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Abstract

Human pose estimation from single images is a challeng-
ing problem in computer vision that requires large amounts
of labeled training data to be solved accurately. Unfortu-
nately, for many human activities (e.g. outdoor sports) such
training data does not exist and is hard or even impossible
to acquire with traditional motion capture systems. We pro-
pose a self-supervised approach that learns a single image
3D pose estimator from unlabeled multi-view data. To this
end, we exploit multi-view consistency constraints to disen-
tangle the observed 2D pose into the underlying 3D pose
and camera rotation. In contrast to most existing meth-
ods, we do not require calibrated cameras and can there-
fore learn from moving cameras. Nevertheless, in the case
of a static camera setup, we present an optional extension
to include constant relative camera rotations over multiple
views into our framework. Key to the success are new, unbi-
ased reconstruction objectives that mix information across
views and training samples. The proposed approach is eval-
uated on two benchmark datasets (Human3.6M and MPII-
INF-3DHP) and on the in-the-wild SkiPose dataset.

1. Introduction
Human pose estimation from single images is an ongo-

ing research topic in computer vision. There exist a large
amount of supervised deep learning solutions in the litera-
ture. These approaches achieve remarkable results in a su-
pervised setting, i.e. having 2D to 3D annotations, but heav-
ily rely on a vast amount of available training data. How-
ever, there are many activities a person can perform which
are not present in common datasets. For instance, human
motions performed during outdoor and/or sports activities,
e.g. as shown in Fig. 1, are hard or even impossible to cap-

Figure 1. CanonPose learns a monocular 3D human pose estimator
from multi-view self-supervision. By estimating 3D poses from
different views in a canonical form together with the respective
camera rotations we exploit multi-view consistency in the training
data. Even for challenging outdoor datasets with moving cameras
we achieve convincing 3D pose estimates from single images after
training.

ture with a commercial motion capture systems. There-
fore, the acquisition of training data is a major practical
challenge. To this end, we propose a novel self-supervised
training procedure that does not require any 2D or 3D an-
notations in the multi-view training dataset and works with
uncalibrated cameras. To acquire 2D joint predictions from
images we use a 2D human joint estimator [7] that is pre-
trained on a different dataset with only 2D joint annotations.
The only requirements for our method are at least two tem-
porally synchronised cameras that observe the person of in-
terest from different angles. No further knowledge about the
scene, camera calibration and intrinsics is required. Sev-
eral related works consider a sparse set of 3D annotations
[35, 33, 28], unpaired 3D data [44, 45, 16], or known cam-
era positions [35, 33] to solve this problem. However, such
data rarely exists for outdoor settings with moving cameras.
To the best of our knowledge, there are only three compet-
ing methods [2, 14, 11] that apply to our setting. They either
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require additional knowledge about the scene or observed
person, such as scene geometry [2] and bone lengths con-
straints [11], or sophisticated traditional computer vision al-
gorithms that produce a pseudo ground truth pose [14].

We propose a self-supervised training method which
mixes outputs of multiple weight-sharing neural networks.
Fig. 2 shows our training pipeline when using two cameras.
Each individual network takes a single image as input and
outputs a 3D pose in a canonical rotation, which gives our
method its name CanonPose. This representation allows for
the projection of all estimated 3D poses to any camera of
the setup. Our approach splits into two stages. The first
stage predicts the 2D human pose from an image using a
neural network pretrained on the MPII dataset [24], in our
case AlphaPose [7, 17]. The second stage lifts these 2D
detections to a 3D pose represented in a learned canonical
coordinate system. In a separate path it predicts the cam-
era orientation to rotate the predicted 3D pose back into the
camera coordinate system. Combining the 3D pose from a
first view with the rotation predicted from a second view,
results in a rotated pose in the second camera coordinate
system. In other words, both 3D poses in the pose coor-
dinate system should be equal and the predicted rotations
project it back into the respective camera coordinate sys-
tems. This enables the definition of a reprojection loss for
each original and newly combined reprojection. For static
camera setups we propose an optional reprojection loss that
is computed by mixing relative camera rotations between
samples in a training batch. Additionally, in contrast to ex-
isting self-supervised approaches, we also make use of the
confidences that are typically provided by a 2D pose esti-
mator for each predicted 2D joint by including them into
the 2D input vector as well as into the reprojection loss for-
mulation.

