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Christopher Schroers 
Disney Research Zürich 
Neural Video Processing in Post Production  

 
Abstract: Post production pipelines for feature films are comprised of numerous complex processing steps. 
Nowadays, these steps are often solved with classical image processing and computer vision algorithms but deep learning 
based approaches offer great potential in increasing quality and efficiency. In this presentation, I will give an overview of our 
recent research in the space of neural video processing targeting post production tasks such as rate conversion, upscaling, 
denoising, and video compression 

 
Contributed Presentations 
 

Johannes Bauer 
Friedrich-Alexander-University Erlangen-Nürnberg 
Scalable Multi-Image 3D Reconstruction using Plane Sweep 

 
Abstract:  During the last decades, a lot of research has been conducted in the field of reconstructing 3D scene 
information from two or more images. State-of-the-art multi-view-stereo (MVS) algorithms allow for elaborate scene analysis 
and yield optically impressive results, but usually come at high computational complexity. Therefore, a plane sweeping 
approach is proposed, offering high scalability in the system size up to large-scale application, use of heterogeneous camera 
systems, as well as an easy trade-off between spatial resolution and computational cost. In contrast to most MVS methods, 
it is targeted at machine vision tasks such as object detection / tracking, where complexity and operating speed is more 
crucial than visual quality. 
 
 

Fabian Brand 
Friedrich-Alexander-University Erlangen-Nürnberg 
Artificial Neural Networks for Intra-Frame Prediction 

 
Abstract:  Neural Networks are able to learn complex structures and are therefore used in many applications. 
Recently there has been research of how to use them for intra-frame prediction in image and video coding. This presentation 
will give an overview over different methods which can be found in literature, including the use of CNNs for prediction 
refinement, recurrent networks and dense feed forward networks. There are many new problems arising when neural 
networks are used instead of traditional intra prediction modes, mode-prediction being only one of them. The presentation 
will conclude with a few examples of my own research into this topic. 
 
 
 

Kristian Fischer  
Friedrich-Alexander-University Erlangen-Nürnberg 
Video Coding with Spatial Downscaling and Super-Resolution 

 
Abstract: Commonly, video encoders compress the video in the same resolution as the video was captured or 
stored. However, there are scenarios where it is feasible to subsample the video before encoding in order to reduce the 
number of pixels that have to be processed. Consequently, the decoded video has to be upscaled to the target resolution at 
the receiver side to reach the starting resolution. For this purpose, super-resolution algorithms based on neural-networks 
are implemented in such a coding chain with spatial up- and downscaling. By doing so, it is investigated under which 
circumstances such a coding chain is feasible considering high resolution videos.  
 
 

Michael Gatzen 
RWTH Aachen University 
Model-Based Compression of Genomic Sequences 

 
Abstract:  The emergence of high-throughput sequencing technologies has greatly reduced the cost of analyzing the 
human genome. The vast amount of data produced by an increasing number of institutions poses a significant challenge to 
data storage infrastructure. Considering various efforts to employ efficient compression algorithms for genomic data, a 
context-adaptive arithmetic coder is used, accounting for statistical features in the underlying signal. This method is 
examined and later extended by a block-based framework employing prediction-based methods known from digital signal 
processing. The feasibility to apply these signal processing techniques to genomic data is investigated and compared to 
other existing compression frameworks. 
 
 
 



 
Franz Götz-Hahn 
University of Konstanz 
Video Quality Assessment based on Multi-Level Spatially Pooled Frame Features 

 
Abstract:  The presentation shows a novel way of predicting video quality by training on features extracted from off-
the-shelf (CNNS). Additionally, KonVid-150k is presented, a massive ecologically valid VQA database. Using this database, 
the performance of this novel deep learning-based VQA method is compared to classical feature-based no-reference VQA 
methods. The tradeoff between gathering more videos with fewer human judgments of quality is evaluated based on a fixed 
budget for annotation.  
 
 

Hossein Golestani 
RWTH Aachen University  
Geometrically Compensated Reference Picture Synthesis for Video Sequences with  
Camera Motion 

 
Abstract:  In the case of camera motion, the content of a current frame could be very different from its reference 
pictures and consequently, it may lead to a more difficult motion compensation. The main idea of this topic is to estimate the 
3D geometry of the scene captured by a monocular moving camera, and employ it in order to assist a video encoder to 
improve its rate-distortion performance. This goal is pursued by synthesizing virtual geometrically compensated predictions 
and adding them to the HEVC reference pictures lists. Our simulation results show more than 11% bitrate reduction 
compared to HEVC. 
 
 

Simon Grosche  
Friedrich-Alexander-University Erlangen-Nürnberg 
Design Techniques for Incremental Non-Regular Sampling Patterns 

 
Abstract:  Non-regular sampling can be used instead of regular sampling to reduce aliasing and therefore increase 
the resolution per pixel. From the measured data, the missing pixels need to be reconstructed on a high-resolution grid 
subsequent to the acquisition. One possible application is the acquisition of scanning electron microscopy images, where 
non-regular acquisition allows to reduce dose and/or measurement time. 
It turns out, that the actual choice of the sampling pattern has a strong influence on the reconstruction quality. Based on 
evaluations of less optimal sampling strategies, we will elaborate on approaches leading to optimized sampling patterns. In 
terms of the reconstruction method, we highlight Frequency Selective Reconstruction being well-suited for such tasks and 
leading to a high reconstruction quality. 
 
 

Viktoria Heimann 
Friedrich-Alexander-University Erlangen-Nürnberg 
Frequency-Selective Mesh-to-Grid Resampling 

 
Abstract:  In many applications that are used in image processing, pixel values are mapped from a regular grid of 
pixel positions onto arbitrary noninteger positions, called mesh. As pixel values lying on the mesh cannot be displayed on a 
digital screen, the pixel values have to be resampled onto a regular grid of pixels. Therefore, Frequency-Selective Mesh-to-
Grid Resampling (FSMR) is used. FSMR generates a model of weighted basis functions iteratively. However, samples on 
floating mesh positions lead to a severe overfitting problem as nonorthogonal weighted bases are sampled at noninteger 
positions. FSMR overcomes this problem by incorporating adaptively weighted initial estimates. 
 
 

Mohsen Jenadeleh 
University of Konstanz (until 2018) 
JND-based Video Quality Assessment and its Applicants 

  
Abstract:  We will discuss the challenges and choices for subjective evaluation of a large-scale authentically distorted 
video dataset using just-noticeable-difference (JND) methodology. Such a database will enable developing objective 
methods for accurate JND estimations of video sequences acquired in unconstraint environment. Also, since, one of the 
main applications of the JND-based quality assessment is video coding, we will discuss the applications of such JND-based 
video dataset for devising new approaches and technologies for the compression of videos using machine learning 
approaches and their potential to produce more accurate and visually pleasing video frame reconstructions at a higher 
compression rate. 
 
 

Rolf Jongebloed 
Technical University of Berlin 
Quantized and Regularized Optimization for Coding Images Using Steered 
Mixtures-of-Expert 

 
Abstract:  Compression algorithms that employ Mixtures-of-Experts depart drastically from standard hybrid block-
based transform domain approaches as in JPEG and MPEG coders. In pre-vious works we introduced the concept of 



Steered Mixtures-of-Experts (SMoEs) to arrive at sparse representations of signals.  SMoEs are gating networks trained in 
a machine learning approach that allow individual experts to explain and harvest directional long-range correlation in the N-
dimensional signal space.  Previous results showed excellent potential for compression of images and videos but the 
reconstruction quality was mainly limited to low and medium image quality.  In this paper we provide evidence that SMoEs 
can compete with JPEG2000 at mid- and high-range bit-rates.  To this end we introduce a SMoE approach for compression 
of color images with specialized gates and steering experts.  A novel machine learning approach is introduced that optimizes 
RD-performance of quantized SMoEs towards SSIM using fake quantization. We drastically improve our previous results 
and outperform JPEG by up to 42%. 
 
 

Daniela Lanz 
Friedrich-Alexander-University Erlangen-Nürnberg  
Content Adaptive Wavelet Lifting for Scalable Lossless Video Coding 

 
Abstract:  Wavelet-based video coding decomposes an input sequence into a lowpass and a highpass subband by 
filtering along the temporal axis. So far, the number of total decomposition levels is determined for the entire input sequence 
in advance. However, if the motion in the video sequence is strong or if abrupt scene changes occur, a further decomposition 
leads to a low-quality lowpass subband. Therefore, we propose a content adaptive wavelet transform, which locally adapts 
the depth of the decomposition to the content of the input sequence. 
 
 

Thorsten Laude 
Leibniz University Hannover 
Non-linear Contour-based Multidirectional Intra Coding 

 
Abstract: Intra coding is an essential part of all video coding algorithms and applications. Additionally, intra coding 
algorithms are predestined for an efficient still image coding. To overcome limitations in existing intra coding algorithms 
(such as linear directional extrapolation, only one direction per block, small reference area), we propose non-linear Contour-
based Multidirectional Intra Coding (COMIC). This coding mode is based on four different non-linear contour models, on 
the connection of intersecting contours, and on a boundary recall-based contour model selection algorithm. The 
different contour models address robustness against outliers for the detected contours and evasive curvature changes. 
Additionally, the information for the prediction is derived from already reconstructed pixels in neighboring blocks. The 
achieved coding efficiency is superior to those of related works from the literature. Compared to the closest related work, 
BD rate gains of 2.16% are achieved on average. 
 
 

Hanhe Lin 
University of Konstanz 
MLSP-IQA: Weak Supervision for Deep Distortion-Aware IQA Features 

 
Abstract:  Current artificially distorted image quality assessment (IQA) databases are small in size and limited in 
content. To address the limitation, we create two datasets, the Konstanz Artificially Distorted Image quality Database 
(KADID-10k) and the Konstanz Artificially Distorted Image quality Set (KADIS-700k). The former contains 81 pristine images, 
each degraded by 25 distortions in 5 levels. The latter has 140,000 pristine images, with 5 degraded versions each, where 
the distortions are chosen randomly. We conduct a subjective IQA crowdsourcing study on KADID-10k to yield 30 
degradation category ratings (DCRs) per image. We propose a novel deep learning no-reference IQA method that make 
use of KADID-10k and KADIS-700k by means of weakly supervised learning.  
 
 

Hui Men 
University of Konstanz 
Visual Quality Assessment for Motion-compensated Frame Interpolation 

 
Abstract:  Current benchmarks for optical flow algorithms evaluate the estimation quality by comparing their predicted 
flow field with the ground truth, and additionally may compare interpolated frames, based on these predictions, with the 
correct frames from the actual image sequences. For the latter comparisons, objective measures such as mean square 
errors are applied.  However, for applications like image interpolation, the expected user’s quality of experience cannot be 
fully deduced from such simple quality measures.  Therefore, we conducted a subjective quality assessment study by 
crowdsourcing for the interpolated images provided in one of the optical flow benchmarks, the Middlebury benchmark. Our 
result shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation 
benchmarks. 
 

Holger Meuel 
Leibniz University Hannover 
Application of the Rate-Distortion Theory for Affine Motion Compensation in Video 
Coding 

 
Abstract:  The minimum bit rate for encoding the prediction error in affine motion compensated video coding is 
derived. For that, the probability density function of the displacement estimation error is calculated as a function of the affine 
motion parameter estimation errors. The rate-distortion theory is derived and evaluated to determine the minimum bit rate 
for encoding the prediction error, taking into account the power spectrum density of real image signals. The theoretic findings  



 
are compared to real-world measurements and conclusions for the accuracy of affine motion compensation in video coding 
are drawn. 
 
 

Maria Meyer 
RWTH Aachen University 
Architectures and Training Methods for Neural Network-based Intra Prediction 

 
Abstract:   It has been shown recently, that neural networks can improve video intra prediction significantly. Within 
the last year we therefore further investigated, which network architecture, training method and data is most suitable for this 
application. This included analyzing the benefits of including cross-component information for chroma prediction and 
reducing the computational overhead by pruning the applied networks. Likewise, it was shown to be beneficial to train with 
a transform domain loss function, a combination of coded and uncoded data and a reduced number of low variance samples.  
 
 

Marta Orduna 
Universidad Politécnica de Madrid 
Performance of Objective Metrics on 360VR Contents

 
Abstract:  The presentation shows the performance of different video objective metrics on 360VR contents. Through 
a complete set of tests, we evaluate the behavior of the selected objective metrics looking for the linearity between the 
subjective scores and the objective outcomes. As a particular case, we are interested in showing the results of Video 
Multimethod Assessment Fusion (VMAF) to 360VR contents, a full reference metric developed by Netflix initially designed 
to work with traditional 2D contents. Therefore, through a complete set of tests, we prove that this metric can be successfully 
used without any specific training or adjustments to obtain the quality of 360VR sequences actually perceived by users. 
 
