed to 0 or 1 for computing min-marginals.
Cutting plane. Since there are exponentially many path

subproblems, we add during the optimization only those
that improve the relaxation. Details are in Appendix 8.4.

4.4. Cut Subproblems

The purpose of a cut subproblem is to reflect that a lifted
edge uv must be labelled 0 if there exists a cut of base edges
that separate u and v (uv-cut) all labelled 0.
The feasible set. A cut subproblem consists of a lifted edge
uv and a uv-cut C = {ij ∈ E|i ∈ A, j ∈ B} where
A,B ⊂ V with A∩B = ∅. The space of feasible solutions
XC is defined as

y′uv ∈ {0, 1}, y ∈ {0, 1}C : y′uv ≤
∑
ij∈C

yij ,

∀i ∈ A :
∑
ij∈C

yij ≤ 1 , ∀j ∈ B :
∑
ij∈C

yij ≤ 1 ,

uv ∈ C ⇒ y′uv ≥ yuv . (10)

The constraints stipulate that (i) the lifted edge uv is 0 if all
the edges in the cut are 0, (ii) there exists at most one active
outgoing resp. incoming edge for every vertex in A resp. B
and (iii) if there is also base edge uv ∈ C then whenever it
is active, the lifted edge uv must be active.

Algorithm 3 Cut-Subproblem-Optimization
Input Edge costs θC

Output optimal value opt of subproblem.
1: Define ψ ∈ RA×B :

2: ψij =


θCuv + θ′Cuv, if ij = uv ∧ uv ∈ C ∧ θ′Cuv > 0

∞, if ij /∈ C
θCij , otherwise

3: z∗ ∈ argmin
z∈{0,1}A×B

∑
i∈A

∑
j∈B

ψijzij , s.t. z1 ≤ 1, z⊤1 ≤ 1

4: opt =
∑

ij∈C ψijz
∗
ij

5: if θ′Cuv ≥ 0 then return opt
6: if ∃kl ∈ C : zkl = 1 then
7: return opt + θ′Cuv
8: else
9: α = minij∈C θ

C
ij

10: if |θ′Cuv| > α then return θ′Cuv + α
11: else return opt
12: end if

Optimization of a cut subproblem with respect to feasi-
ble set XC is given by Alg. 3. Its key is to solve a linear
assignment problem (LAP) [1] between vertex sets A and
B. The assignment cost ψij for (i, j) ∈ A × B is the cut
edge cost θCij if edge ij belongs to C and∞ otherwise. In
the special case of uv-cut C containing base edge uv and
the lifted edge cost θ′Cuv being positive, the assignment cost
ψuv is increased by θ′Cuv .

A candidate optimal labeling of cut edges is given by
values of LAP variables zij . If θ′Cuv ≥ 0, the optimal value

found by the LAP is the optimal value of the cut subprob-
lem. If it is negative, we distinguish two cases: (i) If a cut
edge kl labeled by one exists, the lifted edge cost θ′Cuv is
added to the optimal value of LAP. (ii) Otherwise, we in-
spect whether it is better to activate the smallest-cost cut
edge and the lifted edge uv or keep all edges inactive.

We use a variation of Alg. 3 with an edge variable re-
stricted to be either 0 or 1 for computing min-marginals.
Cutting plane. There are exponentially many cut subprob-
lems. Therefore, we add only those that improve the lower
bound. See Appendix 8.5 for details.

4.5. Message Passing

The overall algorithm for optimizing the Lagrange de-
composition is Alg. 19 in the Appendix. First, inflow and
outflow subproblems are initialized for every node. Then,
for a number of iterations or until convergence, costs for
each subproblems are adjusted iteratively by computing
min-marginals and adjusting the reparametrization propor-
tionally to the min-marginal’s value. Additionally, every
k-th iteration additional path and cut subproblems are sepa-
rated and added to the Lagrange decomposition.
Solver complexity. We need O(|Einp|) space where Einp

are all edges before graph sparsification. The most time
consuming is computing lifted edges min-marginals for
each in/outflow subproblem. Alg. 6 computes them for one
outflow subproblem and it is linear in the number of detec-
tions per frame. This significantly improves the complexity
of to the optimal LDP solver LifT, making LDP applicable
to large problem instances. See Appendix 8.14 for details.