We evaluate our approach on the two benchmark datasets
Human3.6M [10] and MPI-INF-3DHP [24] and set the new
state of the art in several metrics for self-supervised 3D pose
estimation. Notably, this is without assuming any camera
calibration or static cameras. Our results are competitive to
the fully supervised approach of Martinez et al. [23] which
sets the baseline for single image pose estimation from 2D
detections. Additionally, we show results for the SkiPose
[38, 35] dataset. This dataset represents all challenges that
arise when activities are captured that cannot be performed
in the restricted setting of a standard motion capture system.
It consists of outdoor scenes captured on a ski slope and
includes fast motions, a large capture volume and pan-tilt-
zoom cameras.

Summarizing, our contributions are:

• We present CanonPose: a self-supervised approach to
train a single image 3D pose estimator from unlabeled
multi-view images by mixing poses across views.

• Our approach requires no prior knowledge about the
scene, 3D skeleton or camera calibration.

• The proposed method directly employs multi-view im-
ages without any laborious pre-processing, such as
camera calibration or multi-view geometry estimation.

• We integrate the confidences from the 2D joint estima-
tor into the training pipeline.

2. Related Work
In this section we discuss recent 3D human pose estima-

tion approaches by different types of supervision.

Full Supervision Recent supervised approaches rely on
large datasets that contain millions of images with corre-
sponding 3D pose annotations. Li et al. [18] were the first to
learn CNNs to directly regress a 3D pose from image input.
By integrating a structured learning framework into CNNs
they later improved their work [20]. Several others followed
this end-to-end approach [41, 29, 5, 26, 31, 37, 42, 39, 22,
40, 49, 19, 47, 13]. Typically, these end-to-end approaches
perform exceptionally well on similar image data. However,
their ability to generalize to other scenes is limited. Many
works tackle this problem by cross dataset training or data
augmentation.

There are other approaches that do not consider the im-
age data directly but use a pretrained 2D joint detector
[1, 27, 6, 24, 30, 25]. They benefit from training on large
datasets that contain 2D annotations for many human activi-
ties in various scenes and are therefore agnostic to the image
data. Martinez et al. [23] directly train a neural network on
2D detections and 3D ground truth. Due to its simplicity it
can be trained quickly for many epochs leading to high ac-
curacy and serves as a baseline for many following works.
The approach of [23] was extended by Hossain et al. [32]
by employing a recurrent neural network for sequences of
human poses. While effective, the major downside of all
supervised approaches is that they do not generalize well
to unseen poses. Therefore, their application to in-the-wild
scenes is limited.

Weak Supervision Weakly supervised approaches only
require a small set or even no annotated 2D to 3D corre-
spondences. An example for a commonly applied evalua-
tion protocol for the Human3.6M dataset assumes that 3D
annotations for one of the subjects of the training set are
available. A transfer learning approach is introduced by
Mehta et al. [24] to allow for in-the-wild pose estimation of
datasets where no training data is available. This framework
was later extended by Mehta et al. [26] to achieve real-time
performance. Rhodin et al. [35] use multi-view images and
known camera positions to learn a 3D pose embedding in an
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unsupervised fashion. The embedding facilitates the train-
ing with only a sparse set of 3D annotations. This idea was
adopted in other works [33, 28]. Another approach is to em-
ploy unpaired 2D and 3D poses [44, 45, 16, 48, 3, 8]. Since
these method learn distributions of plausible 3D poses and
their properties they generalize better to unseen poses. Al-
though they are able to reconstruct out-of-distribution poses
to a limited degree they struggle with completely unseen
poses.

