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Abstract

Most multiple people tracking systems compute trajecto-
ries based on the tracking-by-detection paradigm. Conse-
quently, the performance depends to a large extent on the
quality of the employed input detections. However, despite
an enormous progress in recent years, partially occluded
people are still often not recognized. Also, many correct de-
tections are mistakenly discarded when the non-maximum
suppression is performed. Improving the tracking perfor-
mance thus requires to augment the coarse input. Well-
suited for this task are fine-graded body joint detections,
as they allow to locate even strongly occluded persons.
Thus in this work, we analyze the suitability of includ-
ing joint detections for multiple people tracking. We in-
troduce different affinities between the two detection types
and evaluate their performances. Tracking is then per-
formed within a near-online framework based on a min cost
graph labeling formulation. As a result, our framework
can recover heavily occluded persons and solve the data
association efficiently. We evaluate our framework on the
MOT16/17 benchmark. Experimental results demonstrate
that our framework achieves state-of-the-art results.

1. Introduction
The goal of multiple object tracking (MOT), or specifi-

cally multiple people tracking, is to infer the trajectories of
all targets that appear in a video sequence. Thus, MOT is
an essential component when high-level understanding of a
video scene is desired. This may be to study social interac-
tions of humans [38, 2, 1], to understand the environment of
a car for autonomous driving or to secure critical areas [11].

The majority of recent approaches focus on the so-called
tracking-by-detection strategy. It consists of two parts: first
the detection hypotheses, usually bounding boxes, are gen-
erated by applying a person detector to each video frame.
Then these hypotheses are linked across the video frames
according to affinity criteria. This work focuses on the lat-
ter task, which is also called the data association problem.

While there has been significant improvements in the

Figure 1. Tracking based on people and joint detections. Top row:
SDP input detections on MOT17-04. The person with the red bag
is not detected anymore after frame 19. Bottom row: The result of
our method. Due to the integration of joint detections into the data
association, all persons are found and tracked correctly, despite
heavy occlusions and missing detections.

performance of tracking-by-detection systems in recent
years, the performance of such a tracking system still relies
heavily on the employed detector. Further, even with state-
of-the-art detectors, people are frequently missed. This may
be the case due to heavy occlusions, especially in crowded
scenes. Also performing the non-maximum suppression
(NMS) results in many missing localizations.

In order to compensate these detector issues, one ap-
proach used widely in recent works of the tracking com-
munity is that the whole video sequence is taken into ac-
count, instead of using just a few frames. In this case, the
data association problem is solved with the help of addi-
tional information from future frames. Especially sophisti-
cated features based on neural networks [34, 21] allow to
re-locate persons even after long occlusions. However, the



integration of long-term considerations is computationally
demanding. Hence, they cannot be run online. A comple-
mentary approach is to include additional detectors which
are trained to locate fine-graded regions of interests of a per-
son. Accordingly these additional detectors are integrated
into the data association step, which allows to recover the
position of persons that have been missed by the people de-
tector.

Inspired by the latter concept and motivated by the limi-
tation of the first, we build a new framework for MOT which
overcomes the detection failure issues and is able to tackle
data in a near-online way. As additional information, we
employ joint detections. Being very fine-graded, they allow
to explain the position of a person in a bottom-up way: Each
joint can be related to the full-body detection. This results
in very accurate data associations as the additional informa-
tion are used to ensure spatial and temporal consistencies of
body and joint detections.

However, using additional detectors also poses a difficult
data association problem: Each person might have multiple
detections that need to be associated to each other. This is
different to the normal setting where it is assumed that at
most one detection at a frame belongs to a person’s trajec-
tory. Further, affinities have to be defined not only between
body detections but also between joint detections as well as
body and joint detections, within the same frame as well as
between different frames.

In this work, we design specific affinities between the
different inputs and analyze in detail their suitability for
MOT. Our experiments show that the fusion of fine-graded
detections is very beneficial, leading to state-of-the-art per-
formance.