4.6. Primal Rounding

For computing primal solutions we solve a minimum
cost flow (MCF) problem on the base edges and improve
this initial solution with a local search heuristic.

Without lifted edges, the disjoint paths problem is an in-
stance of MCF, which can be efficiently optimized via com-
binatorial solvers like the successive shortest path solver
that we employ [1]. We enforce node disjoint paths via split-
ting each node u ∈ V into two nodes uin, uout ∈ V mcf in
the MCF graph Gmcf = (V mcf , Emcf), adding an addi-
tional edge uinuout to Emcf and setting capacity [0, 1] on
all edges Emcf . Each node except s and t has demand 0.
Alg. 4 calculates MCF edge costs from in/outflow subprob-
lems using Alg. 1. We obtain the cost of each flow edge
uoutvin from the inflow subproblem of v and the outflow
subproblem of u using their minima where edge uv is ac-
tive. This combines well the cost from base and lifted edges.

We describe the local search heuristic for improving the
MCF solution in Alg. 25 in the Appendix. It works with
sets of disjoint paths. First, paths are split if this leads to a
decrease in the objective. Second, merges are explored. If
a merge of two paths is not possible, we iteratively check

whether cutting off one node from the first path’s end or the
second paths’s beginning makes the connection possible. If
yes and the connection is decreasing the objective, the nodes
are cut off and the paths are connected.

Algorithm 4 Init-MCF
1: ∀u ∈ V \{s, t}:

(o, lc, αin)=Opt-In-Cost(u, θinu)
(o, lc, αout)=Opt-Out-Cost(u, θoutu)

2: ∀u ∈ V \{s, t} : θmcf
suin = αin

su, θmcf
uoutt = αout

ut

3: ∀u ∈ {uv ∈ E|u ̸= s, v ̸= t} : θmcf
uoutvin = αout

uv + αin
uv

5. Experiments
We integrate our LDP solver into an MOT system (Ap-

pendix, Fig. 1) and show on challenging datasets that higher
order MOT is scalable to big problem instances. In the next
sections, we describe our experimental setup and present re-
sults. We clarify the edge cost calculation and construction
of the base and the lifted graph and their sparsification.

5.1. Pairwise Costs

We use multi layer perceptrons (MLP) to predict the like-
lihood that two detections belong to the same trajectory. We
divide the maximal frame distance into 20 intervals of equal
length and train one separate MLP for each set of frame dis-
tances. We transform the MLP output to the cost of the edge
between the detections and use it in our objective (3). Neg-
ative cost indicates that two detections belong to the same
trajectory. Positive cost reflects the opposite.
MLP architecture. Each MLP consists of a fully con-
nected layer with the same number of neurons as the input
size, followed by a LeakyReLU activation [43] and a fully
connected single neuron output layer. We add sigmoid ac-
tivation in the training. We describe our spatial and visual
features used as the input in the paragraphs below.
Spatial feature uses bounding box information of two de-
tections v and w. We align the boxes such that their cen-
ters overlap. The similarity feature σvw,Spa ∈ [0, 1] is the
intersection-over-union between two aligned boxes.
Appearance feature. We create an appearance feature Fv

for each detection v by training the method [67] on the train-
ing set of the respective benchmark and additional data from
[66, 59, 50]. The similarity feature σvw,App between de-
tection v and w given by σvw,App := max{0, ⟨Fv, Fw⟩} is
used. A higher value indicates a higher similarity.
Global context normalization. The two features σvw,Spa,
σvw,App depend entirely on the nodes v and w. To include
global context, we append several normalized versions of
the two features to the edge feature vector, inspired by [28].
Both features σij,∗ of edge ij undergo a five-way normal-
ization. In each case, the maximum feature value from a rel-