Self-supervised and Unsupervised Learning without 3D
Ground Truth Recently, the interest in multi-view self-
supervised and unsupervised 3D pose estimation is grow-
ing. Our work also falls into this category. Drover et al.
[4] propose an unsupervised approach to monocular human
pose estimation. They randomly project an estimated 3D
pose back to 2D. This 2D projection is then evaluated by
a discriminator following adversarial training approaches.
Chen et al. [2] extended [4] with a cycle consistency loss
that is computed by lifting the randomly projected 2D pose
to 3D and inversing the previously defined random pro-
jection. Although these two approaches are unsupervised,
they integrate knowledge about the scene by constraining
the camera rotation axis that is used for the random pro-
jection. Rochette et al. [36] use a large amount of cam-
eras from different viewing angles to achieve on par perfor-
mance with a comparable fully supervised approach. How-
ever, due to the restriction to the camera setup the practi-
cal applicability is limited. Kocabas et al. [14] propose
a multi-view self-supervised approach which does not re-
quire any 3D supervision. They apply traditional computer
vision methods, namely epipolar geometry, to 2D pose pre-
dictions from multiple views to compute a pseudo ground
truth which is then used to train the 3D lifting network. Al-
though this simple and effective straight-forward approach
gives promising results, the laborious preprocessing step
is very parameter sensitive and therefore does not gener-
alize well. Moreover, mistakes due to wrongly estimated
joints in the 2D prediction step result in a wrong pseudo
ground truth. Iqbal et al. [11] tackle this problem by train-
ing an end-to-end network that refines the pre-trained 2D
pose estimator during the self-supervised training. Unfor-
tunately, such approaches tend to easily overfit to a specific
dataset. For example, it could learn a background image
for the training dataset which leads to exceptional perfor-
mance on the specific dataset but does not generalize to
other backgrounds. This even happens in self-supervised
settings. Furthermore, Iqbal et al. [11] employ a loss on
normalized 3D bone lengths which is computed from the
ground truth 3D poses of the Human3.6M training set.

In contrast, our approach does not require knowledge
about the scene and camera position or any anthropomet-
ric constraints. Additionally, it is modular such that any 2D

Figure 2. Network structure to learn single image 3D pose estima-
tion from multi-view self-supervision. Each lifting network pre-
dicts a 3D pose and a camera rotation which is used to project the
3D pose back to 2D. Both networks observe the same 3D pose
from different angles. We exploit this fact by applying the cam-
era rotation to the respective other pose. This projects a predicted
3D pose into the other camera and gives an additional reprojection
error. At inference time only one view (gray box) is applied.

pose estimator can be used which makes it agnostic to the
image data. Even though our approach relaxes many con-
straints of the comparable works it still outperforms them in
most experiments.

3. Method
Our approach consists of two steps: first applying an off-

the-shelf 2D joint detector to the input images, and second
lifting these detections and the respective confidences for
each joint to 3D. The core idea of our approach is that 2D
detections from one view can be projected to another view
via a canonical pose space. Fig. 2 shows our pipeline us-
ing two cameras. For simplicity the network structure is
shown for only two cameras. If more cameras are available
it is straight-forwardly extended. A single neural network,
the 3D lifting network, predicts the 3D pose X ∈ R3×j

with j joints and a rotation R ∈ R3×3 to rotate the pose
to the camera coordinate system. The pose is represented
in a canonical pose coordinate system which is automati-
cally learned during training. Subsequently, the predicted
3D pose is rotated from the pose coordinate system to the
camera coordinate system by the predicted rotation. This
separation into canonical human pose and camera rotation
enables us to formulate various reprojection losses for self-
supervision across views and samples.

3.1. Reprojection

Before a 2D pose is lifted to 3D it is normalized by cen-
tering it to the root joint and scaled by dividing it by its
Frobenius norm. This sidesteps the scale-depth ambiguity
in monocular reconstruction. In particular, the root center-
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ing gives a common rotation point for all 3D predictions.
For each view the predicted 3D pose is rotated into the cam-
era coordinate system by RX . R ∈ R3×3 is a rotational
matrix such that RRT = I3 with I3 as the 3 × 3 identity
matrix and det(R) = 1. Since we assume weak perspective
cameras, the projection to the camera plane is simply done
by removing the depth coordinate, which is expressed as