 

Yasser Samayoa 
Leibniz University Hannover 
Bit Allocation on Real Time Video Communication System over Wireless Channel 

 
Abstract:  Good performance at a high data rate has become a constant growing prerequisite for deploying video 
communication systems.  Video communication over rate-limited and error-prone wireless channels requires both a high 
error resilience and high compression solutions. The development of flexible, near-instantaneously adaptive scheme 
capable of maintaining an acceptable video quality regardless of the channel quality encountered will be the main goal of 
the talk. 
 

Johannes Sauer 
RWTH Aachen University  
Padding Usage Information for Geometry Padding of 360° Videos  

 
Abstract:  Geometry padding of 360° videos in cube based projections requires reprojection of pixels from 
neighboring cube faces. Doing so on-the-fly changes the en/decoder at a block level which is not desirable. Applying the 
padding at a high level (reference picture) can generate pixels which are not actually required by motion compensation. To 
avoid this inefficiency we add a high level signaling of geometry padding usage information using an SEI message. 
 
 

Michael Schäfer 
Fraunhofer HHI Berlin 
An Affine-Linear Intra Prediction with Memory Constraints 

 
Abstract:  The author presents a novel method for a data-driven training of neural networks for intra picture 
prediction. The resulting predictors are affine-linear and use subband decomposition of the input and output samples. 
Thereby, the architecture allows to share one set of weights across different block shapes. Furthermore, the number of 
multiplications does not exceed eight per sample to predict. During the training, a loss function modelling the bitrate of the 
DCT-transformed residuals is used. The obtained predictors are incorporated into the Versatile Video Coding Test Model 4. 
All Intra BD-rate savings up to 1.2 % across different resolutions are reported. 
 
 

Jens Schneider 
RWTH Aachen University 
Dictionary Learning based Adaptive Resolution Change in Video Coding 

 
Abstract:           The concept of dynamic resolution change is well known from MPEG-4. However, in MPEG-4 linear filters 
are used for the upsampling, which is a crucial to coding video at varying resolution. With the rise of machine learning based 
super resolution methods in the last decade, powerful algorithms outperforming conventional upsampling were developed. 
This contribution introduces a dynamic resolution change concept for intra frames using a dictionary learning based 
upsampling method. Thereby, the encoder decides on the CTU-level whether the original CTU or a downsampled version 
should be coded. Simulation results show that gains with respect to VTM-3.0 reference software can be achieved. 
 



 
 

Benjamin Spitschan 
Leibniz University Hannover 
High-precision Camera Calibration for Professional Augmented-Reality Applications 

 
Abstract:  Camera calibration is crucial to most augmented reality (AR) systems. While powerful self-calibration 
methods are available, professional AR applications such as laporoscopic surgery or assisted industrial maintenance require 
highest calibration accuracy. Conventional target-based calibration is commonly chosen here. In cases, however, where the 
camera system has a shallow depth-of-field, calibration must be carried out with strongly blurred images of the target. A 
robust marker detection method for calibration patterns is presented that is able to cope with strong optical blur, noise, and 
other perturbations that occur during the imaging process. 
 
 

Andreas Spruck 
Friedrich-Alexander-University Erlangen-Nürnberg 
Potential of Deep Learning in the Field of Industrial Quality Assurance 

 
Abstract:   With the recent advances in the field of production engineering the need for automated inspection systems 
rises, as more complex parts can be manufactured, which approach the failure limit quite close. With the progress in machine 
learning and within the scope of Industry 4.0 the use of deep learning techniques for the inspection of produced items bears 
a great potential. This novel approach bears the benefit of a very flexible system while existing infrastructure might be 
reused. By this the presented approach is also appealing for small companies, as the roll-out costs can be kept low.  
 
 

Jan Voges 
Leibniz University Hannover 
Optimization Strategy for MPEG-G Compliant Entropy Encoding 

 
Abstract:  The research field of genomics and DNA sequencing in particular has made great progress in recent years. 
The comprehensive use of high-throughput technologies for DNA sequencing opens up new perspectives in the treatment 
of diseases and enables personalized medicine on unprecedented scales. Since DNA sequencing technologies produce 
extremely large amounts of raw data, the costs for storing, transmitting and processing sequencing data are very high. To 
facilitate the widespread use of DNA sequencing at acceptable costs, international standardization organizations developed 
the MPEG-G standard. The MPEG-G compression pipeline consists of three stages: classification of the input data into 
clusters, further splitting of the clusters into independent streams, and entropy encoding. The entropy coding in MPEG-G 
can be configured by many parameters, which results in at least one billion potential combinations for a given input stream. 
The choice of parameters is a crucial step as it has a high impact on the resulting bitrate. Trying all possible combinations 
is unfeasible because this would require an entire encoding of the input stream for each combination. I present a method for 
designing an MPEG-G compliant entropy encoder which balances encoder complexity and encoder efficiency. 
 
 

Oliver Wiedemann 
University of Konstanz 
Foveated Video Coding for Real Time Streaming Applications

 
Abstract:  Video streaming with strict real-time constraints is gaining popularity in academic research and in     
consumer applications such as cloud gaming.  Scenarios where future frames are dependent on e.g. user feedback and 
thus unavailable to the encoder prohibit the application of modern bidirectional coding schemes. We present a framework 
that utilizes live eye-tracking data in a foveated region-of-interest coding scheme with the goal of retaining perceived visual 
quality at smaller bitrates under the imposed limitations and constraints. 
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Outline

• Introduction

• Intra Frame Prediction

• Applications of Neural Networks in Intra Frame Prediction
– Additional Modes

– Full Mode Training

• Training Set Clustering

• Experimental Results

• Conclusion
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Introduction - Hybrid Video Coder

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” Dec 2012.



Chair of Multimedia Communications and Signal Processing

Fabian Brand: Intra Prediction with Neural Networks 17.06.2019

Page 4

Intra Prediction

• Reduces Spatial Redundancy

– Local environment

• Predicting CU from spatial 
environment (reference area)

• Usually multi-mode prediction

• Transmitting (quantized) residual 
and mode information

• Spatial mode prediction

– Large scale correlations

Intra Prediction

Compute 
Residual
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Intra Prediction HEVC

• 35 modes:
– DC and planar mode

– 33 angular modes

• Copying pixels from the reference 
area in different angles

• Advantages: 
– Low complexity

– Sharp Edges are preserved

• Disadvantage:
– Insufficient for complex 

structures G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” Dec 2012.



Chair of Multimedia Communications and Signal Processing

Fabian Brand: Intra Prediction with Neural Networks 17.06.2019

Page 6

Intra Frame Prediction with Neural Networks

• Interpretation:

– Intra-Prediction as function

– Find mode       which minimizes 
error of prediction signal

• Neural networks (NNs) can 
approximate arbitrary functions

• Usually larger reference area  
(e.g. 2 or 4 pixels wide)

Neural 
Network

cf. J. Pfaff, P. Helle, S. K. D. Maniry, W. Samek, H. Schwarz, D. Marpe, and T. Wiegand, 
“Neural network based intra prediction for video coding,” 2018
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Additional Modes with Neural Networks

• Keeping HEVC modes intact and 
adding one or two additional 
modes

• Example: IPFCN by Li et al.
– Shallow 4 layer fully connected 

(FC) network 

• Two proposals: IPFCN-S and 
IPFCN-D
– One and two additional modes 

respectively

– Comparing with HEVC

• IPFCN-S
– Training one mode with all 

available training data

– Average BD-rate: -2.9%

• IPFCN-D
– Training one mode from 

DC/planar blocks

– Training another mode from 
angular blocks

– Average BD-rate: -3.4%

• Gain decreases for second mode
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Mode-Based Intra Prediction with Neural Networks

• Replacing all modes with neural 
network based modes

• Challenges:

– Computational complexity: Full 
search becomes more difficult

– Spatial mode prediction

– Training set

• Example: Pfaff et al.

– Four-layer networks

– All modes share the first three 
layers

• Improves runtime complexity
and memory requirements

– Another neural network used for 
mode prediction

– Comparing with JEM including 
rectangular blocks

– Average BD-rate: -3.01%
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Spatial Mode Prediction

• Angular prediction:
– Mode semantic clear and equal 

for all block sizes

– Modes can be ordered 

– Easy spatial prediction

• Neural Network based prediction:
– Highly non-linear functions

– Mode semantic unclear, 
depending on training sets

– No trivial ordering possible

– Independent training for 
different block sizes leads to 
different semantics

– Difficult spatial prediction

– Pfaff et al. use separate network 
for mode prediction
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Training 

• Different modes require different training sets

• Requirements:

– Complete coverage of all contents 

– Clear distinction between the modes

• How can we design suitable training sets?

• Splitting the whole training set
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Splitting the Training Set

• How to split the training set to 
train good predictors

• Not only consider block structure 
but also the support area

– Same structure must be 
predicted differently depending 
on support area

• Proposed method

– Cluster blocks according to best 
HEVC mode
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Results

• Evaluating PSNR of prediction 

• Training on 90 Images of TECNICK

• Evaluating the remaining images

• Only block size 16x16 tested

• Four-layer fully connected 
network

Predictor # Modes Prediction 
PSNR [dB]

Angular (HEVC) 35 25.03

NN 35 24.73

Angular 18 24.67

NN 18 24.46

Angular 6 22.71

NN 6 23.94



Chair of Multimedia Communications and Signal Processing

Fabian Brand: Intra Prediction with Neural Networks 17.06.2019

Page 13

Iterative Approach

• Clustering according to HEVC 
modes produces similar modes

• Neural Networks can do more!

• Proposal:
– Clustering according to 

previously trained predictor

– Iterative clustering

– Many “Generations”

– Similar to expectation-
maximization (EM) algorithm

• High training effort

• Challenges:
– Keep individual modes from 

becoming too dominant
• Ideally: Use different datasets 

for each generation

• Practice: Use data 
augmentation, e.g. by flipping

– Mode predictability decreases 
with proceeding generations 
• No solution yet
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Results
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Summary

• Two concepts for network-based intra prediction

– Adding additional modes

• Good results

• Using new structures

• Increased side information

– Replacing all modes

• High potential

• High training effort

• Major Challenges: Training procedure, Mode prediction

• Generally high potential for neural-network-based intra prediction
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Outline

• (Incremental) Non-Regular Sampling

• Importance of Proper Sampling Patterns

• Design Techniques for Incremental Sampling Patterns

• Simulation & Evaluation

• Conclusion & Outlook
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Non-Regular Sampling

High-Resolution Sampling
(𝑁2 pixels)

25% Regular Sampling
(𝑁2/4 pixels) 

25% Non-Regular Sampling
(𝑁2/4 pixels) 

 Iterpolate remaining pixels
Resolution limited by 

aliasing

Higher resolution after 
appropriate reconstruction

Reduced aliasing

 Long measurement time, 
high data rate

Seiler et al.,  “Resampling images to a regular grid from a non-regular subset of pixels using frequency selective reconstruction,” IEEE Transactions on Image Processing, vol. 24., no. 11, pp. 4540-4555, Nov. 2015
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Incremental Non-Regular Sampling

Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Reconstruction Algorithms and Testsets

Reconstruction Algorithms

• Linear Interpolation 

 fast, reasonable quality

• Frequency Selective 
Reconstruction (FSR)

 more complex, real-time 
capable, high quality

Image Testset

• SEM images

– 8-bit grayscale images

– 30 images, 1200x1200 pixels

• Tecnick Dataset (2011)

– Natural 8-bit grayscale images

– First 30 images, 1200x1200 pixels

SEM images: Museo del Scienze, online: https://commons.wikimedia.org/wiki/Category:SEM_images_from_MUSE_-_Science_Museum, Apr. 2016; accessed 18-May-2018
Tecnick images: N. Asuni et.al., “Testimages: a large-scale archive for testing visual devices and basic image processing algorithms,” in Proc. Smart Tools and Apps for Graphics, Cagliari, Sep. 2014, pp. 63–70

FSR: Seiler et al., “Resampling images to a regular grid from a non-regular subset of pixel positions using FSR,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 4540–4555, Nov. 2015
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How to choose the Sampling Pattern?

Regular Pattern Optimized Quarter Pattern Random Sampling Pattern

 PSNR 33.2 dB (FSR)  PSNR 32.4 dB (FSR)

 Observation: Good sampling pattern should be uniform and non-regular

 PSNR 34.1 dB (FSR)

Optimized Quarter Pattern: Grosche et al., “Iterative Optimization of Quarter Sampling Masks for Non-Regular Sampling Sensors,” in Proc. IEEE ICIP, Athens, Oct. 2018 
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How to choose the Sampling Pattern?