To summarize, our contribution is three-fold:

• We integrate joint detections into a near-online multi-
ple people tracking system.

• We analyze affinities to fuse people detections and
joint detections into a tracking system.

• Our presented tracker is robust against occlusions and
sets a new state-of-the-art in tracking.

2. Related Work
Data Association. Most modern multi object tracking

systems are based on the so-called tracking-by-detection
paradigm [13, 22, 33, 7, 40, 29, 14, 15]. The idea is to split
the problem into two subsequent tasks: object detection
and data association. There has been significant progress
in localizing objects in an image, mainly due to recent ad-
vances in deep neural networks [27, 37, 32]. Nonetheless
objects of interest are still frequently missed due to occlu-
sions, complex deformations and challenging lightning con-
ditions. The task of the data association is then to com-

pensate the errors of the detector, recover missing positions
and to assign correct detections to the corresponding per-
sons. This task has been tackled in a global manner using
network flow formulations [40, 22] based on the markov
chain assumption. More recently, improvements have been
achieved by considering all associations of a trajectory at
the same time (instead of only frame-to-frame links), using
correlation clustering [33, 34] or graph labeling [13]. While
these offline methods perform well, solving the entire data
association problem is computationally demanding, espe-
cially for long video sequences. With the rise of robust
features based on neural networks, many tracking systems
employ near-online [7, 20] or online systems [8, 26, 41] as
the features are often sufficient to solve the data association
correctly without the need of many information from future
frames.

Also our work builds upon the near-online framework
but generalizes the tracking-by-detection concept by inte-
grating further information, namely joint detections into the
decision step, which help especially to obtain robust inter-
polation as well as extrapolation of body detections.

Integration of additional information. While multiple
people tracking based on detection boxes has seen consider-
able improvements in recent years, many works have recog-
nized that the integration of additional information leads to
a performance gain. The work [34] uses joint information
to obtain more robust box affinities. However, it still relies
on bounding boxes, so that people that have been missed by
the people detector are difficult to recover.

Instead of only linking detections by the help of addi-
tional information, several works add additional inputs di-
rectly into the data association problem, so that these have
to be linked too. Common to all these publications is that
the additional information are fine-graded, thereby helping
the recover false negative detections and to improve the in-
terpolation abilities. Some works add head detections in
a network-flow formulation [5] or, more powerfull, in a
graph labeling setting [13]. Others successfully add dense
point trajectories [18, 15]. Several works consider joints for
multi-person pose estimation and tracking. Some methods
directly infere pose and temporal consistency on the joint
space [16, 17], without considering people detections. Oth-
ers [36] compute frame-wise poses first and use bounding
boxes only to transform a pose to the next frame.

Instead, our work uses all joint information as well as
body localizations directly within the data association step,
leading to state-of-the-art tracking performance.

3. Method
We introduce our tracking-by-detection system which

utilizes joint detections and body detections in a holistic
way. We assume that all necessary input detections are al-
ready provided by external detectors and focus on the re-



maining data association problem. However in our case,
the data association problem differs from the normal setting
as there might be several input detections at a frame (people
detections and joint detections) that have to be assigned to
a person. We cast this problem into a min cost graph label-
ing problem, where the optimal solution corresponds to an
assignment that is consistent in space and time between the
different detection types. To make the approach efficient,
we embed the graph labeling into a near-online framework.
Further, we introduce all necessary affinities.

3.1. Tracking model

A near-online tracker, as introduced in [7], solves the
data association problem at frame t using already com-
puted tracking results from the past, within a time window
t − 4t1, . . . , t − 1 together with input detections at time
t, . . . , t+4t2 − 1.

Let D denote the set of detections of the video sequence
to be tracked, which decomposes into body detections DB

and joint detections DJ. Further, Dt comprises all detec-
tions at frame t. A trajectory T ⊂ D consists of all de-
tections belonging to a person. Let δ(T ) denote the lat-
est time stamp for which T contains detections and let
T := T ∩ Dδ(T ) contain the corresponding detections at
the tail of T . Finally, the set Tt−4t1,t−1 comprises all tra-
jectories T where δ(T ) is within t−4t1, . . . , t− 1.