Wrep =

(
1 0 0
0 1 0

)
RX, (1)

where Wrep ∈ R2×j is called the reprojected 2D pose.
With W as the input 2D pose we define the scale-
independent reprojection loss as

Lrep =

∥∥∥∥W − Wrep

‖Wrep‖F

∥∥∥∥
1

, (2)

where ‖ · ‖1 denotes the L1 norm. Since the global scale of
the 3D pose is unknown and we consider weak perspective
projections, scaling the reprojection Wrep is essential. Note
that the input 2D pose W is already divided by its Frobenius
norm in the preprocessing. That means both, the input pose
and the predicted pose, have the same scale.

To ensure that the network predicts a proper rotation,
the matrix R is not predicted directly, but in axis-angle
representation. Let (θ) be a rotational angle and ω =
(ω1, ω2, ω3) denote a rotation axis. With

A =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

Rodrigues’ formula is applied to obtain the rotation matrix

R = I3 + (sin θ)A+ (1− cos θ)A2. (4)

3.2. View-consistency

A straight-forward way of ensuring view consistency
would be to enforce a loss, such as L2, between the canoni-
cal poses predicted by two views. In theory, that loss should
be zero for the correct solution because the same person
seen from two different views should have the same canon-
ical pose. In practice, however, this leads to the lifting net-
work learning 3D poses that are view invariant but no longer
in close correspondence to the input pose, preventing the
network to converge to plausible solutions in our prelimi-
nary experiments.

The key insight to the proposed method is that rotations
and poses from different views can be mixed to enforce the
view consistency as a variant of the previously introduced
reprojection objective. We mix the predicted camera and
pose of two views, say view-1 and view-2, by rotating the
predicted canonical 3D pose from the source view-1 to the
target view-2 by using the rotation from view-2. For two

cameras as in Fig. 2 there exist four possible combinations
of rotations and poses. The same approach is easily ex-
tended to m cameras which gives m2 combinations. Dur-
ing training time all possible combinations are reprojected
to the respective cameras. With this training scheme we
enforce multi-view consistency without bias towards trivial
solutions. Note that the lifting network is only applied to a
single frame at inference stage and does not need any other
inputs.

3.3. Confidences

The output of most pretrained 2D joint estimators are 2D
heatmaps where each entry indicates the confidence for the
presence of the corresponding joint at the associated posi-
tion in the image. Commonly, the argmax or soft-argmax
is computed and given as input to the following lifting net-
work. However, this gives an exact joint position indepen-
dent of the confidence of the 2D detection. That means un-
certain predictions are processed in the same way as certain
ones. We circumvent this problem by two simple modifi-
cations. First, we concatenate the maximum value of each
heatmap, which is a surrogate to its confidence, to the 2D
pose input vector to our lifting network. Second, we mod-
ify the reprojection error in Eq. 2 such that each difference
between input and reprojected 2D is linearly weighted with
its confidence by

Lrep,c =

∥∥∥∥(W − Wrep

‖Wrep‖F

)
�C

∥∥∥∥
1

, (5)

where

C =

(
c1 c2 . . . cj
c1 c2 . . . cj

)
(6)

with ci as the maximum value of the heatmap for joint i and
� as the Hadamard product.

3.4. Camera-consistency

A reasonable assumption for many practical motion cap-
ture setups is that cameras are static during recording a se-
quence, i.e. they do not change their position or orientation.
This is the case for the Human3.6M1 and 3DHP dataset.
However, this assumption is not mandatory for our pro-
posed method, but an enhancement for scenes with static
cameras. We will show the effect of this optional improve-
ment in the experiments as well as the performance of our
approach without it on the SkiPose dataset that contains
moving cameras.