Uniformity

• Local density ≈ global density

• Details can be anywhere in the 
image

Non-Regularity

• Flat frequency spectrum

• Reduce aliasing

How to combine both properties in a single, incremental sampling pattern?
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Techniques for Incremental Non-Regular Patterns

• Incremental random sampling patterns (RAND)
 Draw random sampling positions from uniform probability distribution

• Sobol sampling patterns (SOBOL)
 Often used in Monte Carlo integration, here discretized

• Proposed incremental Gaussian propability distribution patterns (GAUSS)
 Draw random sampling positions from Gaussian probability distribution

Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Sampling Patterns (central section)

Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Reconstruction Quality

• Similar for both 
reconstruction methods

• Similar for both test sets

• GAUSS > SOBOL > RAND
• More than +0.5dB gain

Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Visual Comparisons

Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Visual Comparisons

Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Conclusion

• Non-regular quarter sampling can achieve higher resolution per pixel using an appropriate 
reconstruction method

• Observation: Good sampling patterns should be
uniform and non-regular

• Proposal: Incremental sampling patterns 
RAND, SOBOL, GAUSS (proposed)

• Results similar for both test sets and both
reconstruction methods

• Gain >+0.5 dB using GAUSS instead of RAND patterns
Grosche et al., “Design Techniques for Incremental Non-Regular Image Sampling Patterns,” in Proc. IEEE IST, Krakow, Oct. 2018 
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Outlook

• Content adaptive patterns

• Extend to 3D-patterns

• Theoretical limitations from compressed sensing

• FSR Matlab-Reference Implementation available at
https://gitlab.lms.tf.fau.de/LMS/Rapid-FSR

– Bundles latest research on FSR

– Dynamic parameter estimation

– Three quality profiles: fast, compromise, best



Viktoria Heimann
viktoria.heimann@fau.de

Chair of Multimedia Communications
and Signal Processing

Frequency-Selective Mesh-to-Grid Resampling
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Outline

• Mesh-to-Grid

• Resampling

• Frequency-Selective
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Grid 

Continuous Image Regularly Sampled Image
= Grid
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Mesh

Irregularly Sampled Image
= Mesh

Continuous Image
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How to generate a mesh?

Rotation

Zoom

Homography

Super-Resolution

Fisheye

Translation

Frame Rate 
Up-ConversionPanorama 

Stitching

Tracking

And many more...Source: https://testimages.org/  
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Image Resampling

• Pixels at non-integer positions cannot be displayed nor efficiently stored
 Resampling is necessary

Resampling
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How can resampling be done?

• Using the classic methods
– Linear Interpolation

– Cubic Interpolation

– Spline Interpolation etc.

• Using frequency-based method
– Frequency-Selective Mesh-to-Grid Resampling (FSMR) [1]

[1] „Frequency-Selective Mesh-to-Grid Resampling for Image Communication“, J.Koloda et al., IEEE Transactions on Multimedia, 2017 
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Image in Spatial Domain

Main Principle: 

𝑓 𝑚, 𝑛 = σ𝑘∈𝐾 𝑐𝑘𝜑𝑘 𝑚, 𝑛

Image Signal = Sum of weighted Basis Functions

Source: http://r0k.us/graphics/kodak/
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Iterative Model

𝑔 𝑣 𝑚, 𝑛 = 𝑔 𝑣−1 𝑚, 𝑛 + Ƹ𝑐𝑢
𝑣
𝜑𝑢 𝑚, 𝑛
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FSMR

Stopping 
Criteria

Original 
Samples = 

Mesh

Compute Error Energy 
for every Basis 

Function

Selection of Best Fitting 
Basis Function

Update 
Model

Cut out 
reconstructed 

pixels

+
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Results



Chair of Multimedia Communications and Signal Processing

V. Heimann: FSMR 18.06.2019

Page 12

Orthogonality Problem

• Problem: Basis Functions not orthogonal 

• Reason: Evaluation of the Basis Function on Floating Mesh 
and not on Regular Grid

• Idea: Include Grid Points in the Generation of the Model

• How: Easy Interpolation of Grid Points = Key Points

• Attention: Key Points not as reliable as Mesh Points 

 Smaller Weights for Key Points
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FSMR using Keypoints

Stopping 
Criteria

Original 
Samples = 

Mesh

Key points

Adaptive Key Point 
Weighting

Compute Error 
Energy for every 
Basis Function

Selection of Best 
Fitting Basis 

Function

Update 
Model 

Cut out 
reconstruted

pixels

+Merge
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Results with Adaptive Key Point Weighting
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Comparison

Average PSNR in dB with respect to linear interpolation for the KODAK data image dataset

Cubic Natural 
Neighbor

Inverse Distance 
Weighting

Lanczos FSMR

Rotation 3.30 -0.11 0.56 0.32 9.77

Translation 3.23 -0.13 1.63 3.59 12.06

Zoom 3.65 -0.26 4.20 4.44 7.09

Source: „Frequency-Selective Mesh-to-Grid Resampling for Image Communication“, J.Koloda et al., IEEE Transactions on Multimedia, 2017 
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Conclusion

• Pixels at non-integer positions cannot be displayed nor 
efficiently stored

• Resampling is necessary for many applications

• FSMR takes advantage of frequency information 

• FSMR is a powerful method for image resampling



Non-linear Contour-based 
Multidirectional Intra Coding
5th Summer School on Video Compression and Processing (SVCP) 2019 

Thorsten Laude



Background

Necessity of intra coding 

• Start and random access of/to 
transmissions

• Error concealment
• Chunk-based bitrate adaptivity

• Coding of newly appearing 
content

• Predestined for efficient still 
image coding
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Limitations of 
HEVC Intra 
Prediction

Relatively small reference area 
(1pel width/height)

Directional modes only allow 
prediction of linear structures

Only one intra mode 
(directional, DC, planar) per 
block



CoMIC Contour-based 
Multidirectional Intra 
Coding



CoMIC v1 
(PCS 2016)
• Prediction based on information 

gathered in reference area

• Available at encoder and decoder

• Linear contour modeling
• Reference sample continuation

Difference to HEVC

üMultiple directions



CoMIC v2 
(TSIP 2018)

Extension of CoMIC v1 by
• Four non-linear contour models
• Connection of intersecting contours
• Boundary Recall-based contour model selection



Non-linear 
Contour 
Models

Model 4: 
Awareness for 

evasive curvature 
changes

Distance-dependent residue weightening

Model 3: 
Outlier 

consideration 
Iterative residue weightening during least squares

Model 2: 
Slope modeling

More robust modeling in different space with fewer parameters
Smoothed slope

Model 1: 
Polynomial with 

degree 2

Linear regression problem, solved by least squares
In some cases not robust enough (few contour points, volatile 
curvature, imprecise contour pixel location)



Contour 
Combination
Problem: 

Contours can be intersected by current 
block à Two indepentent contours

Solution:
1. Detect intersecting contours after 

extrapolation

2. Join contours to single contour
3. Interpolation between contours



Sample Value Prediction



Sample Value 
Prediction

• Reference sample 
continuation along contour

• Continuation along shifted 
contours

Differences to HEVC

üMultiple directions
üNon-linear directional 

prediction
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Bit rate savings relative to JPEG at fixed quality



Coding 
Efficiency 2
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Coding 
Efficiency 3
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Complexity
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Runtime [s]

Non-linear prediction Linear prediction Transform coding Mode selection Rest



The CoMIC Codec Today

Contour extrapolation Sample value prediction

Contour 
detection

Linear contour 
model

Non-linear 
contour model 1

Non-linear 
contour model 4

Non-linear 
contour model 3

Non-linear 
contour model 2 Boundary 

Recall-based 
contour model 

selection

Contour 
connection

Along-contour 
reference 
sample 

continuation

Reference 
sample 

continuation 
with diminishing

DC mode

Prediction error 
coding and 

signal 
reconstruction

Rate-distortion 
optimization

Novel contribution

Previous work (CoMIC v1)

Input

Output



Current Work
Stochastic contour 
modeling

Machine learning-based 
sample value prediction



How much machine learning is good?

Conventional 
codecs
•HEVC
•JPEG

Encoder control
•Partitioning, mode 

decision, etc.
•Classification, 

reinforcement 
learning

•Laude2016, Yu2015

Coding Tools
•Integration in hybrid 

codecs
•Intra Coding 

(Meyer2019)
•Inter Coding 

(Laude2018)

End-to-end 
coding
•Complete coding 

system
•Toderici2015+2016
•Johannes Ballé

no machine learning solely machine learning



More Information

• Laude, T., Tumbrägel, J., Munderloh, M., & Ostermann, J. (2018). Non-
linear contour-based multidirectional intra coding. APSIPA 
Transactions on Signal and Information Processing, 7(11). 
https://doi.org/10.1017/ATSIP.2018.14

• Laude, T., & Ostermann, J. (2016). Contour-based Multidirectional 
Intra Coding for HEVC. In Proceedings of 32nd Picture Coding 
Symposium (PCS). Nuremberg, Germany: IEEE. 
https://doi.org/10.1109/PCS.2016.7906319

https://doi.org/10.1017/ATSIP.2018.14
https://doi.org/10.1109/PCS.2016.7906319


Conclusion

CoMIC

Combination of contour modeling and 
sample value prediction

Bit rate savings

Good extend of complexity
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Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Introduction   

Motion Estimation 
n  Example: Analysis of Hamburg Taxi Sequence 

Color-coded  
Displacement Field 

Flow Field  

Frame 1 Frame 2 

Movements of the cars ? 

Flow color coding 

2/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Introduction   

Motion Estimation 
n  Optical Flow 

Frame 1 
Displacement ? 

Frame 2 

Flow color coding 

3/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Optical Flow   

Quantitative Evaluation 
n  Angular error & endpoint error between flow vector & ground-truth flow 

Ground-truth flow Flow vector 

4/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Optical Flow   

Quantitative Evaluation 
n  MSE between interpolated image & ground-truth in-between image 

Interpolated Image Ground-truth in-between Image 

5/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Optical Flow 

6/19 

ü   

Quantitative Evaluation 
 n  Is MSE enough from the visual quality aspect ? 

Q: Which image has a better quality? 
q  Left q  Right q  The same 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Optical Flow 

7/19 

Quantitative Evaluation 
 n  Is MSE enough from the visual quality aspect ? 

MSE: 11.9 MSE: 11.9 

Ground-truth in-between image 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Adopt 

Visual Quality Assessment  

to  
Optical Flow Benchmarks 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Middlebury Benchmark 

Evaluation Metrics  

9/19 

n  Flow Accuracy: Endpoint & Angular Error 
n  Interpolation Quality: RMSE & Gradient-normalized RMSE 

Ground-truth In-between Images 

Interpolated Images 
given by 

141 optical flow methods 

* In Collab. with SFB-TRR 161 Project B04 

Epicflow 

NNF-EAC 

Seg-OF 

… … 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Paired Comparisons using Crowdsourcing 

Crowdsourcing Interface 

10/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Paired Comparisons using Crowdsourcing 

Task Instructions 

11/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Paired Comparisons using Crowdsourcing 

Quality Control 

12/19 

n  Test Questions 

 
 
n  Accuracy Requirement: 70%  

Ground-truth image	 Bad quality image	



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Paired Comparisons using Crowdsourcing 

Experimental Details 

13/19 

n  Full pair comparison: 78,960 pairs  
n  Time & Money Consuming   

n  Random connected pair comparison 
n  Degree 6: 423 pairs  

 

n  # Pairs/page: 20 
n  # Votes/pair: 30 

n  Running Time 

Running Time Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen 

Hours 29 60 72 10 20 10 3 20 35 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Result Reconstruction 

n  Adding 2 Anchors 

 

14/19 

423 pairs of images 

Anchor: worst Anchor: best 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Result Reconstruction 

n  Adding 2 Anchors 

 
n  Reconstruction using Thurstone’s Model 
n  Rescale to [0,1] 
n  Correlations: Average SROCC = 0.598  

 

 
15/19 

141 images 

Anchor: worst Anchor: best 
(0,1) 0 1 
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Hui Men 

Re-ranking Result 

n  text 
n  … 

… … … … … … … … … … 

16/19 
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Hui Men 

Ranking 
Old / New 

1 / 2 
2 / 20 
3 / 18 
… 
… 

11 / 48 
… 

18 / 54 
… 
… 

33 / 63 
… 
… 

77 / 11 
… 

103 / 34 
… 

135 / 50 
… 
… 

139 / 122 
140 / 139 
141 / 141 

1 
2 
3 
… 
... 
11 
… 
… 
18 
19 
20 
… 
… 
… 
… 
33 
34 
… 
… 
… 
48 
… 
50 
… 
54 
… 
… 
63 
… 
… 
… 
77 
… 
… 
… 
… 
… 
… 

103 
… 
… 
… 
… 
… 

122 
… 
… 

135 
… 

139 
140 
141 

1 
2 
3 
… 
... 
11 
… 
… 
18 
19 
20 
… 
… 
… 
… 
33 
34 
… 
… 
… 
48 
… 
50 
… 
54 
… 
… 
63 
… 
… 
… 
77 
… 
… 
… 
… 
… 
… 

103 
… 
… 
… 
… 
… 

122 
… 
… 

135 
… 

139 
140 
141 

Oprical Flow  
Method 
CtxSyn 
FGIK 

MDP-Flow2 
… 
… 

NN-field 
… 

NNF-EAC 
… 
… 

F-TV-L1 
… 
… 

Bartels 
… 

TI-DOFE 
… 

PGAM+LK 
… 
… 

Pyramid LK 
GroupFlow 
Periodicity 

 

Ranking 
Differences 

1  
18 
15 
… 
… 
37 
… 
36 
… 
… 
30 
… 
… 
66 
… 
69 
… 
85 
… 
… 
17 
1 
0 
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Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Future Work 1 
New FR-IQA Model 
n  Specifically trained for images interpolated by optical flow 
n  Can be used as an evaluation metric in the benchmark 
 

A given image/video Lab Study Crowdsourcing 

Ground-truth  
in-between Image	

Interpolated 
Image	

Model	Optical Flow 
Method	

Predicted 
Quality Score	

MOS	

Ground-truth  
Flow Field 

Predicted 
Flow Field	

18/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Future Work 2 

How is the video quality? 