evant set of edges is selected as the normalization value.
The normalization is done by dividing the two features σij,∗
by each of their five normalization values. This yields 10
values. Another set of 10 values for edge ij is obtained by
dividing σ2

ij,∗ by each of the five normalization values. To-
gether with the two unnormalized features σij,∗, edge fea-
ture vectors have length 22. See Appendix 8.9 for details.
Training. We iteratively train our MLP on batches B con-
taining sampled edges. To compensate the imbalance be-
tween true positive and true negative edges, we use an α-
balanced focal loss [40] with γ = 1. We define the α-
weight α(g,∆f) to weight the correct classification of edge
vw with ground truth flow value gvw ∈ {0, 1}, time dis-
tance ∆f between v in frame fv and w in frame fw, and
value g ∈ {0, 1} via α(g,∆f) := 1/|{vw ∈ E : |fv − fw| =
∆f, gvw = g}| . We optimize the classifier using Adam
with lr = 0.1, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. To
reduce complexity while maintaining variety during train-
ing, we introduce an extended sampling. Given a frame f ,
we create batchesB(f) by sampling detections from a fixed
sequence of frame shifts starting at frame f ensuring that all
temporal distances ∆f are present in B(f) (details in Ap-
pendix 8.11). We then subsample the k-nearest detections
to a random generated image position with k = 160, which
sensitizes training to crowded scenes. We train the MLP for
3 epochs with batches B(f) for all frames f of the dataset.

5.2. Graph Construction

We create the base and the lifted graph edges between
detections with time distance up to 2 seconds. We also add
an edge from source s, and to sink t to each detection. In
order to reduce computational complexity, we apply sparsi-
fication on both base and lifted graph as described later.
Costs. We obtain base and lifted costs c and c′ from the
same MLP classifier (Sec. 5.1). Due to decreasing classi-
fication accuracy with increasing frame distance ∆f , we
multiply the costs by a decay weight ω∆f := (10 · ∆f +
0.1)−1, so that edges representing long temporal distances
have lower weight. Edges from s and to t have costs zero.

Finally, we use simple heuristics to find pairs that are
obviously matching or non-matching. We set the corre-
sponding costs to be high in absolute value, negative for
matching and positive for non-matching, thereby inducing
soft constrains. An obvious match is given by a nearly max-
imal feature similarity. Detection pairs are obviously non-
matching, if the displacement between their bounding boxes
is too high. See Appendix 8.12 for details.
Sparsification. The base edges are an intersection of two
edge sets. The first set contains for every v ∈ V ′ edges to
its 3 nearest (lowest-cost) neighbors from every subsequent
time frame. The second set selects for every vertex the best
edges to its preceding frames analogically. Moreover, edges
longer than 6 frames must have costs lower than 3.0. To

avoid double counting of edge costs, we subsequently set
costs of all base edges between non-consecutive frames to
zero, so that only lifted edges maintain the costs. If a lifted
edge has cost around zero, it is not discriminative and we
remove it, unless it overlaps with a (zero-valued) base edge.

5.3. Inference

For fair comparison to state of the art, we filter and refine
detections using tracktor [7] as in [28]. Different to [28], we
apply tracktor to recover missing detections before running
the solver.

While we solve MOT15/16/17 on global graphs, we
solve MOT20 in time intervals in order to decrease memory
consumption and runtime. First, we solve the problem on
non-overlapping adjacent intervals and fix the trajectories
in the interval centers. Second, we solve the problem on a
new set of intervals where each of them covers unassigned
detections in two initial neighboring intervals and enables
connections to the fixed trajectory fragments. We use the
maximal edge length of 50 frames in MOT20. Therefore,
150 is the minimal interval length such that all edges from
a detection are used when assigning the detection to a trajec-
tory. This way, the solver has sufficient context for making
each decision. Intervals longer than 200 frames increase
the complexity significantly for MOT20, therefore we use
interval length 150 in our experiments.
Post-processing. We use simple heuristics to check if base
edges over long time gaps correspond to plausible motions,
and split trajectories if necessary. Finally, we use linear in-
terpolation to recover missing detections within a trajectory.
Appendix 8.13 contains further details on inference.