For a static camera setup all relative rotations between
the cameras are equal. An intuitive approach to enforce
static cameras is to calculate an L2-loss between the rela-
tive rotations over one batch of training samples. However,

1In fact, camera angles change between subjects but not during a cap-
ture session with one subject.
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a batch-wise loss leads to degraded solutions or had no ef-
fect if its weight was set to a low value. This observation is
similar to the findings regarding the canonical pose equal-
ity in Sec. 3.2. For this reason we propose a similar mixing
approach as in Sec. 3.2, now over estimates from different
samples in one batch. A relative rotation R1,2 using the
rotation matrices R1 and R2 from view-1 to view-2 respec-
tively, is defined by

R1,2 = R2R
T
1 . (7)

Let R(s)
1,2 be the predicted relative rotation between view-1

and view-2 of sample s. We then randomly permute these
relative rotations in the batch and use them to reproject the
canonical poses similar to Eq. 1

Wrep =

(
1 0 0
0 1 0

)
R

(s)
1,2R

(s′)
1 X(s′), (8)

where R
(s′)
1 and X(s′) are the rotation and estimated 3D

pose in the current frame and R
(s)
1,2 is the randomly assigned

relative rotation from another sample in the batch2. The
loss is calculated in the same way as the reprojection loss in
Eq. 2. Similar to Sec. 3.2 this is easily extended to multiple
cameras. Again, we emphasize that this loss is optional to
improve the results for the case of static cameras. However,
our method works without it.

3.5. Network Architecture

Fig. 3 shows the architecture of our lifting network. The
input 2D pose vector is concatenated with a vector contain-
ing the confidences for each joint. It is upscaled to 1024
neurons by a one fully connected layer. It is followed by
a residual block consisting of fully connected layers with
dimension 1024. Similar to [44] the output is fed into two
paths, each containing two consecutive residual blocks with
identical architecture to the first block. The 3D pose path
directly outputs the 3D coordinates of the predicted pose
in the pose coordinate system. The camera path outputs a
three-dimensional vector θω which is the axis angle rep-
resentation. The rotation matrix is computed using Ro-
drigues’ formula as described in Sec. 3.1. The activation
functions after each layer, except the two output layers, are
leaky ReLU’s with a negative slope of 0.01. We train the
network for 100 epochs using the Adam optimizer with an
initial learning rate of 0.0001 and weight decay at epochs
30, 60 and 90, respectively.

4. Experiments
We perform experiments on the well-known benchmark

datasets Human3.6M [10] and MPI-INF-3DHP [24]. Addi-
tionally, we evaluate on the SkiPose dataset [38, 35] to test

2For the Human3.6M dataset we ensure that relative rotations are only
changed in between subjects since camera positions vary between them.

the generalizability of our method to real world scenarios.
To conform with our setting of training a single image pose
estimator with unlabeled images for a specific set of activ-
ities, we train one network for each dataset without using
additional datasets.

4.1. Metrics

For the evaluation on Human3.6M there exist two
standard protocols. Both protocols calculate the mean
per joint position error (MPJPE), i.e. the mean euclidean
distance between the reconstructed and the ground truth
joint coordinates. Since a multi-view self-supervised
setting does not contain metric data, we adjust the scale of
our predictions before calculating the MPJPE. For a fair
comparison with other works we compare to their scale
adjusted predictions if they are available. Protocol-I com-
putes the MPJPE directly whereas Protocol-II first employs
a rigid alignment between the poses. Additional to the
MPJPE one protocol for 3DHP calculates the Percentage
of Correct Keypoints (PCK). As the name suggests it is the
percentage of predicted joints that are within a distance of
150mm or lower to their corresponding ground truth joint.

Correct Poses Score (CPS)
For practical applications, such as motion analysis and
prediction, the evaluation of the whole pose is a crucial
prerequisite. Even if a single joint of a pose is incorrect it
can change downstream tasks significantly. The formerly
introduced metrics evaluate the quality of the prediction
joint by joint. However, they ignore the assignment of
joints to poses and instead average over all joints in the
test set. Fig. 5 compares 3D pose estimates with their
respective ground truths. Each column shows two different
reconstructions from the same pose. The reconstructions
in the top row have a lower PMPJPE compared to the
bottom row. However, the overall 3D poses appear better
reconstructed in the bottom row. In this section we present
a simple yet powerful metric to evaluate such cases, the
Correct Poses Score (CPS). A pose W is considered
correct if for all joints i the Euclidean distance is below a
threshold value θ. Given a pose with joint positions wi and
predicted joint positions ŵi after rigid alignment, a correct
pose is defined by