A given image/video Lab Study Crowdsourcing 

Video Quality Assessment for Optical Flow 

n  Interpolate videos using optical flow methods 
n  Evaluate the quality of the interpolated videos 

19/19 



Visual Quality Assessment for Motion Compensated Frame Interpolation  
Hui Men 

Thanks ! 	

Hui Men, Hanhe Lin, Vlad Hosu, Daniel Maurer, Andrés Bruhn, Dietmar Saupe, 
“Visual Quality Assessment for Motion Compensated Frame Interpolation”， 
2019 Eleventh International Conference on Quality of Multimedia Experience 
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Introduction

Motivation

◮ Motion compensated (MC) prediction as

one key element in hybrid video coding

◮ High dependency between accuracy of

motion estimation (ME) and prediction

error (PE)

◮ Inaccurate motion estimation

⇒ High prediction error

⇒ High entropy ⇒ High bit rate

Goal:

Modeling of minimum required bit rate for en-

coding the prediction error as a function of the

motion estimation accuracy using an

affine motion model
Original aerial frame (top),

“bad” MC/high PE (middle),

“good” MC/small PE (bottom)
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Efficiency Analysis of Affine MCP / Overview of the Derivations

Overview: Bit Rate Derivation for Affine Estimation Errors

◮ Modeling of power spectral

density (PSD) of signal

◮ Modeling of probability density

function (pdf) p∆X ′
,∆Y ′(∆x ′

,∆y ′)
of displacement estimation error

◮ Derivation of PSD of displace-

ment estimation error See(Λ)
1

◮ Application of rate-distortion

theory ⇒ bit rate2

ACFsig.

R = f
(
See,Θ

)

P(Λ)
error variances

affine estimation

Bit rate over

D = f
(
Sss,Θ

)

PSDerr. See= f(Sss,P(Λ))

p∆X ′
,∆Y ′(∆x ′

,∆y ′)

F

F

affine
(non-translat.)

PSDsig. Sss

estimation error
Displacement

Input images

translat.

Affine estimation errors

1
Bernd Girod, “The Efficiency of Motion-Compensating Prediction for Hybrid Coding of Video

Sequences,” in IEEE Journal on Selected Areas in Communicat., vol. 5, no. 7, pp. 1140–1154, 1987
2
Toby Berger, “Rate Distortion Theory: A Mathematical Basis for Data Compression”, Prentice-Hall

electrical eng. series, Prentice-Hall, 1971
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Efficiency Analysis of Affine MCP / Affine Motion and Error Model

Motion Model

Affine motion model:

x ′ = a11 · x + a12 · y + a13

y ′ = a21 · x + a22 · y + a23

◮ a11, a12, a21, a22 “purely affine” parameters (rotation, scaling,

shearing)

◮ a13 and a23 translational parameters

a11,a12
a13,a14 a11,a22

a13

a23

a11,a12
a13,a14

Holger Meuel
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Efficiency Analysis of Affine MCP / Affine Motion and Error Model

Affine Motion Estimation

Estimated affine motion:

x ′ = a11 · x + a12 · y + a13

y ′ = a21 · x + a22 · y + a23

◮ Perturbation introduced by inaccurate affine motion parameter

estimation (indicated by ·̂ )

∆x ′ = x̂ ′ − x ′ = (â11 − a11)
︸ ︷︷ ︸

e11

·x + (â12 − a12)
︸ ︷︷ ︸

e12

·y + (â13 − a13)
︸ ︷︷ ︸

e13

∆y ′ = ŷ ′ − y ′ = (â21 − a21)
︸ ︷︷ ︸

e21

·x + (â22 − a22)
︸ ︷︷ ︸

e22

·y + (â23 − a23)
︸ ︷︷ ︸

e23

Holger Meuel
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Efficiency Analysis of Affine MCP / Affine Motion and Error Model

Affine Error Model

Displacement estimation error in the frame:

∆x ′ = e11 · x + e12 · y + e13

∆y ′ = e21 · x + e22 · y + e23

◮ Independent error terms eij , i ={1, 2}, j ={1, 2, 3}

◮ Statistical modeling of affine estimation errors by their probability

density functions (pdfs)

Holger Meuel

meuel@tnt.uni-hannover.de 9
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Efficiency Analysis of Affine MCP / Model of Displacement Estimation Error

Probability Density Function Derivation

◮ Assumption: eij follow zero-mean Gaussian distributed pdfs

⇒ Joint pdf for independent eij :

pE11,...,E23
(e11, . . . ,e23) = p(e11) · . . . · p(e23)

◮ But wanted: probability

density function

p∆X ′
,∆Y ′(∆x ′

,∆y ′) of

displacement estimation

errors ∆x ′, ∆y ′

Holger Meuel
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Efficiency Analysis of Affine MCP / Model of Displacement Estimation Error

Probability Density Function of the Displacement

Estimation Error

With transformation theorem for pdfs:

p∆X ′
,∆Y ′(∆x ′

,∆y ′) =
1

2πσ∆x ′σ∆y ′

· exp

(

−
∆x ′2

2σ2
∆x ′

)

· exp

(

−
∆y ′2

2σ2
∆y ′

)

with σ
2
∆x ′ = σ

2
e11

x2 + σ
2
e12

y2 + σ
2
e13

and σ
2
∆y ′ = σ

2
e21

x2 + σ
2
e22

y2 + σ
2
e23

◮ Gaussian distributed pdf of the displacement estimation error

◮ Variances σ
2
∆x ′ and σ

2
∆y ′ depend on location x , y

Holger Meuel
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Efficiency Analysis of Affine MCP / Signal and Error PSD Modeling
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Efficiency Analysis of Affine MCP / Signal and Error PSD Modeling

Signal and Error Power Spectral Density Functions

◮ Model video signal

◮ Assumption of isotropic

autocorrelation function

◮ Determination of power spectral

density Sss of video signal by

Wiener–Khinchin theorem

◮ Calculation of power spectral

density See of displacement

estimation error

ACFsig.

R = f
(
See,Θ

)

P(Λ)
error variances

affine estimation

Bit rate over

D = f
(
Sss,Θ

)

PSDerr. See= f(Sss,P(Λ))

p∆X ′
,∆Y ′(∆x ′

,∆y ′)

F

F

affine
(non-translat.)

PSDsig. Sss

estimation error
Displacement

Input images

translat.

Affine estimation errors
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Efficiency Analysis of Affine MCP / Rate-Distortion Analysis
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Efficiency Analysis of Affine MCP / Rate-Distortion Analysis

Rate-Distortion Theory3

D =
1

4π2

∫∫

Λ

min
[
Θ,Sss(Λ)

]
dΛ

R(D) =
1

8π2

∫∫

Λ:
(

Sss(Λ)>Θ

and See(Λ)>Θ
)

log2

[

See(Λ)

Θ

]

dΛ bit

Θ: generating function varying distortion

D and corresponding rate R(D)

ACFsig.

R = f
(
See,Θ

)

P(Λ)
error variances

affine estimation

Bit rate over

D = f
(
Sss,Θ

)

PSDerr. See= f(Sss,P(Λ))

p∆X ′
,∆Y ′(∆x ′

,∆y ′)

F

F

affine
(non-translat.)

PSDsig. Sss

estimation error
Displacement

Input images

translat.

Affine estimation errors

3
based on Toby Berger, “Rate Distortion Theory: A Mathematical Basis for Data Compression”,

Prentice-Hall electrical eng. series, Prentice-Hall, 1971
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Simulations
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Simulations

Location Dependent Bit Rate

Bit rate

Variances σ
2
e11

=σ
2
e12

=σ
2
e21

=σ
2
e22

=5 · 10−10 and translational quarter-pel

resolution (σ2
e13

=σ
2
e23

=0.0052), full HD resolution frame

Holger Meuel
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Simulations

Minimum Required Bit Rate for Prediction Error Coding

Distortion SNR=30 dB, σ2
e11

=σ
2
e12

=σ
2
e21

=σ
2
e22

and σ
2
e13

=σ
2
e23

, full HD resolution,

isolines for translational quarter- (0.0052) and half-pel resolution marked

Holger Meuel
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Experiments
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Experiments

Experimental Setup

◮ Video signal s with artificially intro-

duced motion of specific variances

◮ Most-trivial motion estimation always

predicting “no motion”

⇒ Introduced motion becomes exactly

prediction error e

Experimental accomplishment:

Data rates of 30 randomly drawn, different

motions for each combination of purely affi-

ne and translational variances averaged

DPCM

calcu-
lation

SNR

Quantized

error e′

prediction

Quantization
error eq =e′−e

Bit rate
(bit per pel)

amplitude values
quantized DPCM
Entropy of

error e
(unquantized)

Prediction
Video

signal s

(e.g. 30 dB)

Holger Meuel
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Experiments

Measured Bit Rates for Encoding the Prediction Error

Measured bit rate for encoding the prediction error as a function of the motion

estimation error variances, full HD resolution frame

Holger Meuel
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Experiments

Comparison between Theory and Experimental Data

◮ Qualitatively perfect match between theory

and measurement

◮ Slight overestimation of bit rates by model

(2.53 instead of 2.507 bit/sample at maximum)

◮ More pronounced lower plateau in

experimental data due to interpolation filter

Theory

Measurement

Holger Meuel
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Experiments

Real-World Application of the Model?

Consideration of simplified affine model as used in upcoming VVC

◮ Similar procedure, but:

◮ More complicated pdf of

displacement estimation error

◮ JEM block size of 128×128

ACFsig.

R = f
(
See,Θ

)

P(Λ)
error variances

affine estimation

Bit rate over

D = f
(
Sss,Θ

)

p∆X ′
,∆Y ′(∆x ′

,∆y ′)

F

F

PSDerr. See= f(Sss,P(Λ))

affine
(non-translat.)

PSDsig. Sss

estimation error
Displacement

Input images

Affine estimation errors

translat.

ACFsig.

Input images

Holger Meuel
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Experiments

Distinct Affine Test Sequences4

ShieldsPart, frame 1 ShieldsPart, frame 100

TractorPart, frame 1 TractorPart, frame 100

34 L. Li et al., “An Efficient Four-Parameter Affine Motion Model for Video Coding”, IEEE

Transact. on Circuits and Syst. for Video Tech., PP(99):1–1, 2017



Experiments

Model vs. Real-World Measurements

◮ Block size: 128×128 pel as in JEM

◮ Translational quarter-pel, non-translational 1/16 pel accuracy

Sequence

name

Model w/o

signaling

Model w/

signaling5

Measured Remarks

[bit/sample] [bit/sample] [bit/sample]

ShieldsPart 0.398 0.5 0.71 Model approximates minimum

bit rate

TractorPart 0.058 0.07 0.012 Isotropic assumption violation,

low-contrast signal,

high amount of blur

Conclusion:

Model provides valuable indications of the prediction error bit rate

as function of affine motion estimation accuracy

5Sven Klomp, „Decoderseitige Bewegungsschätzung in der Videocodierung“,

Fortschritt-Berichte VDI: Reihe 10, Informatik/Kommunik., 2012, ISBN 978-3-18-382010-8
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Conclusion

Application of RD Theory for Affine MCP in Video Coding

Model for affine motion compensation in video coding:

◮ Modeling of pdf of displacement estimation error

p∆X ′
,∆Y ′(∆x ′

,∆y ′)

◮ Consideration of power spectral density of video signal

◮ Derivation of power spectral density of displacement

estimation error

◮ Application of rate-distortion function

⇒ Minimum bit rate for coding the prediction error

Experimental verification:

◮ Confirmation of theoretical findings

◮ Application to simplified affine motion compensated

prediction as employed in upcoming VVC

Holger Meuel
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Architectures and Training Methods for Neural Network-
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2

Additional neural network (NN) -
based intra prediction mode for 
hybrid video codecs:

• Block-based predictions
• Optionally available information
• Channel wise prediction
• Signaling and rate-distortion 

decisions
• Low Complexity

Problem Statement: Neural Networks for Intra Prediction

[1]

[1] M. Wien, High Efficiency Video Coding – Coding Tools and Specification. Berlin, Heidelberg: Springer, Sept. 2014

main reference area

area to be 
predicted

optional 
reference areas 
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• Open Problems