5.4. Tracking Evaluation

We evaluate our method on four standard MOT bench-
marks. The MOT15/16/17 benchmarks [37, 45] contain
semi-crowded videos sequences filmed from a static or
a moving camera. MOT20 [16] comprises crowded scenes
with considerably higher number of frames and detections
per frame, see Tab. 1. The challenge does not come only
with the data size. Detectors make more errors in crowded
scenes due to frequent occlusions and appearance features
are less discriminative as the distance of people to the cam-
era is high. Using higher order information helps in this
context. However, the number of edges in our graphs grows
quadratically with the number of detections per frame.
Therefore, it is crucial to make the tracker scalable to these
massive data. We use the following ingredients to solve the
problems: (i) fast but accurate method for obtaining edge
costs, (ii) approximate LDP solver delivering high-quality
results fast, (iii) preprocessing heuristics, (iv) interval solu-
tion keeping sufficient context for each decision.

We use training data of the corresponding dataset for
training and the public detections for training and test.

Table 1. Comparison of ApLift with the best performing solvers w.r.t. MOTA metric on the MOT challenge. ↑ higher is better, ↓ lower is
better. The two rightmost columns: average number of frames per sequence and the average number of detections per frame for dataset.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓ Frames Density

M
O

T
20 ApLift (ours) 58.9 56.5 513 264 17739 192736 2241 2112

1119.8 170.9MPNTrack [10] 57.6 59.1 474 279 16953 201384 1210 1420
Tracktor++v2 [7] 52.6 52.7 365 331 6930 236680 1648 4374

M
O

T
17

CTTrackPub [68] 61.5 59.6 621 752 14076 200672 2583 4965

845.6 31.8ApLift (ours) 60.5 65.6 798 728 30609 190670 1709 2672
Lif T [28] 60.5 65.6 637 791 14966 206619 1189 3476

MPNTrack [10] 58.8 61.7 679 788 17416 213594 1185 2265

M
O

T
16

ApLift (ours) 61.7 66.1 260 237 9168 60180 495 802

845.6 30.8Lif T [28] 61.3 64.7 205 258 4844 65401 389 1034
MPNTrack [10] 58.6 61.7 207 258 4949 70252 354 684

GSM [41] 57.0 55.0 167 262 4332 73573 475 859

M
O

T
15

Lif T [28] 52.5 60.0 244 186 6837 21610 730 1047

525.7 10.8MPNTrack [10] 51.5 58.6 225 187 7260 21780 375 872
ApLift (ours) 51.1 59.0 284 163 10070 19288 677 1022
Tracktor15 [7] 44.1 46.7 130 189 6477 26577 1318 1790

Table 2. Influence of lifted graph sparsification, message passing
and using zero base costs on MOT17 train without postprocessing.

E′ MP Base IDF1↑ MOTA↑ FP↓ FN↓ IDS↓steps cost

Dense 82 Zero 71.0 66.3 2826 109263 1369
Dense 0 Zero 70.3 66.3 2832 109265 1354
Dense 82 Orig. 69.8 66.3 2824 109266 1355
Sparse 82 Orig. 69.1 66.3 2825 109263 1316

Table 3. Runtime and IDF1 comparison of LDP solvers: ApLift
(ours) with 6, 11, 31 and 51 iterations and LifT[28] (two step pro-
cedure) on first n frames of sequence MOT20-01 from MOT20.

n Measure LifT Our6 Our11 Our31 Our51

50 IDF1↑ 80.6 83.3 83.3 81.5 81.5
time [s] 272 2 4 16 35

100 IDF1↑ 80.4 82.5 82.5 81.6 81.6
time [s] 484 14 24 97 218

150 IDF1↑ 78.1 81.0 81.0 79.8 79.8
time [s] 1058 25 46 192 431

200 IDF1↑ 73.2 75.4 75.4 74.6 74.6
time [s] 2807 36 66 277 616

We compare our method using standard MOT metrics.
MOTA [8] and IDF1 [49] are considered the most represen-
tative as they incorporate other metrics (in particular recall
and precision). IDF1 is more penalized by inconsistent tra-
jectories. We also report mostly tracked (MT) and mostly
lost trajectories (ML), false negatives (FN) and false posi-
tives (FP), ID switches (IDS) and fragmentations (Frag) as
provided by the evaluation protocols [8] of the benchmarks.

