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Abstract—Communication systems based in Orthogonal Fre-
quency Division Multiplexing (OFDM) technology are very pop-
ular due to their robustness against inter-symbol interference
(ISI) and their efficient use of the spectrum. Nevertheless, one
of the major drawbacks of OFDM is its high peak-to-average
power ratio (PAPR), which is part of its multicarrier nature. A
high PAPR could drive the high-power amplifier (HPA) in its
nonlinear region, preventing thus the receiver from recovering
the conveyed information correctly. To avoid this, a PAPR
reduction algorithm is essential for such systems. Therefore,
in this paper we introduce the modified active constellation
extension (MACE) algorithm. The mACE capability to reduce the
PAPR is demonstrated through simulation and compared with
the state-of-the-art smart gradient-project (SGP) method. It is
shown that mACE outperforms the SGP method. For instance,
in systems with QPSK modulation, mACE reduces up to 0.5 dB
more PAPR than SGP, and up to 0.2 dB in systems with 16-QAM.
These results are achieved with less computational complexity.
Hence, mACE achieves an appropriate trade-off between PAPR
reduction and system resources, which makes it a viable option
in real time OFDM systems.

Index Terms—OFDM, PAPR, active constellation extension
(ACE), modified ACE (mACE)

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
nowadays probably one of the most used multicarrier tech-
nologies in wireless and wireline communication standards.
Among others well known technologies, for example, OFDM
is the basis of Digital Audio Broadcasting (DAB) sys-
tems, Digital Video Broadcasting (DVB) systems, WiIMAX,
IEEE802.11, LTE and Bluethooth. Its popularity is due to its
capability of dealing with multipath channels with a given
delay spread, avoiding thus inter symbol interference (ISI)
with a relative lower complexity in comparison with single
carrier systems. However, one of the major drawbacks of
OFDM systems is its inherently high Peak-to-Average Power
Ratio (PAPR), which is proportional to the largest power
peak in the transmitted signal in time-domain. Large peaks in
the time-domain signal may provoke intermodulation products
among subcarriers and a large out-of-band power since it
makes the high power amplifier (HPA) work in its nonlinear
region. Moreover, operation in the nonlinear region of HPA

adds rotation, offset and attenuation to the transmitted signal,
which distorts it in such a way that the receiver is incapable to
demodulate it back. Therefore, linearity in HPA is a compul-
sory requirement for such systems, and it can only be achieved
at the cost of efficiency, since efficiency and linearity are trade-
off criteria for the design of HPAs. The reduction of PAPR is
thus necessary for all kind of OFDM systems, however, it is
essentially more important for small communication devices
with limited resources as in mobile application systems.

Solving the PAPR problem is still an active area of research.
In the attempts to mitigate the PAPR, many techniques have
been proposed in the literature. Among a vast number of
publications, some of these techniques are clipping techniques
[1], [2], coding techniques [3], [4], [5], active constellation
extension (ACE) [6], partial transmit sequence (PTS) [7]-
[8], selected mapping (SLM)[8] [9] [10], interleaving [11]
and DFT-spreading techniques [12]. A summary of some of
these techniques can be found in [13]. Unfortunately, any
attempt to reduce PAPR implies a trade-off with other system
resources, i.e., the spectrum efficiency may be reduced while
the transmission power, computing power and processing time
could be increased. This means that the optimal solution
suitable for all systems is still unknown and the technique
to employ is rather system dependent.

In this paper we focus explicitly on the ACE algorithms,
introduced in [6]. On the one hand, it is well known that
ACE has a good performance without decreasing the band-
width efficiency, on the other hand, it increases the signal
power and the computing power. The increased power in the
transmitter signal is a small drawback that is negligible in
comparison to the operating consumption of a linear HPA.
Nevertheless, the computational burden incurred by ACE for
the PAPR reduction can be very high for systems with very
limited computing resources. Therefore, we modify the ACE
algorithm to decrease its computational complexity and, thus,
also its delay. In this paper, we present a modification of
the ACE algorithm and denote it as modified ACE (mACE).
To this end, mACE is totally suitable for systems in which
otherwise ACE would be implemented since mACE maintains
the performance of ACE but requiring less resources. We
find out that in some cases, mACE can even outperform
ACE regarding its PAPR reduction capability but with a
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Fig. 1: OFDM PAPR reduction block diagram

lower complexity. This is proved by exhaustive simulation
experiments that are presented in this paper.