• Prediction Network

− Training Methods

− Architecture

• Mode Signaling and Codec Integration

• Results and Evaluation

• Conclusion

Overview



Convolutional Neural Networks for Video Intra Prediction Using Cross-component Adaption |  Maria Meyer |  Institut für Nachrichtentechnik, 
RWTH Aachen University  |  17th June 2019  |  SVCP 2019

4

Architecture:

• Best so far can not be definitely concluded due to 
different training sets

• Only three types of architectures tried so far

Chroma and Cross-Component Prediction:

• No separate consideration of chroma blocks
• No usage of cross component information

Loss Function:

• So far only sum of absolute transform differences (SATD) 
and mean square error (MSE) compared

Signaling:

• Flag causes a lot of overhead

Open Questions

[2] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected network-
based intra prediction for image coding,” IEEE Transactions on Image 

Processing, vol. 27, no. 7, pp. 3236–3247, July 2018.
[3] Y. Hu, W. Yang, M. Li, and J. Liu, “Progressive spatial recurrent 

neural network for intra prediction,” Computing Research Repository 

(CoRR), 2018
[4] T. Dumas, A. Roumy, and C. Guillemot, “Context-adaptive neural 
network based prediction for image compression,” Computing 

Research Repository (CoRR),  2018.
[5] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek, H. 
Schwarz, D. Marpe, and T. Wiegand: Neural Network based Intra 
Prediction for Video Coding, Proceedings of the SPIE 10752, 
Applications of Digital Image Processing XLI, San Diego, USA, vol. 
1075213, September 2018
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General Settings:

• Four reference lines input
• Separate Networks for each block size

Compared Variants:

• Purely fully-connected architecture (C0)
• Convolutional layers followed by fully-

connected ones (C1, C2)

Prediction Network – Luma Architecture

C0:

C1:

C2:
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Joint Chroma Channel Prediction:

• Two input and two output channels
• Otherwise same as luma prediction

Cross-Component Adaptation (CRCO):

• Problems:
− Different input shape 
− Different resolution

• Architectural Solution:
− Additional convolutional branch processing 

luma information
− Concatenation before first fully connected 

layer

Prediction Network – Chroma Architecture

C2, without CRCO

C2, with CRCO
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Datasets:

• Extracted samples from 115 raw videos
• Optional input areas masked
• Excluding a portion of the low variance samples possible

without loss of bd-rate gains

Training Methods:

• Adam optimizer
• SATD or L1 loss with regularization term

Problems:

• Overfitting for larger chroma blocks

Prediction Network – Training Methods

# 
of

 S
am

pl
es

Variance
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Here: 

• C2 architecture with CRCO

Luma Samples:
• Enables continuing more than 

one direction, circles etc.
• Tending towards mean value 

when continuation unclear/ in 
bottom right corner

Chroma:
• Enables use of additional luma

information 

Prediction Examples and Evaluation

B
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e 
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4

B
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Here: 

• C2 architecture with CRCO

Luma Samples:
• Enables continuing more than 

one direction, circles etc.
• Tending towards mean value 

when continuation unclear/ in 
bottom right corner

Chroma:
• Enables use of additional luma

information 

Prediction Examples and Evaluation

O
ri
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4
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Integration:

• Implemented in HM16.9 as 36th intra mode
• RD-decision as for any other intra mode

Luma Signaling:

• Most probable mode list extended to four 
items

• New mode always on MPM-list
• Two variants for MPM-list placement
− UP: directly behind neighbors
− END: at the last list position

Chroma Signaling:

• No dedicated signaling for chroma
− Only useable, when used for luma

Mode Integration and Signaling

END

Decision Tree Examples

UP
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From BD-rates:

• SATD outperforms L1
• C2 outperforms C1 and C0 on average
• C0 better for noisy, high resolution content

Further Analysis:

• C2 always better validation loss
• Difference increasing with block size
• C2 more used for 4x4 blocks, C0 for 32x32 blocks in all 

class B sequences

Results – Architecture and Loss

C0:

C1:

C2:
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Results – Dedicated Chroma Prediction

Luma Comparison:

• Small improvement
(-0.2%) without CRCO

• 3 times more gain 
(-0.6%) with CRCO

Chroma Comparison:

• Again small 
improvement (-0.37%) 
without CRCO

• Nearly -1% with CRCO

Without 
CRCO:

With 
CRCO:
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Results – Signaling and Final Evaluation

Signaling:

• UP outperforms end version
− Mode must be used frequently

• Difference not huge

General Evaluation:

• Hard to compare to other 
approaches due to training sets

• Beating other approaches in 
terms of U and V BD-rate gains

END UP
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Conclusion:

• Useful to train separate networks for chroma 
channel prediction and integrate cross component 
information

• Best Architecture depends on content and 
complexity restrictions

• SATD loss better approximation than L1
• Proposed new signaling with less overhead

Outlook:

• More architectures, loss functions
• Multiple predictions
• Complexity reduction

Conclusion and Outlook 
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Motivation

3

• Main challenge:
o to provide omnidirectional content 
guaranteeing an immersive experience
and saving bit rate

• Main solutions: 
oDefinition of different perceptible levels of quality
o Efficient  delivery schemes 
oUsers’ behavior  attention maps
o Exploitation of peculiarities of the type of projection

All these solutions require a quality metric



Review of quality metrics 
on 360VR contents

4

• Traditional metrics
o PSNR (PSNR)
o Structural Similarity Index (SSIM)
o Multi-Scale SSIM   (MS-SSIM)
o VMAF

• Adaptations of quality metrics to 360VR contents
o Weighted to Spherically   - PSNR (WS-PSNR)
o Craster Parabolic Projection   - PSNR (CPP-PSNR)



Video Multimethod Assessment Fusion
(VMAF)

VMAF is an objective metric able to exploit the benefits of different known elementary 
metrics, combining them using a machine-learning algorithm, trained with subjective 

data, and finally, providing the VMAF final score

Developed by:

VMAF has provided significantly good 
results on different types of non-immersive 

contents and viewing condition

5



Work approach (I)

• Research question: can VMAF be applied to 
omnidirectional content without making any specific 
adjustment?

• Underlying hypothesis: There is a monotonic relationship 
between 2D-VMAF and 360VR-VMAF (non-existing)

• If so, we can avoid:
o generating a large specific 360VR video dataset
o carrying out numerous subjective quality assessments
o performing the training and testing stages

6



Work approach (II)

The validation of VMAF on 360VR contents is carried out in 
two steps:

7

Objective
Analysis

Subjective
Assessment

VMAF application to omnidirectional sequences encoded
with constant Quantization Parameter (QP) in the whole
range of possible values

VMAF scores validation through a subjective assessment



Test material

8

Spatial Information (SI) 
and Temporal (TI) 

Information indicators

• http://vhil.stanford.edu/360-video-database/
• C. Wu, Z. Tan, Z. Wang, and S. Yang, “A Dataset for Exploring User 

Behaviors in VR Spherical Video Streaming,” in Proceedings of the 8th

ACM on Multimedia Systems Conference, 2017, pp. 193–198

A wide range of contents selected 
with different features in terms of 

color, texture, camera motion, 
composition, and content in the 

scenes 

http://vhil.stanford.edu/360-video-database/


VMAF computation - Objective Analysis

• No temporal pooling challenge
• 4K throughout the process
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Subjective assessment – Test material

VMAF ~ 90, 80, 70, 50, 30 + Reference
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Subjective assessment – Test material

VMAF ~ 90, 80, 70, 50, 30 + Reference
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B C D E F

Qualities

Quality A = 
Hidden 

Reference



Subjective assessment – Test session

ACR-HR

Methodology

Equipment + environment
Content randomization

x3

• No training session
• All videos are viewed by each subject
• Duration ~ 15 minutes (assuming 5 seconds for 

evaluation)
• 24 observers (average age of 26)
• 1 subject was removed because of being considered 

an outlier
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Experimental Results - MOS
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Experimental Results - DMOS
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VMAF adjustment for 360VR contents

Good 
fit

Bad fit

15



PLCC and RMSE between
VMAF and DMOS
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Mapping of DMOS ratings
to objective scores
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Solid line represents the best fitting by a third degree polynomial curve



PLCC,  RMSE, 𝑅𝑅2 between
Fitting curves and DMOS
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Conclusions

VMAF

• Exhaustive study on the feasibility of VMAF 
on 360VR contents

• VMAF works sufficiently correctly with 
omnidirectional contents, without 
performing any particular adjustments

• The creation of a 360VR dataset can be 
avoided, thus saving computing and time 
resources 

19

 Orduna, M., Díaz, C., Muñoz, L., Pérez, P., Benito, I., & García, N. (2019). Video Multimethod 
Assessment Fusion (VMAF) on 360VR contents. arXiv preprint arXiv:1901.06279.
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INTRODUCTION

 Modern video codecs like HEVC:

 Recursive block-partitioning

 Predictive Coding (Intra-Picture Prediction, Motion Compensation)

 Residual Transform and Quantization

 Entropy Coding

 The prediction residual is transmitted in the bitstream

 Hence, increased prediction accuracy leads to bit-rate savings

Michael Schäfer 3



Intra-Picture Prediction

 Generate a prediction from reconstructed samples in the same frame

 Conventional intra modes: Angular, PLANAR and DC

Michael Schäfer 4



Question

 Can we generate intra prediction modes as outcome

of a training experiment on a large set of suitable data?

Michael Schäfer

Challenges

 Narrow limits in memory and complexity for video coding applications

 Neural networks consist of multiple fully-connected or convolutional layers

 Modern video codecs support a variety of block partitions

 Loss function?

Memory vs. complexity vs. compression efficiency

5



(1) ARCHITECTURE OF THE PREDICTORS

 For each luma WxH block, 19 trained intra prediction modes are provided

 These predictors are added to the list of intra modes for rate-distortion optimization

 Input for the prediction are the W samples above and the H samples left of the block

Michael Schäfer 6



Generation of the prediction signal in three steps

 Averaging on the boundary

 Matrix vector multiplication and offset addition

 Upsampling of the result (only applied to blocks larger than 8x8)

Michael Schäfer 7



(2) MEMORY AND COMPLEXITY

 The matrix and vector entries are stored as 10-bit values

 Consequently, the total memory requirement is 7.2 kB

 128x128 CTU, bitdepth=10, 4:2:0 sampling rate requires 30 kB of memory

 Note that the matrices 𝐴 have 512 entries each

 Input and output sampling only uses additions and bitshifts

 Consequently, not more than 8 multiplications per sample are necessary

 Interpolation filters for fractional angle positions require 4 mult. /sample

Michael Schäfer 8



(3) TRAINING

 Given mode k, the DCT-transformed residuals

for a WxH block are 𝑐𝑘 = 𝑇(org − 𝑝𝑟𝑒𝑑𝑘)

 We approximate the bitrate of the residuals by

𝐿 org, 𝑘 = σ𝑖=1
𝑊𝐻 𝑐𝑘 𝑖 + 𝛼 ∙ sig 𝛽 𝑐𝑘 𝑖 − 𝛾

 Recursive block-partitioning:

 Start with a parent block of shape 16x16

 Compare the cost of a parent with the accumulated costs of childs

 Jointly train predictors for shapes 4x4, 8x8, 16x16

Michael Schäfer 9



(4) EXPERIMENTAL RESULTS

 Reference Software: Versatile Video Coding Test Model 4.0

 Coding tools configuration according to common test condition (CTC)

Michael Schäfer

All Intra Y in % Enc Time in % Dec Time in %

Class A1 -1.15 142 98

Class A2 -0.67 140 99

Class B -0.73 143 100

Class C -0.72 142 98

Class E -0.90 140 100

Overall -0.82 142 99

10
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Motivation

• Dictionary Learning based super-resolution showed promising results when applied to inter-layer prediction in
SHVC [1]

• The concept of dynamic resolution conversion is already known from MPEG 4 [2] and raised attention recently [3]

• The convex hull of the RD curve can be estimated by downsampling the video before coding [4]
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Figure: RD-curves for Campfire sequence (left) and Basketballdrive (right). First 100 frames, RA coding configuration
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Fundamentals: Downsampling and Upsampling

• Downsampling realized by taking e.g. every second sample
• This introduces alias in general

– The signal is filtered with a anti-aliasing filter

• Upsampling is realized by inserting zeros
– The signal is filtered with an interpolation filter

• MATLAB’s imresize function does not strictly follow this
methodology, when using the bicubic kernel
– samples are shifted when downsampling and shifted back when

upsampling

n

s(n)

2 : 1

n

s↓(n)

n

s↑(n)

1 : 2
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Fundamentals: Downsampling Filters

• Bicubic downsampling filter has 8 taps
– This introduces a phase shift of the downsampled

signal

• The downsampling filter used in SHVC has 11
taps
– no distortion of the phase during downsampling

−1 1

0.5

n

h↓(n)

(a) bicubic downsampling filter

−1 1

0.5

n

h↓(n)