Now the tracking task is to find optimal associations be-
tween the previously computed trajectories Tt−4t1,t−1 and
detections Dt,t+4t2−1 := ∪t+4t2−1

i=t Di within the sliding
window, which also incorporates to identify newly appeared
targets. We note that the sliding window has a size of
4t1 +4t2 and causes a delay of4t2 − 1 frames.

For a sliding window around frame t, we solve the data
association problem by finding a min cost graph labeling
solution. In particular, we create an undirected weighted
graph G = (V, E , C), with the vertex set

V := Tt−4t1,t−1 t Dt,t+4t2−1. (1)

The edge set E comprises all possible connections be-
tween precomputed trajectories Tt−4t1,t−1 and detections
Dt,t+4t2−1 as well as between any two detections of
Dt,t+4t2−1. Affinity costs ce for e ∈ E reflect how likely
an edge connects inputs belonging to the same person. Ac-
cordingly, costs cv for v ∈ V reflect how likely an input is
a true positive. The association problem can then be formu-
lated as a min cost graph labeling problem [13]:

argmin
I∈{0,1}P×|V|

P∑
l=1

∑
v∈V

cvIv,l +
∑

e={v,v′}∈E

ceIv,lIv′,l (2)

subject to
∑P
l=1 Iv,l ≤ 1 for all v ∈ V . Here, P is an upper

bound on the number of persons in the sliding window. If

for an indicator variable Iv,l = 1 holds, then vertex v is as-
signed to person l. Accordingly, the aim of (2) is to compute
the assignment of the indicator variables Iv,l such that the
most plausible data association is selected that is consistent
in space and time, with respect to both input detectors.

We solve (2) using the solver introduced in [13], update
the trajectories and shift the sliding window one time step
forward.

3.2. Features

For the tracking task, we need to define features com-
paring pairs of detections (d, d′). Thereby, d and d′ can be
body detections as well as joint detections. Also, d and d′

may be from the same frame or between different frames.
We transform features to cost values by training corre-

sponding logistic regression classifiers and use their logit
values.

We describe a joint detection j using a vector dj :=
(xj , yj , µj , tj) where pj := (xj , yj) denotes the detection
location; µj is the type of the joint and tj the frame num-
ber at which the joint has been detected. Similarly, we de-
fine a body detection b: db := (xb, yb, wb, hb, tb)

T , where
pbul := (xb, yb)

T is the upper left corner of the box; wb
and hb are the box width and height, respectively; tb is the
frame number. The middle point of the box is denoted as
pbm := (xb + wb/2, yb + hb/2)

T .
In the following we describe various spatial and tempo-

ral features that we examined for our tracker. In the ex-
periments section, these features are evaluated and the best
performing ones are selected.

Joint-to-Joint spatial. We use the costs defined in Art-
Track [16], which compares for a joint of type µ the ex-
pected position with the observed position, in relation to
the position of another joint of type µ′ 6= µ.

Figure 2. Orientation ambiguity: the right shoulder detection can
be located either on the right or left half of the box detection.

Joint-to-Body spatial. When the position of a joint type
µ is compared with a bounding box, an orientation ambi-
guity has to be taken into account, e.g. the right shoulder
may appear on the left or right half side of a bounding box,
depending on the walking direction, see Fig 2. We intro-
duce four different features suitable to decide if a joint and



a body detection may belong to the same person.
(1) Barycentric distance: In order to compare the loca-

tion of a joint to the position of a detection box, regardless
of its size, we employ barycentric coordinates. Consider the
positions pbll,p

b
lr and pbul of the lower left, lower right and

upper left corner positions of b. Then, the corners pbll,p
b
lr

and pbul of b describe a triangle, which we denote by

4(b) :=

(
pbll pblr pbul

1 1 1

)
∈ R3×3. (3)