The remainder of this paper is organized as follows. In
Section II, an OFDM system is described while in Section III
the original ACE algorithm is presented. In Section IV we
introduce the modified ACE (mACE) algorithm for the PAPR
reduction. Numerical results and performance comparisons
for illustration are presented in Section V, followed by a
conclusion and a summary of the main contributions of this
paper in Section VI

II. OFDM SYSTEMS

OFDM can be categorized as a multicarrier modulation
technique [14] due to the fact that one OFDM symbol conveys
N parallel data over the channel. The data symbols are
allocated in orthogonal frequencies, denominated subcarriers,
separated by Af = B/N = 1/T, where B is the bandwidth of
an OFDM symbol and T denotes its duration in time-domain.
The orthogonality property in frequency domain allows a
transmission without intercarrier interference (ICI) while ISI
can be avoided by adding to it the so called cyclic prefix
(CP) in the time domain. At the transmitter, therefore, the
information bit vector b € {0,1}'*¥™ is mapped into a
complex value, information symbol vector X € M*N where
M is a fixed constellation set of M -QAM symbols and N is the
total number of OFDM subcarriers. Afterwards, the frequency-
domain OFDM symbol X = [X[k]]s ;) is transformed to
its time-domain representation via the inverse discrete fourier
transformation (IDFT) as
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with j = y/—1. In this paper, we do not consider the CP,
it is neither necessary for the PAPR computation nor for its
reduction algorithm. Afterwards, the signal x = [z[n]]);
in (1) is converted to an analog signal x(t) by means of
the digital-to-analog converter (DAC), which may then be
modulated into some higher (passband) frequency carrier. The
complex, baseband signal x(t) is finally amplified with a high
power amplifier (HPA) and sent over the channel through the
antenna. With an ideal channel, the receiver will be capable
of inverting the process incurred at the transmitter, therefore,
estimating the corresponding information bits without errors.

It only make sense to define the PAPR at the input of the
HPA, i.e., for the time-domain OFDM signal x(¢): it is the
ratio between the maximum instantaneous power of the signal
and its average power. However, in this paper, as in many
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Fig. 2: The complex plane depicting a 16-QAM constellation
and its corresponding ACE outer-point extensions

solutions found in the literature, the PAPR reduction algorithm
is accomplished in the discrete domain as shown in Figure 1.
Therefore, we define the PAPR as

mﬁx\mL[n]\g
PAPRIL) = Ellor P}
where E{-} denotes the expectation operation. Note that in (2)
the PAPR is defined for an interpolated version of the original
OFDM signal. The interpolation factor is indicated by L. The
interpolation process, which can be accomplished in frequency
or in time-domain, is necessary to approximate the continuous
time-domain signal, i.e., the larger L, the more zr,[n] resem-
bles x(t). Without this oversampling, the maximum peak of
z(t) will not be sampled and therefore the PAPR could be
much lower than for x(¢). In the literature it is found that
choosing L > 4 could be enough for a good trade-off between
an approximation of z(¢) and computing complexity. In the
rest of the paper it is understood that the signal processing is
accomplished in already interpolated signals, therefore there
is no need of indicating the interpolation factor L.
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III. ACTIVE CONSTELLATION EXTENSION

In this section, a short description of the active constella-
tion extension (ACE) algorithm is presented while a detailed
description can be found in [6].

The idea behind ACE algorithm is straightforward and given
in Figure 2. This figure depicts the complex plane. The black
dots are the elements of M, which in this case correspond to
the elements of a 16-QAM modulation scheme. ACE uses a
non-bijective function to change the constellation in such a
way that more flexibility is added to the outer points of the
constellation. The outer points are allowed to extend outward
in one or two directions under the restriction that the minimum
euclidean distances determined by the original modulation
scheme is not reduced. With this relaxation, ACE searches
values for the outer points in order to reduce the PAPR. Thus,



in Figure 2, the gray areas represent the corner-point extension
regions while the gray lines represent the extension paths for
the side point. From here it is clear, that the interior points
can not be remapped.