(b) downsampling filter used for SHVC

Figure: different downsampling filters
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Fundamentals: Downsampling Filters

0 0.1 0.2 0.3 0.4 0.5
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Figure: Frequency response of different downsampling filters
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Fundamentals: Upsampling Filters

• Bicubic upsampling filter has to be applied
several times since we need to “backshift”
the phase

• The upsampling filter is derived from the
half-pel interpolation filters used in HEVC
– We need to insert a 1 at position zero and 0s

at the odd sample positions

−1 1

1

n

h↑(n)

(a) bicubic upsampling filter

−1 1

1

n

h↑(n)

(b) upsamling filter derived from HEVC interpolation filters

Figure: different upsampling filters
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Dictionary Learning Fundamentals

• Dictionary is typically trained using
vectorized training patches xi of a size
sp = 8 × 8

• a sparse representation of an image patch
is found by sparse encoding the patch x in
the dictionary D

D = arg min
D

n�
i=1

1
2
�xi − Dαi�2

2 + λ�αi�1

α = arg min
α

�x − Dα�2
2 + λ�αi�1

x = Dα + ε

Figure: Example Dictionary

• The concept of dictionary learning can be used for
super-resolution by training coupled dictionaries [5]
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DL based SR: Coupled dictionaries approach

≈ α164 + α171 + α179 + α206

ILR

DLR DHR

xLR ≈ DLRα

xHR ≈ DHRα

ILR 1 : 2 h↑ hhp patch ext. Enc DLR

· DHRpatch comb.+IHR

XLR

AXHR
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Results DL based SR

Bicubic HEVC int. DLSR
BQTerrace 28.2 28.8 30.3
BasketballDrive 34.7 34.9 36.1
Cactus 33.5 34.2 35.5
Campfire 37.8 38.1 38.8
CatRobot1 39.7 40.2 40.9
DaylightRoad2 37.4 37.7 38.2
FoodMarket4 48.5 48.7 48.7
MarketPlace 40.2 41.1 41.9
ParkRunning3 40.7 44.2 47.8
RitualDance 44.6 45.7 48.0
Tango2 42.4 42.6 42.6
AVG 39.0 40.0 41.4

Table: PSNR values for different downsampling and upsampling / SR algorithms: Values were measured for the Y component of the first frame of each video sequence. For DLSR: λ = 0.01 and hhp was chosen
to be a laplacian highpass filter.
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Dynamic Resolution Change with SR

• On which level of the encoding scheme should the resolution change happen?

Option signaling cost spacial adaptivity temporal adaptivity boundary issues
CU level high yes yes yes
CTU level moderate yes yes moderate
TID level low no yes almost none
Intra period level low no yes almost none
Sequence level none no no almost none

➥ The decision was drawn to try it at the CTU level, which seems to be a good compromise
– Code the CTU at full and half resolution
– upsample or apply SR to downsampled reconstructed CTU
– decide based on RD-cost which one is coded into the bitstream
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Dynamic Resolution Change with SR

CTU h↓ 2 : 1

Enc

Dec

2 : 1h↑SR

CTUrec
bitstream

Figure: CTU level DRC scheme

• Implementation so far only for Intra-CTUs

• Implementation only for the Y-Component
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Dynamic Resolution Change with SR

• The reference area needs to be downsampled in the
case of prediction at the boundary of a downsampled
CTU

• The dowsampled CTU has to be coded at lower QP [3]:

QPLR = QPHR − 6
• The rate-distortion parameter λ has to be adjusted:

λLR =
λHR
4

CTU

CTU CTU . . .

CTU↓

Figure: Coding of a downsampled CTU
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Results

VTM-3.0 DRC HEVC int. VTM-3.0 DRC DLSR
BQTerrace -0.03 -0.04
BasketballDrive -0.27 -0.17
Cactus -0.05 -0
Campfire -0.19 -0.23
CatRobot1 -0.29 -0.25
DaylightRoad2 -0.05 -0.13
FoodMarket4 -3.59 -3.58
MarketPlace -0.11 -0.01
ParkRunning3 -0.01 0.08
RitualDance -0.48 -0.56
Tango2 -1.51 -1.43
AVG -0.6 -0.57

Table: BD rate savings against VTM-3.0. QP ∈ {22, 27, 32, 37}. Only the first frame of each sequence was coded.
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Results
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Results

VTM-3.0 DRC HEVC int. VTM-3.0 DRC DLSR
BQTerrace -1.76 -1.67
BasketballDrive -4.72 -4.59
Cactus -3.16 -2.73
Campfire -6.02 -5.79
CatRobot1 -7.86 -7.48
DaylightRoad2 -8 -7.29
FoodMarket4 -6.85 -6.52
MarketPlace -5.06 -5.29
RitualDance -5.74 -5.35
Tango2 -5.71 -5.8
AVG -5.33 -5.11

Table: BD rate savings against VTM-3.0. QP ∈ {42, 47, 52, 57}. Only the first frame of each sequence was coded.
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Conclusion

• Coding gains with respect to VTM 3.0 can be achieved by performing a dynamic resolution change on the CTU
level

• Dictionary Learning based super-resolution does not increase the coding gain
– At high rates the quality gain of DLSR is too low to outperform full resolution coding
– At low rates coding artifacts heavily influence the DLSR performance such that there is no gain over classic interpolation

anymore
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Thank you for your attention!

Any questions?

Jens Schneider
schneider@ient.rwth-aachen.de

Institut für Nachrichtentechnik, RWTH Aachen University
www.ient.rwth-aachen.de
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Motivation

Problem:
Marker localization difficult in blurred images

State of the art: based upon corner or line detection
But: neither corners nor lines are preserved under blurring
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Specific problem with camera calibration:
Calibrate at which focus distance?

Common photogrammetric recommendation:
Set focus distance     to working distance, or to infinity
In case of small depth of field (DoF):

Huge targets required 
(everything outside of DoF range is blurry)

Motivation

9,85 cm

3,57 cm
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Specific problem with camera calibration:
Calibrate at which focus distance?

First idea:
Increase DoF by stopping down
(DoF is function of   , focal length  , f-number     and acceptable blur    )

But: changing aperture changes
camera parameters
(focal length, distortion, …)

Motivation

9,85 cm

10,86 cm0



12
 
spitschan@tnt.uni-hannover.de

Specific problem with camera calibration:
Calibrate at which focus distance?

Second idea:
Focus to target in near distance

But: changing the focus changes
the camera parameters even more severely!

“Lens breathing”

Motivation

5,84 cm
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Motivation
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Specific problem with camera calibration:
Calibrate at which focus distance?

Solution
Focus to original working distance 

Calibrate with defocused targets in near range

Marker detection for severely blurred markers needed

Motivation

9,85 cm
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Calibration revisited

Geometric relationship between scene and image:
Mapping     from world space to the image plane,

(Geometric) camera calibration:
Parameter estimation for a model of   
Estimation is carried out using

Point correspondences
and/or
Known a-priori constraints within the scene
in
Single or multiple images
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Calibration revisited

Self-calibration (using point correspondences within the 
imaged scene) methods available, but:

Target-based calibration prevailing in many applications
Accuracy
Reproducibility

Common targets in CV: Checkerboards
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Calibration revisited

CalTech calib toolbox1  toolchain

1 J.-Y. Bouguet, “Camera Calibration Toolbox for MATLAB”, version 2017-06-01,
1 http://www.vision.caltech.edu/bouguetj/calib_doc
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Calibration revisited

Marker localization: State of the art
Two-stage hierarchical approach
1. Coarse localization

Harris-type corner detection
     – or –
Crossings of detected lines
Postprocessing to verify topology

2. Subpixel refinement
Widely deployed (OpenCV1, Geiger et. al.2):
Variant of Förstner interest point detector

1 OpenCV 3.4.1, cornerSubPix() function
2 Geiger et. al., “Automatic camera and range sensor calibration using a single shot”, ICRA '12
3 W. Förstner and E. Gülch, “A Fast Operator for Detection and Precise Location of Distinct
3 Points, Corners and Centres of Circular Features”, ISPRS Conf. Proc. Ph. Data ‘87



20
 
spitschan@tnt.uni-hannover.de

Calibration revisited

State of the art fails for:
Strong blur

High noise levels

Asymmetric transitions due to nonlinear response (“gamma”)
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Novel method

Signal along     is    -periodic

X
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Novel method

Decentered signal is      -periodic in    !
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Novel method

Fourier analysis of angular signal
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Refresher

Input  Periodic Infinite

Continuous  Fourier series Fourier transform

Discrete  DFT
(Discrete FT)

DTFT
(Discrete-Time FT)

Discrete output Continuous output
Color legend:
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Novel method

Sub-pixel offset estimation:
Minimize the “wrong” = odd Fourier components,
weighted by the ideal decay
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Imaging pipeline

Scene
illumination

Perspective
projection Lens distortion

Point-spread function

Quantization

Object

Geometry                               

          

Signal                   

Image

Sensor
noise

Shot
noise

Reflectance Intensity



28
 
spitschan@tnt.uni-hannover.de

Results

Synthetic images:
Absolute localization error w. r. t.

Blur Distortion angle
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Results

Real images (DIMA dataset):
Distribution of reprojection errors
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Conclusions

New method for marker localization 
exploiting angular symmetry

Highest positional accuracy

Robust again common perturbations during imaging process

Highly beneficial in applications such as 

professional  AR  systems
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Motivation

• Customers demand error-free high 
quality products

• Quality Assurance nowadays:
– Mainly manual optical inspection by a 

worker

– Very monotonous & tiring labor

– Time and cost intensive process 

• Automated system for certain tasks
Source: BMW
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Automated Optical Inspection Systems

• Most common for items which are produced 
in large numbers
– Screws, automotive parts, …

• Individual configuration depending on the 
considered application
– Acquisition system

• Camera, X-Ray, ultrasound, laser triangulation

– Lighting system 

– Item transportation 

– Sorting 

– Performable measurements
Source : www.otto-jena.de
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Automated Optical Inspection Systems

• Strict parametrization of the tolerance 
range for every specific component 
necessary 

• Restricted to single specified inspection 
task

• Elaborate reconfiguration of the test 
setup Source : www.otto-jena.de
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Potential of Deep Learning

• Fast progress in the field of classification using neural 
networks
 Quality Assurance can be treated as simple classification problem

• Error recognition

• Distinction of certain error types

• Neural networks can easily solve localization problems
– Type of error and position of the error can be distinguished 

– More comfortable for worker to inspect the item or correct the error



Spruck: Potential of Deep Learning in the Field of Quality Assurance 18.06.2019

Page 7Chair of Multimedia Communications and Signal Processing

Challenges with Deep Learning

• High requirements on the training data set
– Large enough 

– High quality labeling 

– Each class evenly represented 

 Works very reliable 
– Similarly high recognition rates as humans
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Implementation of learning based Inspection system

• Existing infrastructure may be 
reused 

• Low roll-out costs

• Only software changes necessary 
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Implementation of Demo System

• Acquisition of training dataset 
– Set of 110 screws

– 50 error-free screws

– 60 erroneous screws with different error types
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Implementation of Demo System

• Transportable system 

• Inspired by real-world inspection systems
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Implementation of Demo System
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Conclusion

• Manual inspection of products should be automated

• Existing automated inspection systems are highly 
parametrized and inflexible

• Advances in the field of neural networks enable a new type of 
inspection systems

• Recognition rates similarly high to humans

• Overhead for training and data acquisition should be reduced
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Whole genome sequencing
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Reads
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Assembly
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Evolution of genome sequencing

2009 2018/2019
Cost/genome $100k ~$1k
Coverage ~30x > 200x
Number of reads ~1 billion > 6 billion
Size of raw sequencing files ~0.25 TB > 1.5 TB

2009 2018/19
Cost/TB $100 $50
Download speed 10 Mbps 100 Mbps

Storage & transmission infrastructure

Sequencing technology

No technology is keeping with the pace of genome sequencing!
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Lossless compression of DNA sequences

1. Find the differences between the target and the reference 
sequence

2. Encode those differences

Reference sequence

Target sequence

A

A CCTAGG

ATTAGAG

C

mi = (pi, li, Ci)



5

Lossless compression of aligned reads

Approach:
• Exploit the redundancy present in the reads
• Predict variants of current read given previous ones

T
C
C
C
C
C
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MPEG-G

• MPEG-G = International Standard ISO/IEC 23092
• Standard = normative text

• A set of instructions of how to retrieve genomic data from the compressed 
domain

• Not tied to a particular implementation

• Largest coordinated and international effort by end users, industry 
and academia
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Structure of the MPEG-G standard

• Part 1: File and Transport Format
The technology to transport and access data

• Part 2: Genomic Information Representation
The compressed representation

• Part 3: APIs
The standard interfaces with genomic data applications and legacy formats

• Part 4: Reference Software
The standard support to the implementation of applications