With respect to this triangle, we can now consider the
barycentric coordinates Bbj of a joint j (also outside of b):

Bbj := 4(b)−1

(
pj
1

)
. (4)

The box middle point pbm has barycentric coordinates
Bm := (0, 0.5, 0.5)T . We obtain the euclidean distance be-
tween the middle point and the joint position in barycentric
coordinates, independent of the box size of b:

distbary = ||Bbj − Bm||2. (5)

(2) x-y-offset: Also, the offset between the joint position
pj and the box middle point pbm might be a good affinity.
We consider the offset in x-direction and y-direction and
normalize by the box width wb and box height hb, respec-
tively. We denote the offset from the box middle point pbm
to joint location pj as omj = pj − pbm.

Due to the orientation ambiguity, for the measure in x di-
rection, we have to compute the absolute value of the offset.
Accordingly, these two features are expressed as follows:

xoffset =
∣∣∣xj − xbm

wb

∣∣∣, yoffset =
yj − ybm
hb

(6)

(3) Angle in reference box: To compare angles, the ori-
entation ambiguity has to be taken into account. A joint j
which is located left to xbm is mirrored at the vertical middle
line of b, resulting in a position pj at the right half side of b.
We consider a reference boxBref similar to [13] to maintain
the relative position between the joint position and the full-
body bounding box with varying sizes (see Fig.3). A joint
j is then mapped to position pref

j via barycentric coordinate
transformation induced by the triangles of b and Bref :(

pref
j

1

)
= 4(Bref)Bbj = 4(Bref)4(b)−1

(
pj
1

)
. (7)

We learn the mean position of each joint type µ in the refer-
ence box from the training data, denoted by pref(µ). With
pref
m being the center position of Bref , we compute the off-

sets ômj = pjref − pref
m and ômµ = pref(µ) − pref

m , com-
paring observed and expected offsets in barycentric coordi-
nates.

Finally, we obtain the angle disagreement via

angleref = arccos

(
〈ômj , ômµ〉
|ômj ||ômµ|

)
. (8)

Figure 3. Angle and distance between the expected and observed
joint position in the reference box.

(4) Distance in reference box: We also compute the dis-
tance between the mean position pref(µ) and the (possibly)
mirrored detection pjref in barycentric coordinates:

distref
bary = ||ômj − ômµ||2. (9)

Joint-to-Body temporal. Assuming that there is no
large displacements within small temporal distance, we use
the same features as those for a joint-to-box spatial pair.

Joint-to-joint temporal As temporal features between
two joints j1 and j2, we consider euclidean distances:

(5) Euclidean distance: We compute directly the eu-
clidean distance between two joint positions. It is expressed
as:

distj1j2eu =
√

(xj1 − xj2)2 + (yj1 − yj2)2 (10)

(6) Scaled distance: In case that one joint belongs to an
already computed trajectory containing also a detection b,
we utilize the scale information provide by b:

distj1j2scaled =
distj1j2eu

hb
(11)

Body-to-Body spatial. We assume no two bounding
boxes should belong to a person (due to the NMS) and set
the spatial costs between them to a constant high value.

Body-to-Body Temporal. We employ the Deep Match-
ing (DM) features [35] as temporal measurements.

It provides dense correspondences of pixels between two
frames. Given two boxes b1 and b2 and the set of DM
points Mb1 and Mb2 inside b1 and b2, respectively, we de-
fine MU = |Mb1 ∪ Mb2 | and MI = |Mb1 ∩ Mb2 |. In-
spired by [13, 33], we define the following features: MI

MU ,
MI
|Mb1

| ,
MI
|Mb2

| and MI
0.5(|Mb1

|+|Mb2
|) . Finally, we stack them

in a affinity vector fDM :

fDM = (
MI

MU
,
MI

|Mb1 |
,
MI

|Mb2 |
,

MI

0.5(|Mb1 |+ |Mb2 |)
) (12)