CPθ =

{
1 ‖wi − ŵi‖2 < θ ∀i ∈ {1, ..., j}
0 else

. (9)

Additional to the PMPJPE Fig. 5 shows the CP@180mm,
which classifies the reconstructed poses into correct and in-
correct. The percentage of correct poses is calculated for
the test dataset. To be independent of the threshold, we cal-
culate the area under curve for θ ∈ [0mm, 300mm] which
defines the CPS.
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Figure 3. Network structure of the lifting network. The 2D input vector contains the x- and y-coordinates of the 2D pose and the confidence
given by the 2D joint detector. It is upscaled using a fully connected layer with 1024 neurons which then goes to a residual block. After
that the network splits into two paths that predict the 3D pose in the canonical space and the camera rotation, respectively. Each of the paths
has two consecutive residual blocks followed by a fully connected layer that downscales the features to the required size. The Rodrigues
block implements Rodrigues formula (Eq. 4) and has no trainable parameters.

PMPJPE = 61.7
CP180 = 0

CPS = 15.3

PMPJPE = 62.64
CP180 = 1

CPS = 180.9

PMPJPE = 67.5
CP180 = 1

CPS = 162.6

PMPJPE = 72.29
CP180 = 0

CPS = 110.4

PMPJPE = 66.9
CP180 = 0

CPS = 59.8

PMPJPE = 77.61
CP180 = 1

CPS = 140.5

Figure 4. Comparison of PMPJPE and our CP-metric. Each col-
umn compares to different predicted 3D reconstructions with the
same ground truth. While PMPJPE averages out high individual
joint errors which are located in the right arm in the visualized
case, CP indicates them. In this way, the correctness of the overall
pose is evaluated. Note that for the calculation of the CPS we vary
the threshold, which in these examples is 180mm.

4.2. Skeleton Morphing

We deploy an off-the-shelf detector AlphaPose [7] for
retrieving the 2D human pose estimation required as input
to our method. The keypoint locations in the datasets used
to train AlphaPose and other 2D pose estimation methods
differ from the 3D skeleton of the test benchmarks. For ex-
ample, the root joint position is not in the middle of the hip
joints and the relative position of the neck to the shoulders
is different. We circumvent this problem by training a 2D
skeleton morphing network that predicts the offset between
the 2D pose from AlphaPose to the ground truth 2D pose
in the dataset. We train the morphing network on subject 1
of each dataset with the given ground truth poses. To not
include these ground truth poses into our training, subject

1 is excluded in all experiments. Thereby our data used for
the self supervised training does not contain any 2D ground
truth data, mimicking real application scenarios. Note that
the morphing network never sees any images and therefore
is not able to learn domain specific image features. In an
experimental setting where the skeletal structure does not
need to match a different skeleton this step is obsolete. This
is the case for most practical applications.

4.3. Quantitative Evaluation on Human3.6M and
3DHP

For the Human3.6M dataset, to keep it consistent with
previous approaches, we follow standard protocols and
evaluate only on every 64th frame. However, with a suf-
ficiently fast 2D pose estimator, which is the performance
bottle neck of our complete pipeline, we can achieve real-
time performance. Table 1 shows the results of the proposed
method compared to other state-of-the-art approaches. We
outperform every other comparable approach in terms of
PMPJPE. Note that we even achieve comparable perfor-
mance to the fully supervised method of Martinez et al.
[23] which has a lifting network with similar structure to
ours. Only one other self-supervised approach attains a
lower MPJPE, however, by using additional information.
Our analysis revealed that although our pose structure is
very accurate (which results in a low PMPJPE) the largest
part of the error originates from a slight offset in the rota-
tion. For example, comparing frame 1 from subject 9 of the
Human3.6M dataset to itself rotated by only 15◦ around the
longitudinal axis already results in an MPJPE of 67.7mm.
Iqbal et al. [11] still set the state of the art in terms of
MPJPE. However, they need bone length constraints which
they directly compute from the ground truth 3D data of the
training set. Our approach does not require any predefined
priors on the skeletal structure. Using our static camera con-
straint (Ours+C) improves the MPJPE significantly.