• Part 5: Conformance
The methodology to test compliance with the standard
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MPEG-G file format
An example:
• MPEG-G file: sequencing data of a 

trio
• File Header: metadata related to 

the study
• Dataset Group: one per individual 

+ metadata from the individual 
• Dataset: sequencing data + 

metadata from one experiment
• Colored structures: this is how 

genomic data is represented in 
MPEG-G

The MPEG-G file can encapsulate the 
entire genomic history of one or 
more individuals in a unique file 
including the metadata describing the 
study, samples, etc.
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Structure of the MPEG-G standard

• Part 1: File and Transport Format
The technology to transport and access data

• Part 2: Genomic Information Representation
The compressed representation

• Part 3: APIs
The standard interfaces with genomic data applications and legacy formats

• Part 4: Reference Software
The standard support to the implementation of applications

• Part 5: Conformance
The methodology to test compliance with the standard
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MPEG-G Part 2 – the decoder core

Data unit

Da
ta

 u
ni

t d
ec

od
er

Ac
ce

ss
 u

ni
t d

ec
od

er
Block payload parser Descriptor decoder

De
sc

rip
to

r a
ss

em
bl

er

MPEG-G records

Parameter setParameter setParameter set

Block payload parser

Block payload parser

Descriptor decoder

Descriptor decoder

Block payload parser

Block payload parser

Block payload parser

mi = (pi, li, Ci)
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GABAC

• GABAC = Genomics-oriented context Adaptive Binary Arithmetic 
Coding
• GABAC is part of a collaborative effort to produce a standard-

compliant open source MPEG-G encoder (genie)

Mikel Hernaez, Idoia Ochoa, Jan Voges, 
Fabian Müntefering, Liudmila S. Mainzer,
Brian Bliss, Mingyu Yang

Tom Paridaens, Jan Fostier

Jan Voges, Jörn Ostermann, Fabian Müntefering
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𝑝trans 𝑝lut 𝑝diff 𝑝bid 𝜋(𝑝bid)𝑝ctx
GABAC block diagram
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GABAC bzip2 gzip rANS−0 rANS−1 xz

02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20

1

2

3

4

5

6

Test Set ID

R
an

k

0.199 % 0.212 % 0.245 % 0.286 % 0.237 % 0.204 %

206 test files

Average compression ratio (compressed size / uncompressed size):
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GABAC bzip2 gzip rANS−0 rANS−1 xz

02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20 02 03 05 07 08 09 10 20

1

2

3

4

5

6

Test Set ID

R
an

k

18.12 MiB/s 12.27 MiB/s 3.95 MiB/s 41.91 MiB/s 36.15 MiB/s 1.51 MiB/s

206 test files

Average compression speed:
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The GABAC configuration space
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The GABAC configuration space
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The GABAC configuration space

𝑁 ≅ 16,000

Real-world implementation: 𝟒, 𝟎𝟎𝟎 < 𝑵 < 𝟖, 𝟎𝟎𝟎

Total number of possible configurations 𝑁:
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The optimization problem

GABAC
𝑓(𝑥)

Parameter 
Vector

Bitstream 
Size

𝑥∗ = argmin
C∈E

𝑓(𝑥)
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Optimization algorithms

Gradient 
Based

Non-Gradient 
Based

Require existence of continuous first 
derivatives of the object function and 
possibly higher derivatives

Only objective function evaluations 
are used to find an optimum; 
derivates of the objective function 
are not needed
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Candidates for GABAC optimization

Simulated 
annealing

Genetic 
algorithm
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Simulated annealing
Compute ∆𝐸(𝑘) (i.e., the compression ratio gain)

accept(𝑘 − 1)  // accept the old configuration

if ∆𝐸(𝑘) > 0 // the new configuration is worse

// nevertheless accept the new solution on a random basis

if 𝑃 𝑘 = 𝑒M N∆O
P Q ≥ 𝑥 // x is a random probability

accept(𝑘)

else // the new configuration is better

accept(𝑘)

𝑘 = 2
∆𝐸 > 0

𝑘 = 0

𝑘 = 1
∆𝐸 < 0

𝑘 = 3
∆𝐸 > 0
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Simulated annealing
Parameter Choice Remarks

State space GABAC parameter space { 𝑝trans⋅ 𝑝diff ⋅ 𝑝lut ⋅ 𝑝bid ⋅ 𝑝ctx }

Energy (objective) function Compression ratio 𝑟 0 < 𝑟 < ~1

Candidate generation procedure Random neighbor 1 random parameter is changed

Acceptance probability function
∆𝐸 𝑘 = 𝑟 𝑘 − 𝑟(𝑘 − 1)

𝑃(𝑘) = 𝑒M N∆Z
[ \

“energy difference” = compression ratio gain

Annealing schedule 𝑇 𝑘 = 1 − N𝑘 𝑘max
⋅ 𝑘^ 𝑘 grows à 𝑇(𝑘) decreases à P(𝑘) decreases

Initialization

𝑇 𝑘 = 0 = 1
𝑘 = 0

𝑘max = 100
𝑘^ = 1

𝑘: no. of iterations
𝑘`aC: maximal no. of iterations

𝑘^: hyper parameter
𝑘^ is large à worse solutions are accepted 

more frequently
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Genetic algorithm

Parameter space
𝑛individuals = 9

𝑛generations > 3
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Genetic algorithm
Parameter Choice Remarks

State space GABAC parameter space { 𝑝trans⋅ 𝑝diff ⋅ 𝑝lut ⋅ 𝑝bid ⋅ 𝑝ctx }

Objective function Compression ratio 𝑟 0 < 𝑟 < ~1

Candidate generation 
procedure Random neighbor 2 random parameters are changed 

randomly

Acceptance probability 
function

𝑖best = argmax
hijikindividuals

𝑟(𝑖)

• Best individual in each generation is 
selected

• No crossover
• No mutation (replaced by random 

parameter change)

Initialization
𝑛individuals = 10
𝑛generations = 10 n/a
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Results and sanity checks on artificial data

1 MiB random Brute force Genetic algorithm Simulated annealing

Compression ratio ~1 ~1 ~1

No. of tested configurations 6,945 10 ⋅ 10 100

Encoding time 467 s 50 s 64 s

1 million 0x00 Brute force Genetic algorithm Simulated annealing

Compression ratio ~0.03 ~0.03 ~0.03

No. of tested configurations 8,481 10 ⋅ 10 100

Encoding time 41 s 6.8 s 8.6 s
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Algorithm 
comparison

Bette
r

206 test files

GA: 1.15x @ 10x speed

SA: 1.75x @ 16x speed

Encoding times and 
compression ratios are 

normalized to the brute force 
results
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Conclusions

• Optimization of GABAC, an MPEG-G compliant entropy codec
• Optimization of the encoding process using a genetic algorithm 

increases the encoding speed by a factor of 10 at an average 
compression ratio of 1.15 compared to the brute force solutions
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github.com/mitogen/gabac
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Introduction
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Real­Time Video Streaming

­ Prime example: cloud gaming
­ Offload the rendering / game engine to a server
­ Stream game graphics to a thin client
­ Play control feedback back to the server

­ Causal video source

­ Latency constraints
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Latency Influence

M. Claypool and D. Finkel: The Effects of Latency on Player Performance in Cloud­based Games
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Encoder Choices and Parameterization

­ Huang et. al: x264

­ Just one reference frame
­ Preset: At least fast
­ Tuning flag: zerolatency

­ no B­frames
­ no lookahead

­ Alternative: x265

­ Codecs are restricted to a basic level of operation.
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Structure

7 / 9 19.06.2019 Foveated Video Coding for Real Time Streaming Applications Oliver Wiedemann



Foveation

1. Send fixation coordinates (x, y) and viewer distance z
2. Server calculates an offset map
3. The next frames’ macro­blocks are quantized accordingly

Macroblock offset according to a two dimensional Gaussian:

QO(i , j) = QOmax

(
1− exp

((i − x)2 + (j − y)2
2σ2

))

With parameters σ and QOmax
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Research Questions and Outlook

­ How to quantify performance?
­ How to relate non­uniform quality and bitrate?

­ How to choose optimal quantization parameters?
­ as a function of the network bandwith?

­ Sideproject: Try eye­tracking approximation using a notebook webcam
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Introduction

DNA: Two-stranded molecule (chromosome).
Different bases along each strand:
Adenine, Cytosine, Guanine, and Thymine

Applications of genomic data:

•Medical: Personalized cancer treatment, genetic
diseases

•Non-medical: Genetic ancestry testing

Human genome: 50 GB – 2 TB in size:

•Problematic for storage and transmission
⇒ Compression inevitable

•Need for specialized lossless compression
algorithms

Proposed methods exploit statistics for efficient
reference-free coding of base sequences

Preliminary Signal Analysis

•Discrete signal in alphabet A = {A, C, G, T} ⇒ trivial binary representation with 2 bit per base (bpb)

•Markov Property: Given the current letter X ∈ A consider n past symbols Y ∈ An

Model

. . . A C T G G T . . .

. . .
↑

Xi−2

↑
Xi−1

↑
Xi︸ ︷︷ ︸

Y
︸︷︷︸
X

Construct conditional probability matrix

P = [P (X | Y )]

n=1
=


P (A|A) P (C|A) P (G|A) P (T|A)
P (A|C) P (C|C) P (G|C) P (A|C)
P (A|G) P (C|G) P (G|G) P (A|G)
P (A|T) P (C|T) P (G|T) P (T|T)

 (1)

Analysis

H(X|Y ) =
∑
Y ∈An

P (Y )
∑
X∈A

P (X|Y ) log2 P (X|Y )
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Predictive Coding
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Predictors 3

Similar to [1]. Mostly used predictors:

•Direct encoding ( skip prediction)

•Repeat : Copy previous block

– No transmission
of extra data

– Many prediction
errors

[AGCTGACAC]

Last Block

[CGATACCTA]

Current Block

[AGCTGACAC]–

Residue

•Cache consisting of previous blocks

– Entry with minimal Hamming distance to
actual block selected

– Fewer errors
– Transmission of

index required

[AGCTGACAC]

Cache

[CCATAGCAA]
[GACGATCTC]

...
[TACTAGCAA]

[CCATACCTA]

Current Block

[CCATAGCAA]–

Residue

Selection of best encoding method for each block
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Entropy Coding 1

Using Context-Adaptive Arithmetic Encoder:

•Encoder keeps track of symbol occurrences
and calculates probabilities on the fly

•For high probabilities, fewer bits are required

Context Model

Modeled probabilities: P (X | Xi−1, . . . , Xi−n )

Preliminary Results

•Direct coding of the signal

•Only very local patterns can be considered:
44% of genome: larger-scale repetitive regions
⇒ Accounting for large patterns necessary

Residue Coding 2

G A C T . . .
− G T C G . . .

Residue?

•Use arithmetic coder

•Use predicted value of each
position as context model

Example

Prediction G A C T . . .
Actual value G T C G . . .

Context P (G | G) P (T | A) P (C | C) P (G | T) . . .

Results

•Correct prediction: 0.51 bit per base

• Incorrect prediction: 3.42 bit per base

Evaluation and Summary
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•Redundancy in signal exploited by Markov model

•More redundancy exploitable due to larger-scale
patterns, such as repetitions

•Use of predictors with lossless residue coding

•Comparison to AFRESh [1]: Different predictor types
and error correction (bit error mask)

•Faulty prediction leads to increasing cost for residue
coding

⇒Better predictors required

[1] T. Paridaens, Compression and Interoperable Representation of Genomic Information, Ghent University, 2018.
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1. Introduction

Task: Professional applications often require lossless compression

Challenge: Lossless compression leads to high bit rates

Solution: Scalable lossless video coding based on transmitting a base
layer (BL) with coarser quality and one or more enhancement layers (ELs),
comprising the residual video data

Approach: 3-D subband coding based on Wavelet Transforms (WT) [1]

Input

video

sequence
P USplit

LP

HP

JPEG2000

JPEG2000

BL

EL

Temporal WT Spatial WT

Temporal scalability
Quality and spatial

scalability
l2t−1

l2t

−

l2t−1

h2t

By realizing P as the warping operator W , Motion Compensated Tem-
poral Filtering (MCTF) is achieved [2]:

h2t = l2t − ⌊W2t−1→2t(l2t−1)⌋

l2t−1 = l2t−1 +

⌊
1

2
W2t→2t−1(h2t)

⌋

2. Content Adaptive Wavelet Lifting (CA-WL)

Idea: Adaptive temporal scaling based on significant changes among
subsequent frames

Stopping Criterion:

Haar WTs can be represented with tree structures

With each node a basis vector bi,t and a wavelet coefficient vector
ci,t is associated, which is the inner product of the signal s with
the basis bi,t
If combined costs of child nodes exceed costs of parent node, i.e.