Affinity between a trajectory and a detection Finally,
assume that a trajectory T ∈ Tt−4t1,t−1 contains body de-
tections b1, . . . , bm and joint detections j1, . . . , jn in its last
frame and consider a detection b ∈ Dt,t+4t2−1. Let

Costbody =
1

m

m∑
k=1

wk,b, Costjoint =
1

n

n∑
k=1

w′k,b, (13)

wherewk,b andw′k,b denote the costs between b and all body
detections (or joint detections) of T , as introduced in Sect.
3.2. Then, we define the cost between trajectory T and de-
tection b as:

cT,b = λjointCostjoint + λbodyCostbody. (14)

We set λjoint = 1 and λbody to the number of joint types.
This compensates unbalances in the number of expected de-
tections that should belong to a person at each frame.

3.3. Post-Processing

Once trajectories fall out of the temporal window, we
perform post-processing. Assuming that false alarms usu-
ally last not too long, we simply set a threshold for the min-
imal trajectory length and eliminate too short ones.

The data association may have recovered the position of
a person after some frames of missing body detections. It
may also contain trajectories which for some frames only
have associated joint detections but no full-body detection.

Accordingly, we perform different post-processing
methods to localize the position also in those frames where
there is no associated body detection.

Consider a trajectory T and let f be a frame that has no
associated body detection.

If T contains a body detection in a frame f ′ < f and
f ′′ > f , we recover the position using linear interpolation
between the existing body detections. Thereby, we use the
smallest frame f ′′ > f and biggest frame f ′ < f with body
detections.

Assume f ′ < f is the last frame in which T contains
body detections. We extrapolate the position of a bound-
ing bounding box with the help of associated joint detec-
tions. Let b′ be the body box at frame f ′. Further, the
sets Jf and Jf

′
comprise all joints of T at frame f and

f ′, respectively. We take the information from any two
joints of the same type at the frames f and f ′. Thus, let
(j1, j

′
1), . . . , (jNcom

, j′Ncom
) ∈ Jf × Jf

′
be all such pair-

ings, so that µji = µj′i for i = 1, . . . , Ncom. Assuming that
the offset between box middle point and the mean joint po-
sition stays constant withing a short temporal distance, we
set up the following equation:

1

Ncom

Ncom∑
r=1

pjr − pbm =
1

Ncom

Ncom∑
n=1

pj′n − pb
′

m, (15)

where b denotes the to be computed body box at frame f .
Then, we obtain the box center pbm of b from Eq. 15:

pbm =
1

Ncom

Ncom∑
r=1

pjr −
1

Ncom

Ncom∑
n=1

pj′n + pb
′

m (16)

We compute the coordinates of the upper left corner via

pbul = pbm −
1

2
(wb′ , hb′). (17)

To ensure robustness, we perform extrapolation only when
Ncom ≥ 3. The case f ′ > f being the first frame with body
detections is done similarly.

4. Experiments
Based on the affinities introduced in Sect. 3.2, we ana-

lyze the corresponding classifiers regarding joints in Sect.
4.1. The best performing features are then integrated into
our near-online tracker, which deals as the basis for all sub-
sequent experiments.

Fig. 1 shows that joint detections help eliminating false
positive body detections while recovering missed detec-
tions through inter- and extrapolation. To quantitatively
analyse the advantage of fusing joint detections, we com-
pare in Sect.4.3 the results achieved by our tracker using
both detection types against body detections only. The in-
fluence of the size of the sliding window is discussed in
Sect. 4.4. Finally, we compare the performance of our
method with other reported results on the MOT bench-
mark [25] in Sect. 4.5.

(a) DPM Body detections (b) Our tracking result

Figure 4. MOT17-02 sequence, frame 2. (a): Body detections from
DPM with a false positive. (b): The result by our tracker. It re-
moves the false positive that does not match the joint detections.