Tab. 1 shows the comparison to the best (w.r.t. MOTA)
peer-reviewed methods on test sets. Our approximate solver
achieves almost the same results on MOT15/16/17 as the
optimal LDP solver [28], while using simpler features.
Overall, our method performs on par with state of the art on
all evaluated benchmarks, especially in MOTA and IDF1.
Our complete results and videos are publicly available3.
The proposed method achieves overall low FN values but

3https://motchallenge.net/method/MOT=4031&chl=13

slightly high FP values. FP/FN are mostly affected by pre-
processing the input detections and interpolation in the post-
processing. The impact of post-processing (trajectory splits
and interpolations) on MOT20, which causes FP but re-
duces FN and IDS, is analyzed in the Appendix (Tab. 4).

Tab. 2 shows the influence of various settings on the per-
formance of MOT17 train. While we usually set the base
edge costs to zero (Sec. 5.2), we need to keep them when
using the sparsified lifted graph. Both, message passing
and dense lifted edges improve IDF1 and IDS. However,
MOTA, FN and FP remain almost unchanged.

Finally, we compare the runtime of our solver against
the two step version of LifT for a sample sequence in
Tab. 3. With increasing problem complexity, our solver out-
performs LifT w.r.t. runtime while achieving similar IDF1.
Counter-intuitively, as we progress towards increasingly
better optimization objective values, the tracking metrics
can slightly decrease due to imperfect edge costs. We com-
pare our solver against optimal (one step) LifT on MOT17
train in Appendix 8.14.

6. Conclusion
We demonstrated that the NP-hard LDP model is appli-

cable for processing massive sequences of MOT20. The
combination of an approximate LDP solver, efficiently
computable costs and subdivision of data keeping sufficient
context for each decision make this possible.

7. Acknowledgements
This work was supported by the Federal Ministry of Ed-

ucation and Research (BMBF), Germany, under the project
LeibnizKILabor (grant no. 01DD20003), the Center for
Digital Innovations (ZDIN) and the Deutsche Forschungs-
gemeinschaft (DFG) under Germany’s Excellence Strategy
within the Cluster of Excellence PhoenixD (EXC 2122).

References
[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin.

Network flows. Cambridge, Mass.: Alfred P. Sloan School of
Management, Massachusetts, 1988. 5, 6

[2] Alexandre Alahi, Yannick Boursier, Laurent Jacques, and
Pierre Vandergheynst. Sport players detection and tracking
with a mixed network of planar and omnidirectional cam-
eras. In 2009 Third ACM/IEEE International Conference
on Distributed Smart Cameras (ICDSC), pages 1–8. IEEE,
2009. 1

[3] Alexandre Alahi, Judson Wilson, Li Fei-Fei, and Silvio
Savarese. Unsupervised camera localization in crowded
spaces. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 2666–2673. IEEE, 2017. 1

[4] Chetan Arora and Amir Globerson. Higher order matching
for consistent multiple target tracking. pages 177–184, 12
2013. 2

[5] Maryam Babaee, Ali Athar, and Gerhard Rigoll. Mul-
tiple people tracking using hierarchical deep tracklet re-
identification. arXiv preprint arXiv:1811.04091, 2018. 2

[6] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pas-
cal Fua. Multiple object tracking using k-shortest paths op-
timization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 33(9):1806–1819, 2011. 2

[7] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.
Tracking without bells and whistles. In IEEE International
Conference on Computer Vision, pages 941–951, 2019. 2, 7,
8