Fig. 5 shows the CPS for our method compared to Epipo-
larPose [14], which is the only comparable approach with
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Table 1. Evaluation results for the Human3.6M dataset in mm.
The bottom section, labeled with self, shows methods that can
solve our setting. Best results are marked in bold and second best
in italic.

Supervision Method MPJPE↓ PMPJPE↓
full Martinez [23] 67.5 52.5
weak Rhodin [35] 80.1 65.1

Rhodin [34] 122.6 98.2
3D interpreter [46] 98.4 88.6
AIGN [43] 97.2 79.0
RepNet [44] 89.9 65.1
HMR [12] - 66.5
Wang [45] 86.4 62.8
Kolotouros [15] - 62.0
Kundu [16] 85.8 -

self Chen [2] - 68.0
EpipolarPose [14] 76.6 67.5
Iqbal [11] 69.1 55.9
Ours 81.9 53.0
Ours + C 74.3 53.0

publicly available code, and the 3D pose estimation base-
line of Martinez et al. [23]. On this metric, we outper-
form EpipolarPose by a large margin. Note the high thresh-
old of over 80mm that is required by [14] to achieve a CP
above 1% compared to our threshold slightly below 50mm.
As for the CPS metric, we are on par with the fully super-
vised approach of [23]. Since their originally trained model
is not publicly available anymore we retrained their model
with their provided code to report the new CPS metric. The
retrained model achieved a PMPJPE of 53.5mm, which is
slightly lower compared to their original number. The new
model is used only for reporting CPS. Fig. 6 shows qualita-
tive results for the Human3.6M data set in the first row.

We also evaluate our approach on the 3DHP dataset
[24] following the standard test protocols and metrics. Ta-
ble 2 shows the results. We outperform every other self-
supervised approach. In contrast to other approaches the
proposed method does not require calibrated cameras3 or
anthropometric constraints. For the CPS metric we achieve
a score of 134.2.

4.4. Moving cameras

Our main motivation is to enable 3D human pose esti-
mation in the wild by using a multi-view camera system
with temporally synchronised cameras. Moreover, the per-
formed activity should be very challenging to capture and
hard to simulate in a traditional motion capture studio. That
means a straight-forward activity domain transfer, e.g. pre-
training or combined training with a different dataset, is
not reasonable. The SkiPose dataset [38, 35] comprises all
challenges of this motivation. It features competitive alpine
skiers performing giant slalom runs. To record this dataset
huge effort was taken to setup and calibrate the cameras

3The configuration Ours+C only assumes that cameras are static during
the sequence, which is a much weaker constraint.

Table 2. Evaluation results for the 3DHP dataset. The bottom sec-
tion, labeled with self, shows methods that can solve our setting.
Best results are marked in bold and second best in italic. MPJPE
and PMPJPE are given in mm, PCK is in %.

Supervision Method MPJPE↓ PMPJPE↓ PCK↑
weak Rhodin [35] 121.8 - 72.7

HMR [12] 169.5 - 59.6
Habibie [9] - - 70.4
Kolotouros [15] 124.8 - 66.8
Li [21] - - 74.1
Kundu [16] 103.8 - 82.1

self Chen [2] 71.1
EpipolarPose [14] 125.7 - 64.7
Iqbal [11] 110.1 - 76.5
Ours 119.2 68.7 69.0
Ours + C 104.0 70.3 77.0

Figure 5. Comparison of CPS curves for distances from 1mm to
300mm with corresponding AUC for the Human3.6M dataset. A
higher value means a better result, i.e. the leftmost curve achieves
the best result in terms of CP.

and keep them in place after calibration. Additionally, the
cameras are rotating and zooming to keep the alpine skier
in the field of view. The proposed method can deal with
all these difficulties since it does not require a calibrated or
static setup and works with multiple synchronised cameras.
Since the camera setup is not static we cannot apply the
relative rotation constraint here. Table 3 shows our results
in comparison to Rhodin et al. [35]. Since they consider
a (sparse-)supervised setting and known camera positions a
direct comparison is not possible and only serves as a base-
line. Fig. 6 shows qualitative results for the SkiPose dataset
in the second row.