The search for the appropriate coordinates of the outer
points within the allowed boundaries of the modified
constellation, which will be able to reduce the PAPR to a
minimum, is translated to a special case of a quadratically-
constrained quadratic program (QCQP). Obtaining the optimal
solution can be very difficult. For this reason, three practical
algorithms for ACE implementation are given in [6]. These are
good suboptimal solutions of the previously mentioned ACE
optimization problem. The first algorithm is the projection
onto convex sets (POCS), which has optimality properties
but converges very slowly. The other two algorithms are the
approximate gradient-project (AGP) and the smart gradient-
project (SGM) method. The last two methods converge faster
than POCS toward a low-PAPR solution and are described
briefly in this section.

A. Approximate Gradient-Project Method

The approximate gradient-project (AGP) method is an it-
erative algorithm that searches for a PAPR reduction by
minimizing a peak below some amplitude A. Its goal is to
reduce the peak to a minimum. The AGP algorithm is defined
as follows:

1) Given a frequency-domain OFDM symbol vector X,
determine and store the allowable extension directions
for each subcarrier. Transform it to the time-domain as
x’ = IFFT y {X}, with i denoting the iteration index. Set
1=0.

2) Clip the time domain signal for all n as follows:

i @'ln], if [2'[n]] < A
xclip[n] - {A 76[n] if i )
el if xt[n]| > A
where 0[n] = £x%[n].

3) Compute only the corresponding clipped signal portion,
ie.,

3)

aipln] — 2'[n]. €))

Capln] = ¢

4) Transform the clipped signal portion to its frequency
domain, ‘ _
aip = FFTn{ el } - (5)

Please note that due to the linearity property of DFT,
with (5) it can be easily computed

Xglip[k] = X[k] + Ccinp[k] ) (6)

for every k, where X[k] € M is an already known

signal form Step 1. Computing (5) is less expensive than

transforming X, = FFTy{x;,} directly because most

of the symbols of cg;,[n] are expected to be 0.

5) Compute Cilip = C{Cihp}. We define in this paper a
function ¢{-} that gives only the components of Cci:lip

which are acceptable extensions directions and set all

remaining directions to zero. Compute the time domain
signal ¢ = IFFTN{CzHP}. Please note that this step
implies that once a vector is extended to some point
in any iteration, it can not be reversed in subsequent
iterations.

6) Finally, determine the new, time-domain OFDM symbol
by computing

" [n] = 2'[n] + p ' [n) (7)

for all n, where y is some gradient step size. Its value
can be chosen after experimental optimization or by the
smart gradient-project (SGP) method introduced in the
next section.

7) If PAPR has reached some lower threshold or a maxi-
mum iteration count has been reached, finish the algo-
rithm, otherwise, update 7 = 7 + 1 and return to Step
2.

It turns out that the function ¢{-} does not allows the reverse
of any vector, which is a suboptimal approach but an efficient
solution if ¢" must be computed before choosing .

B. Smart Gradient-Project Method

As pointed out in Step 6 of the AGP method, the parameter
p must still be chosen according to some criteria. This
parameter controls the convergence speed of the algorithm,
which is guaranteed to converge to a minimum for a very
small p. Nevertheless, a small step size of ; may lead to a
slower convergence.

To find the optimal value of u, a quadratic formula must
be solved fore every iteration. This could not be feasible for
real systems. Therefore, rather than finding the optimal values
for u, in [6] a suboptimal search is proposed, i.e., the smart
gradient-project (SGP) method. The algorithm is as follows:

1) Given x* = z¢[n] for n = 0,1,..., N — 1, compute

E = max |z%[n]| 8)
and
Nymazr = argmax |xl [n]]. 9)
2) For all n, compute the projection of & [n] along the phase
angle of z'[n] as

10
@[] (10

where (-)* denotes the complex conjugate.
3) For all n for which cpej[n] > 0, compute p[n] as

follows:
E —|z'[n]|
pn] = (11)
Cproj [12] = Cproj[Mmaa]
4) From (11) select the minimum value, i.e.,
Hmin = H%lin N[n] 5 (12)



and if fiy,;, > 0 then continue with (7) with g = tmin,
otherwise stop the PAPR reduction algorithm.