[8] Keni Bernardin and Rainer Stiefelhagen. Evaluating mul-
tiple object tracking performance: The clear mot metrics.
EURASIP Journal on Image and Video Processing, 2008, 01
2008. 8

[9] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-
speed tracking-by-detection without using image informa-
tion. In 2017 14th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), pages
1–6. IEEE, 2017. 2

[10] Guillem Brasó and Laura Leal-Taixé. Learning a neu-
ral solver for multiple object tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6247–6257, 2020. 2, 8

[11] William Brendel, Mohamed Amer, and Sinisa Todorovic.
Multiobject tracking as maximum weight independent set.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1273–1280. IEEE, 2011. 2

[12] Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, and Josef
Sivic. On pairwise costs for network flow multi-object track-
ing. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 5537–5545, 2015. 2

[13] Chee-Yee Chong, Shozo Mori, and Donald B Reid. Forty
years of multiple hypothesis tracking-a review of key devel-
opments. In 2018 21st International Conference on Informa-
tion Fusion (FUSION), pages 452–459. IEEE, 2018. 2

[14] Sunil Chopra and Mendu R Rao. The partition problem.
Mathematical Programming, 59(1):87–115, 1993. 2, 5

[15] Afshin Dehghan, Shayan Modiri Assari, and Mubarak Shah.
GMMCP tracker: Globally optimal generalized maximum

multi clique problem for multiple object tracking. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4091–4099, 2015. 2

[16] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen
Shi, Daniel Cremers, Ian Reid, Stephan Roth, Kon-
rad Schindler, and Laura Leal-Taixé. Mot20: A
benchmark for multi object tracking in crowded scenes.
arXiv:2003.09003[cs], Mar. 2020. arXiv: 2003.09003. 2,
7, 24, 28, 30

[17] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 6569–6578,
2019. 1

[18] Michele Fenzi, Jörn Ostermann, Nico Mentzer, Guillermo
Payá-Vayá, Holger Blume, Tu Ngoc Nguyen, and Thomas
Risse. Asev—automatic situation assessment for event-
driven video analysis. In 2014 11th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance
(AVSS), pages 37–43. IEEE, 2014. 1

[19] Davi Frossard and Raquel Urtasun. End-to-end learning of
multi-sensor 3d tracking by detection. In 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pages
635–642. IEEE, 2018. 1

[20] Amir Globerson and Tommi Jaakkola. Fixing max-
product: Convergent message passing algorithms for map
lp-relaxations. Advances in neural information processing
systems, 20:553–560, 2007. 2

[21] Monique Guignard and Siwhan Kim. Lagrangean
decomposition for integer programming: theory and
applications. RAIRO-Operations Research-Recherche
Opérationnelle, 21(4):307–323, 1987. 3

[22] LLC Gurobi Optimization. Gurobi optimizer reference man-
ual, 2019. 2

[23] Roberto Henschel, Laura Leal-Taixé, Daniel Cremers, and
Bodo Rosenhahn. Fusion of head and full-body detectors
for multi-object tracking. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, June 2018. 2

[24] Roberto Henschel, Timo von Marcard, and Bodo Rosenhahn.
Simultaneous identification and tracking of multiple people
using video and imus. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 0–0, 2019. 2

[25] Roberto Henschel, Yunzhe Zou, and Bodo Rosenhahn. Mul-
tiple people tracking using body and joint detections. In
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 0–0, 2019. 2

[26] Kalun Ho, Amirhossein Kardoost, Franz-Josef Pfreundt, Ja-
nis Keuper, and Margret Keuper. A two-stage minimum cost
multicut approach to self-supervised multiple person track-
ing. In Proceedings of the Asian Conference on Computer
Vision (ACCV), November 2020. 2

[27] Martin Hofmann, Daniel Wolf, and Gerhard Rigoll. Hyper-
graphs for joint multi-view reconstruction and multi-object
tracking. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3650–3657, 2013. 2