4.5. Ablation Studies

To analyze our approach we perform a number of abla-
tion studies. First, to simulate a practical setting with lim-
ited resources, we reduced the number of cameras to train
the model. Table. 4 shows the results for the training with
only the first two or three cameras. While the performance
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Figure 6. Qualitative results for the Human3.6M dataset (top) and for the challenging SkiPose dataset (bottom).

Table 3. Evaluation results for the SkiPose dataset. The result for
[35] was estimated from a bar plot in the paper. Since [35] consid-
ers a (sparse-)supervised setting and known camera position it is
only shown as a baseline. MPJPE, PMPJPE and CPS are given in
mm, PCK is in %.

Supervision Method MPJPE↓ PMPJPE↓ PCK↑ CPS↑
weak Rhodin [35] 85 - - -
self Ours 128.1 89.6 67.1 108.7

expectedly slightly drops due to the lower number of train-
ing samples and views our approach still produces good re-
sults which underlines its applicability in real world sce-
narios. In a second experiment we show the impact of us-
ing the confidences from the 2D joint estimator as inputs to
the network and for the calculation of the reprojection error.
They significantly impact the performance of our model and
produce a gain of 19.4mm in MPJPE and 11.2mm in PM-
PJPE. To prove that the proposed mixing of rotations and
poses to achieve view- and camera-consistency is superior
to simple equality constraints, we performed experiments
with such equality constraints. The results show that indeed
our mixing approach is an essential part to make it work.
We also trained with ground truth 2D annotations to com-
pute a lower bound for the proposed method.

Table 4. Ablation studies on the Human3.6M dataset. All values
are given in mm.

MPJPE↓ PMPJPE↓ CPS↑
2 cams 82.7 61.2 148.5
3 cams 82.0 62.2 145.6
w/o confidences 95.6 65.0 142.5
ground truth 2D 65.9 51.4 187.1
direct pose equality 554.3 360.8 0.0
direct camera equality 617.9 374.5 0.0
full (4 cams) 81.9 53.0 167.6
full+C (4 cams) 74.3 53.0 167.3

Figure 7. Visualization of the canonical pose space from the Hu-
man3.6M dataset. Left and middle: Canonical poses for the same
3D pose predicted from 4 different views. Right: 10 randomly
sampled canonical poses. Our network automatically learns a dis-
entanglement of a 2D pose into 3D and a camera rotation.

4.6. Are We Learning a Canonical Pose Basis?

Finally, we evaluate the claim that we learn a canonical
pose basis. To visualize the disentanglement for different
3D poses Fig. 7 shows a visualization of reconstructed 3D
poses in the canonical basis obtained from 4 views on the
left and in the middle. The right image shows 10 randomly
picked reconstructions in the canonical space. Although the
similarity of the poses is not enforced directly as described
in Sec. 3.2 the poses are similarly oriented in the canonical
space. In particular, the hip joints are aligned which leads
to a similar alignment of the upper body. The standard de-
viation for the hip joints of the canonical poses from the test
set of Human3.6M are 7.9mm and 7.7mm for the right and
left hip, respectively. This underlines that pose and rotation
are disentangled plausibly by our network.

5. Conclusion

We present CanonPose, a neural network trained for sin-
gle image 3D human pose estimation from multi-view data
without 2D or 3D annotations. Given a pretrained 2D hu-
man pose estimator we exploit multi-view consistency to

8



automatically decompose a 2D observation into a canon-
ical 3D pose and a camera rotation that is used to repro-
ject it back to the observation after mixing. Since our ap-
proach does not require either 2D nor 3D annotations for the
multi-view data it is practically applicable to many in-the-
wild scenarios, including outdoor scenes with moving cam-
eras. We not only achieve state-of-the-art results on bench-
mark datasets with less prerequisites compared to other ap-
proaches, but also show promising results on challenging
outdoor scenes.
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