C(s, bi,[2t−1,2t]) ≤ C(s, bi+1,2t−1 ∪ bi+1,2t),

the child nodes shall be pruned from the tree

C(·) describes a Lagrangian cost functional, which represents the
coding costs:

C(s, b) = D(s, b) + λR(s, b)

Rate R(s, b) is composed of the required rate for lossless coding
of the LP and HP frames and, in case of MC, the file size of the
motion vectors

Distortion D(s, b) is calculated by the MSE of the corresponding
wavelet coefficients compared to the original signal according to [3]

Time t
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l0,1 l0,2 l0,3 l0,4 l0,5 l0,6 l0,7 l0,8 l0,9 l0,10 l0,11 l0,12 l0,13 l0,14 l0,15 l0,16

h1,2 h1,4 h1,6 h1,8 h1,10 h1,12 h1,14 h1,16

l1,1 l1,3 l1,5 l1,7 l1,9 l1,11 l1,13 l1,15

h2,3 h2,7 h2,15

l2,1 l2,5 l2,13

h3,5

l3,1

EL1

EL2

EL3

BL

no motion

low motion

strong motion

LP frames

HP frames

Handling of the Overhead:

Realized by transmitting a vector v, whose length equals the number of input frames:

Initialize v : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

v after level i=1 : (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)

v after level i=2 : (2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0)

v after level i=3 : (3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0)

Non-zero entries correspond to the number of applied decomposition levels i

Distance d to the corresponding HP frame is given by d=2i−1

Encoded using multiple-context adaptive arithmetic coding [4]

3. Experimental Results

Simulation Setup (8 bpp):

Spatial resolution Number of frames

Surv

AirportNight1 688× 352 500
AirportNight2 688× 432 500
AirportNight3 688× 372 500
AirportDay1 688× 432 500

Med
MedFrontal 512× 512 29
MedSagittal 512× 512 29

HEVC
ClassC 832× 480 300
ClassD 416× 240 300

Coding parameters:

LP and HP frames are encoded by JPEG2000 [5]

Block-based MC with block size equals 8

Search range equals 8 and is doubled for every
decomposition level until a maximum size of 64

Motion vectors are encoded using the QccPack
library [6]

Differences of our proposed CA-WL compared to the uniform WL (U-WL)
with and without block-based MC.

λ Surv Med HEVC Total
average

N
o
M
C

∆ PSNRLPt
[dB]

1 4.12 5.28 15.45 8.88

3 1.64 1.91 8.86 5.30

5 0.97 1.16 6.31 3.67

7 0.65 1.16 6.18 3.50

∆ File size [%]

1 5.99 0.09 10.36 6.56

3 0.80 −0.96 4.15 2.18

5 0.23 −1.29 2.44 1.08

7 0.16 −1.29 1.66 0.67

B
lo
ck
-b
as
ed

M
C ∆ PSNRLPt

[dB]

1 9.30 15.56 10.57 10.98

3 8.17 13.89 10.43 10.28

5 7.42 13.89 9.38 9.47

7 7.27 13.89 8.68 9.02

∆ File size [%]

1 0.16 −5.58 4.44 1.34

3 −0.52 −5.64 −0.18 −1.06

5 −0.69 −5.64 −0.66 −1.38

7 −0.80 −5.64 −0.94 −1.57
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B
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CA-WL,
block-based MC

U-WL Proposed CA-WL U-WLOriginal Proposed CA-WL
No MC Block-based MC

A
ir
p
o
rt
D
ay
1

F
ra
m
e
32
1

35.01 dB 37.28 dB 30.75 dB 47.02 dB

M
ed
S
a
g
it
ta
l

F
ra
m
e
17
,z
o
om

39.67 dB 44.34 dB 39.46 dB 43.92 dB

B
Q
M
a
ll

F
ra
m
e
25
,
zo
om

20.87 dB 29.69 dB 30.23 dB 33.54 dB

4. Conclusion

Temporal resolution controlled by recur-
sive application of WT

Visual quality of BL is degraded by strong
motion of underlying video

CA-WL locally adapts temporal scaling by
evaluating a Lagrangian cost functional

For λ=3 and MC, PSNRLPt
of BL is in-

creased by 10.28 dB and rate is reduced
by 1.06%
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Fig.1. The 81 pristine reference images in KADID-10k.  

Fig.2. User interface for subjective IQA study.  

q  Introduction 
§  Deep learning based IQA methods require massive amounts of data to train 
§  However, the current largest artificially distorted IQA database, TID2013 [1], 

contains only 3,000 rated images 
§  Unable to generate more distorted images for further subjective study as 

source code is not available 
§  Our contributions: 

§  Konstanz Artificially Distorted Image quality Database (KADID-10k) 
and Konstanz Artificially Distorted Image quality Set (KADIS-700k) 

§  Multi-Level Spatially Pooled IQA method 

q Dataset creation 
§  Reference image collection 

§  Collect pristine images from Pixabay.com, free to be edited and 
redistributed 

§  Download 654,706 images whose resolution are greater than 1500-
by-1200, rescaled and cropped to 512-by-384 

§  Manually select 81 reference images in KADID-10k (Fig. 1) 
§  Randomly select 140,000 images as reference images in 

KADIS-700k 
§  Distorted image generation 

§  25 distortions, grouped into blurs, color distortions, compression, 
noise, brightness change, spatial distortions, sharpness, and 
contrast 

§  KADID-10k: degraded by 25 distortions in 5 levels each 
§  KADIS-700k: degraded by a random distortion in 5 levels each 

q Subjective IQA 
§  Performed on figure-eight.com, see interface in Fig. 2 
§  5-point scale Degradation category ratings (DCR): imperceptible (5), 

perceptible but not annoying (4), slightly annoying (3), annoying (2), and very 
annoying (1) 

§  Test questions to control the quality of crowd workers 
§  30 ratings per image, yield DMOS for each image 

q MLSP-IQA 

 Multi-Task Learning (MTL) for FR-IQA score prediction 

 Image representation by MLSP features 

 Visual quality prediction 

Method PLCC SROCC 
 
 
 
 
 
 

FR-IQA 

SSIM 0.723 0.724 
MSSSIM 0.801 0.802 
IWSSIM 0.846 0.850 
MDSI 0.873 0.872 
VSI 0.878 0.879 
FSIM 0.851 0.854 
GMSD 0.847 0.847 
SFF 0.862 0.862 
SCQI 0.853 0.854 
ADD-GSIM 0.817 0.818 
SR-SIM 0.834 0.839 

 
 
 
 
 

NR-IQA 

BIQI 0.460 0.431 
BLIINDS-II 0.559 0.527 
BRISQUE 0.554 0.519 
CORNIA 0.580 0.541 
DIIVINE 0.532 0.489 
HOSA 0.653 0.609 
SSEQ 0.463 0.424 
InceptionResNetV2 (fine-tune) 0.734 0.731 
MLSP-IQA 0.941 0.939 

Table 2. IQA performance comparison on KADID-10K.  

q Conclusion 
§  Introduce two KADID-10k and KADIS-700k 

§  KADID-10k contains 81 reference images and 10,125 distorted 
images with 30 quality ratings each 

§  KADIS-700k contains 140,000 reference images and 700,000 
distorted images 

§  Both datasets, together with the source code for the 25 distortions, are 
available in [2] 

§  Developed MSLP-IQA method, a deep learning based IQA method by 
weakly supervised feature learning; 0.2 SROCC improvement than fine-
tuned CNN, 0.06 SROCC improvement than best FR-IQA metric 



Video Transmission Optimization
An Overview of Video Compression and Communication Systems

Yasser Samayoa

1. Motivation

Falsified, forged components become increasingly widespread

2. Videocoding system: HEVC

Real time data transmission  

Feedback channel

Video compression and communciation Classical separation principle

Video (source) coding: operate 
closely to the rate-distortion bound

6. Conclusions and future work

Optimization with help of the Distortion Function

Channel coding: operate 
closely to the channel capacity 

Code rate Rc = k/n, with k information bits and n coding bits

Time- and frequency-selective channels

Assumptions

high computational resources
and associated delays

long block lengths for 
source and channel codes

(i)

(ii)

Goal
Minimize the end-to-end distortion of the delivered copy of the source
under some constraints: bandwidth, transmission power or energy, 
delay and complexity.

Assumptions do not hold in practice

Adaptive parameters, e.g., space resolution and QP

Sequence: ParkScene
resolution: 1920x1080 pel
Fps: 24

Error resilience techniques, e.g., slices and intra-refresh

3. Channel coding: serial concatenated codes 

Punctured convolutional code drawback: burst-error
Reed-Solomon code: against burst-error
Performance vs. delay

4. Communication system: OFDM

Avoids intersymbol interference

Optimization, e.g., water filling

5. Optimization procedure

S/P IFFT
Cyclic 
prefix
(CP)

 

Windowing
 

P/S

Channel
 

S/P FFTChannel
equalizer

 

Timing/frequency 
synchronization and
channel estimation

 

S/P Remove
CP

S/P

ld(M) 

S/P

ld(M)

Packet transmission mode: one OFDM frame for synchronization
and adaptivity

and

Distortion Function (DF)

The delay considerations are pending

Minimize the expected video distortion at the decoder,
subject to bandwidth, Tx power and delay constraints.

Institut für Informationsverarbeitung
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FOR 360° VIDEO CODING

Johannes Sauer and Christian Rohlfing
Institut für Nachrichtentechnik, RWTH Aachen University

SIGNALING GEOMETRY PADDING USAGE
FOR 360° VIDEO CODING

Johannes Sauer and Christian Rohlfing
Institut für Nachrichtentechnik, RWTH Aachen University

Geometry padding corrects distortions at face boundaries in cube-based
360° video

• Improved inter prediction across
face boundaries

• Objective coding gains of 2% on av-
erage [1]

• Improvement visually apparent [3]

Neighboring cube faces. Red: Geometric distortion at
face boundary, straight lines appear bend.

Geometry padding of the left face. Blue:
Corrected geometric distortion.

Integration of geometry padding into coding scheme

On-the-fly geometry padding

+ Easy to implement

+ Low complexity: 5% decoder runtime increase with near-
est neighbor interpolation [2]

– Support for geometry padding at block level unlikely due
to overhead for conventional video

– Higher memory access at block level. Worst case: Cube
corner requires pixels from three different regions

– Padding may be re-generated several times.

Picture level geometry padding

+ Padding of reference pictures only has to be
generated only once

+ No modification of decoder at block level re-
quired

– Full padding of faces complex and potentially
not required

– Increased storage for reference pictures

– Requires treatment of uncoded areas

Analysis of geometry padding
usage

Derivation of geometry padding usage

• Inspection of encoder motion buffer

• Derivation of required padding sepa-
rately for each face boundary

Observations

• Static sequences require very little
padding

• Small padding amount much more likely

• Full padding required in some cases
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Geometry padding usage signaling

Requirements

Signaling granularity: Geometry padding can be con-
trolled per picture, per face, and per boundary

Incremental signaling: Padding can be signaled with ref-
erence to previous padding. Previous padding can be
reused

Quantization and coding: Padding is quantized into bins
of 4 pixels and exponential-golomb coded

Face packing

1 2 3

4 5 6
Ptop

Pbottom

Pleft

Pright

Packing of the cube faces. Grey: Cube faces. White: Additional uncoded
area reserved for geometry padding. Red: Complete padding. Blue:

Partial geometry padding

Proposed supplemental enhancement
information (SEI) message syntax

for ref _list = 0 to 2 do
numRefIdxMinus1← 2 bit
for refIdx = 0 to numRefIdxMinus + 1 do

picNeedsPadding← 1 bit
if !picNeedsPadding then

continue
for r = 0 to 2 do

for c = 0 to 3 do
for boundary in top, bottom, left , right do

boundary.paddingPresent← 1 bit
for r = 0 to 2 do

for c = 0 to 3 do
for boundary in top, bottom, left , right do

if boundary.paddingPresent then
boundary.paddingWidth← ue

Results

BD-Rate in % Decoder complexity

Sequence no SEI with SEI no SEI with SEI

static

Gaslamp -0.83 -0.62 302% 151%
Harbor -0.52 -0.34 255% 136%

KiteFlite -0.79 -0.72 220% 131%
Trolley -1.03 -0.94 262% 144%

non-static

Balboa -3.31 -3.15 220% 113%
BranCastle2 -3.14 -3.11 170% 98%

Broadway -2.55 -2.42 198% 115%
ChairliftRide -3.44 -3.31 223% 116%

Landing2 -2.25 -2.20 167% 106%
SkateboardInLot -3.11 -3.00 179% 110%

Average
static -0.79 -0.65 258% 140%

non-static -2.97 -2.86 191% 110%
all -2.10 -1.98 216% 121%

Configuration

• VVC Test Model (VTM) reference software, version
VTM 4.2 [4]

• 360Lib extension 9.0 [5]

• Geometry padding using nearest-neighbor interpo-
lation

• Common test conditions and evaluation procedures
for 360 video (CTC360) [6],

• Distinction of static and non-static sequences

Conclusion

• Signaling of geometry padding has only
small impact on coding gain

• Geometry padding can be applied
efficiently at picture level

• Requires no low level modifications of the
decoder
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