Note that p[n] given in (11) must be computed for all n in
every iteration of the AGP method.

IV. MODIFIED ACE ALGORITHM

The modified ACE (mACE) algorithm proposed in this
paper is of a similar complexity in comparison to the AGP
method introduced in Section III-A and it performs similar
to the SGP presented in Section III-B in terms of its PAPR
reduction capability. The main idea is to avoid the computation
of p[n] for all n as in SGP, i.e., avoiding thus the necessity
of computing (8)-(12) in every iteration.

The proposed mACE algorithm requires just a little mod-
ification in Steps 5 and 6 of AGP, nevertheless, for the sake
of completeness we detail the complete steps of the algorithm
here.

1) Given a frequency-domain OFDM symbol vector X',
determine and store the allowable extension directions
for each subcarrier. Transform it to the time domain as
x* = IFFTx{X"}, with i denoting the iteration index.
Set ¢ = 0.

2) Clip the time domain signal for all n as follows:

i [n] xt[n), if |zf[n]] < A
Lain || = . . 9
clip Al if 2in)| > A

13)

Where A is an arbitrary amplitude as defined for SGP
method, and where 6[n] = £z°[n].
3) Compute the corresponding clipped signal portion, i.e.,
—2'[n]. (14)

Cinp [n] = leip [n]

4) Transform the clipped signal portion to its frequency
domain,

= FFTn{cl;,} - (15)

(l:lip
5) For simplicity, we define X' [k] = X°[k] just for i = 0
and compute the clipped signal as:

Xi

clip [k] = Xficil[k] + Ccilip [k] ’ (16)

where X ![k] is defined in the next step.
6) Apply the frequency-domain constraints, e.g., as stated

in Figure 2 for a 16-QAM modulation scheme,
vk,

where ({-} is the function that projects the vector of
thp to the allowable extensions areas. Furthermore,

weight a vector that falls inside the allowable extension
area or path and compute X[ [k] as follows:

Xi.[k] = (X{[k] — XO[k]) = 8 + XO[K],  (18)

%

and from (18) proceed to compute Cclip as

_cilip [k} = vac[k] - Xfic_l[k] : (19)
Compute the time domain signal ¢ = IFFT N{Cilip}.
7) Finally, determine the new time domain OFDM symbol

by computing

e [n] = 2'[n] + p&[n] (20)

for all n. The value of y is constant over all iteration
and for all n. It can be chosen after experimental
optimization.

8) If PAPR has reached some lower threshold or a max-
imum iteration count, finish the algorithm, otherwise,
update ¢ = ¢ + 1 and return to Step 2.

Note that the second term on the right-hand side of (7)
and (20) can be also performed in the frequency-domain. In
AGP this is equivalent to 11 [n] = IFFTn {(({X{;,} — X) p}
and in mACE this will be performed in (19) as pé'[n] =
TFFTn {(Xfe — Xio ') 1)

AGP as well as mACE compensate the frequency-domain
constraints of ({-} with an increment of power in the shifted
symbols. AGP does this with g in (7), however, mACE
achieves this in two stages with p and 3. Besides the in-
troduction of B, mACE utilizes both original signals and
signals computed in the previous iteration. For instance, the
computation of C::lip in (20) includes a result from a previous
iteration for mACE while for AGP it can be tracked back
to (4) which requires results from the same iteration for its
computation. Thus, mACE aggregates some extra degrees of
freedom for its solution, which gives some advantages in
comparison to AGP and SGP.