[28] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn,
and Paul Swoboda. Lifted disjoint paths with application

in multiple object tracking. In The 37th International Con-
ference on Machine Learning (ICML), July 2020. 1, 2, 3, 6,
7, 8, 27, 28, 29

[29] Andrea Horňáková, Jan-Hendrik Lange, and Bjoern Andres.
Analysis and optimization of graph decompositions by lifted
multicuts. In International Conference on Machine Learn-
ing, 2017. 2

[30] Weiming Hu, Xinchu Shi, Zongwei Zhou, Junliang Xing,
Haibin Ling, and Stephen Maybank. Dual L1-normalized
context aware tensor power iteration and its applications to
multi-object tracking and multi-graph matching. Interna-
tional Journal of Computer Vision, Oct 2019. 2

[31] Chang Huang, Bo Wu, and Ramakant Nevatia. Robust object
tracking by hierarchical association of detection responses.
In European Conference on Computer Vision, pages 788–
801. Springer, 2008. 2

[32] Hao Jiang, Sidney Fels, and James J Little. A linear pro-
gramming approach for multiple object tracking. In 2007
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE, 2007. 2

[33] Margret Keuper, Siyu Tang, Bjoern Andres, Thomas Brox,
and Bernt Schiele. Motion segmentation & multiple object
tracking by correlation co-clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(1):140–153,
2018. 2

[34] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M
Rehg. Multiple hypothesis tracking revisited. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 4696–4704, 2015. 2

[35] Péter Kovács. Minimum-cost flow algorithms: an exper-
imental evaluation. Optimization Methods and Software,
30(1):94–127, 2015. 1, 2

[36] Ratnesh Kumar, Guillaume Charpiat, and Monique Thon-
nat. Multiple object tracking by efficient graph partitioning.
In Asian Conference on Computer Vision, pages 445–460.
Springer, 2014. 2

[37] Laura Leal-Taixé, Anton Milan, Ian Reid, Stephan Roth, and
Konrad Schindler. MOTChallenge 2015: Towards a bench-
mark for multi-target tracking. arXiv:1504.01942 [cs], Apr.
2015. arXiv: 1504.01942. 2, 7

[38] Laura Leal-Taixé, Gerard Pons-Moll, and Bodo Rosenhahn.
Branch-and-price global optimization for multi-view multi-
target tracking. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1987–1994. IEEE, 2012. 2

[39] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu,
Sergio Casas, and Raquel Urtasun. Pnpnet: End-to-end per-
ception and prediction with tracking in the loop. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11553–11562, 2020. 1

[40] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PP:1–1, 07 2018. 7

[41] Qiankun Liu, Qi Chu, Bin Liu, and Nenghai Yu. Gsm:
Graph similarity model for multi-object tracking. In Chris-
tian Bessiere, editor, Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-

20, pages 530–536. International Joint Conferences on Arti-
ficial Intelligence Organization, 7 2020. Main track. 8

[42] Wei-Lwun Lu, Jo-Anne Ting, James J Little, and Kevin P
Murphy. Learning to track and identify players from broad-
cast sports videos. IEEE transactions on pattern analysis
and machine intelligence, 35(7):1704–1716, 2013. 1

[43] Andrew L. Maas, Awny Y. Hannun, and Andrew Y. Ng. Rec-
tifier nonlinearities improve neural network acoustic models.
In Proceedings of the International Conference on Machine
Learning, Atlanta, Georgia, 2013. 6, 23, 24

[44] Florian Meyer, Thomas Kropfreiter, Jason L Williams,
Roslyn Lau, Franz Hlawatsch, Paolo Braca, and Moe Z Win.
Message passing algorithms for scalable multitarget track-
ing. Proceedings of the IEEE, 106(2):221–259, 2018. 2

[45] Anton Milan, Laura Leal-Taixé, Ian Reid, Stephan Roth,
and Konrad Schindler. MOT16: A benchmark for multi-
object tracking. arXiv:1603.00831 [cs], Mar. 2016. arXiv:
1603.00831. 2, 7, 28, 30