One of the advantages of mACE in comparison to AGP and
SGP is that it permits reverse of extended vectors projected
on the allowable extension in any previous iterations. This
adds extra flexibility towards an optimal solution. Another
advantage, and the main reason of the development of mACE,
is that it can save all computation of SGP. The parameters p
and [ are constants that must be chosen properly, they can be
computed off-line by means of simulation. As it is shown in
the next section, with properly chosen p and 3, mACE may
even perform better than SGP method.

V. SIMULATION RESULTS AND DISCUSSION

In this section the performance of mACE is evaluated.
The performance of SGP is also reproduced and used as a
benchmark.

A. Parameter Settings

The proposed PAPR reduction algorithm is evaluated us-
ing 107 random generated OFDM symbols with N = 256
subcarriers. We choose an oversampling factor of L = 4.
The clipping magnitude is set to A = 4.86 dB above the
average power of the OFDM symbol and the PAPR threshold
is set to 6 dB. We use theses values in order to reproduce the
results of SGP presented in [6] and use them as benchmark.
The algorithms are tested for two modulation schemes: QPSK
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Fig. 3: Performance comparison in terms of ccdf of the PAPR
reduction by mACE and SGP algorithms for 107 OFDM
symbols with N = 255 subcarriers, for QPSK and 16-QAM.
The interpolation factor is L = 4.

and 16-QAM and the maximum number of iterations is set to

tmax = 3.

B. Simulation Results

The N sample values of an OFDM symbol z[n],
n =0,..., N — 1, in time domain can be considered as a zero-
mean unit-variance complex Gaussian random variable. The
PAPR is determined by its largest peak among all samples,
therefore, a common performance measure in the literature is
the complementary cumulative distribution function (ccdf) of
the PAPR, i.e., P{PAPR > PAPRy}, the probability that the
PAPR of an OFDM symbol exceeds a give threshold PAP Ry,
with P{-} denoting probability.

The ccdf of the PAPR reduction algorithms are depicted
in Figure 3 for QPSK and 16-QAM modulation schemes. It
can be noticed that mACE performs very similar to SGP, and
even it achieves better results than SGP for lower P{PAPR >
PAPRy}. The extra PAPR reduction gains achieved by mACE
for QPSK and 16-QAM modulation schemes are up to 0.5
dB and 0.2 dB respectively for a P{PAPR > PAPR,}
of 107% with less computation. This performance is due to
the fact that mACE allows reverse extension vectors while
SGP does not, which gives extra flexibility towards an optimal
solution. In Section III-B, the computational burden of SGP
can be noticed. In each iteration, SGP needs to compute the
equivalent to an FFT in order to determine p[n] for all n. This
is equivalent to the savings of mACE in comparison to SGP.
On the other hand, mACE has to multiply £ with the signal
in (18), this small increment in complexity wrt. AGP can be
well justified by its performance. The results in Figure 3 were
obtained for the system with QPSK by choosing p = 2.5 and
B = 1.5, and for the system with 16-QAM by setting p = 4.5
and 8 = 1.65. These values were chosen for comparison
purposes, they can further be optimized by simulation.

VI. CONCLUSIONS

In this paper, we introduce and evaluate the mACE algo-
rithm for the PAPR reduction in OFDM systems. Its per-
formance has been measured and compared with the SGP
method which, compared to other ACE approaches, so far has
reached the best PAPR reduction after a couple of iterations.
By choosing suitable values for p and 3, it is shown that
mACE performs better than the SGP method and it requires
less computation. For instance, in an OFDM system with
QPSK modulation scheme, mACE outperforms the SGP for
aproximately 0.5 dB at a P{PAPR > PAPRy} of 107°
with the constant pairs (u = 2.5, § = 1.5). In an OFDM
system with 16-QAM modulation scheme, mACE performs
just 0.2 dB better than SGP at a ccdf of 10~° with the constant
pairs (u = 4.5, § = 1.65). For symbols with N = 255
subcarriers, the mathematical operations saved by mACE can
be compared to computing an FFT in each iteration since p
and [ are constants searched off-line by simulations. To this
end, mACE realizes an appropriate trade-off between PAPR
reduction and computational complexity, which makes it a
viable option for implementations in real time systems.
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