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. arXiv preprint arXiv:1506.01497, 2015.
1

[48] Seyed Hamid Rezatofighi, Anton Milan, Zhen Zhang, Qin-
feng Shi, Anthony Dick, and Ian Reid. Joint probabilistic
data association revisited. In Proceedings of the IEEE inter-
national conference on computer vision, pages 3047–3055,
2015. 2

[49] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In Gang Hua and Hervé
Jégou, editors, Computer Vision – ECCV 2016 Workshops,
pages 17–35, Cham, 2016. Springer International Publish-
ing. 8

[50] Ergys Ristani, Francesco Solera, Roger S. Zou, Rita Cuc-
chiara, and Carlo Tomasi. Performance measures and a data
set for multi-target, multi-camera tracking. In European
Conference on Computer Vision Workshop on Benchmarking
Multi-Target Tracking, 2016. 6

[51] Ergys Ristani and Carlo Tomasi. Tracking multiple people
online and in real time. In Asian Conference on Computer
Vision, pages 444–459. Springer, 2014. 2

[52] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese.
Tracking the untrackable: Learning to track multiple cues
with long-term dependencies. In IEEE International Confer-
ence on Computer Vision, pages 300–311, 2017. 2

[53] Julian Smith, Florian Particke, Markus Hiller, and Jörn Thi-
elecke. Systematic analysis of the pmbm, phd, jpda and gnn
multi-target tracking filters. In 2019 22th International Con-
ference on Information Fusion (FUSION), pages 1–8, 2019.
2

[54] Paul Swoboda, Jan Kuske, and Bogdan Savchynskyy. A dual
ascent framework for lagrangean decomposition of combi-
natorial problems. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July
2017. 2, 3, 4

[55] Siyu Tang, Bjoern Andres, Miykhaylo Andriluka, and Bernt
Schiele. Subgraph decomposition for multi-target tracking.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5033–5041, 2015. 2

[56] Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, and Bernt
Schiele. Multi-person tracking by multicut and deep match-
ing. In European Conference on Computer Vision, pages
100–111. Springer, 2016. 1, 2

[57] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt
Schiele. Multiple people tracking by lifted multicut and per-
son re-identification. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017. 1, 2

[58] Timo von Marcard, Roberto Henschel, Michael J Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac-
curate 3d human pose in the wild using imus and a mov-
ing camera. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 601–617, 2018. 2

[59] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 79–88, 2018. 6

[60] Nicolai Wojke and Alex Bewley. Deep cosine metric learn-
ing for person re-identification. In 2018 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
748–756. IEEE, 2018. 2

[61] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE International Conference on Image Processing
(ICIP), pages 3645–3649. IEEE, 2017. 2

[62] Jiarui Xu, Yue Cao, Zheng Zhang, and Han Hu. Spatial-
temporal relation networks for multi-object tracking. In
IEEE International Conference on Computer Vision, pages
3988–3998, 2019. 2

[63] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the
layers: Fast and accurate cnn object detector with scale de-
pendent pooling and cascaded rejection classifiers. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2129–2137, 2016. 1

[64] Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah.
GMCP-tracker: Global multi-object tracking using general-
ized minimum clique graphs. In European Conference on
Computer Vision, pages 343–356. Springer, 2012. 2

[65] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data as-
sociation for multi-object tracking using network flows. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE, 2008. 1, 2

[66] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In IEEE International Conference on Com-
puter Vision, pages 1116–1124, 2015. 6

[67] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,
Yi Yang, and Jan Kautz. Joint discriminative and generative
learning for person re-identification. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019. 6

[68] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Tracking objects as points. In European Conference on Com-
puter Vision, pages 474–490. Springer, 2020. 2, 8

[69] Ji Zhu, Hua Yang, Nian Liu, Minyoung Kim, Wenjun Zhang,
and Ming-Hsuan Yang. Online multi-object tracking with
dual matching attention networks. In European Conference
on Computer Vision, pages 366–382, 2018. 2