Filtering. After the detections in the sliding window are
associated, we filter out false-positive body detections. We
revoke a body-detection, if there are at least 3 joints of the
person in that frame that are not connected to the box (pos-
itive pairwise cost to the box). This helps in particular to
remove wrong double detections of a person (see Fig.4).

4.1. Feature Evaluation

We evaluate the performance of all features proposed in
Sect. 3.2 which regard joint detections.



Training data. In order to train the joint classifiers, we
employed the PoseTrack [3] dataset. This benchmark con-
sists of 500 video sequences, with 20K frames and 150K
body pose annotations. The video sequences contain multi-
ple people in different scales engaging in various dynamic
activities, where body part occlusions appear frequently. As
the dataset contains only labels for the joint detections, we
infer corresponding ground-truth bounding boxes by tak-
ing the minimal enclosing bounding box around all joints
of a person (which we slightly enlarge by 15% in width and
height). Further, we filter out poses that are unlikely to be
seen on a street sequence.

For the false positive samples, we randomly group joint
and body detections of different persons. In total we cre-
ate a training subset with an equal number of true positive
and false positive pairs. For temporal associations between
two detections from different video frames, we set the max-
imum temporal distance to 9 frames. In order to avoid that
the samples with smaller temporal distance dominate the
training data, we make sure that the number of samples per
frame distance remains constant. All classifiers are learnt
from the features of Sect. 3.2 using a logistic regresion
model [9]. Finally, we split the created dataset into equally
sized training and validation sets.

Regression metric. The evaluation of the different clas-
sifiers is conducted on the validation set, using the standard
accuracy performance indicator:

Accuracy =
TP + TN

TP+ TN+ FP + FN

where TP, TN, FP, FN denote the number of true positives,
true negatives, false positives and false negatives, respec-
tively.

We analyze the classifiers regarding joints.

Joint-to-box spatial features We employ the joint detec-
tor [16] and use all provided joint types except for neck and
head, making 12 joint types in total. 4 features are designed
to spatially describe joint-to-box associations: (1) barycen-
tric distance, (2) x-y-offset, (3) angle in reference box, (4)
distance in reference box.

First, we train a classifier for each feature individually
and validate the performance using a testing box. We com-
pute a confidence map which evaluates for each possible
joint position the likelihood that the joint and the test bound-
ing box belong to the same person. Exemplary, we show the
results for the right shoulder, in Fig. 5(a)-(d).

Although we want to encode the relative y position in
feature (2), Fig. 5(b) reveals it is faulty in this direction.
The reason is that the data described by feature (2) is not
linearly separable, so that encodings like above or below
the middle point cannot be used. The classifier based on

(a) feature (1) (b) feature (2)

(c) feature (3) (d) feature (4)

Figure 5. Confidence map of the right shoulder described by dif-
ferent joint-to-box spatial features.

feature (1) provides a very coarse localization of the shoul-
ders. Only classifiers based on feature (3) and (4) seem to
output reasonable predictions. Therefore, we finally build
our joint-to-box spatial classifier based on feature (3) and
feature (4). The resulting classifier performs well on the
validation data (see Table. 1) and outputs meaningful con-
fidence maps similar to Fig. 5(d), but with less variance in
implausible directions.

Joint-to-box temporal features Assuming that the joints
do not move severely, we use features (3) and (4) also to
train a joint-to-box temporal classifier up to 9 frames. Ac-
curacies are shown in Table. 2 and Fig. 6 shows the accuracy
plotted over the frame distance for one joint type.

Figure 6. Accuracies of the joint-to-box temporal classifier for the
right shoulder.

The classifier achieves over 85% mean accuracy on all
types of joints on the validation data. From Fig. 6 we see
that the accuracies decrease with frame distance on the val-
idation data. The classifier still gets over 80% accuracy at



Right ankle Right knee Right hip Right wrist Right elbow Right shoulder
Accuracy(%) 93.37 93.50 93.41 88.62 91.74 94.66

Table 1. Training accuracy of the final joint-to-box spatial classifier.

Right ankle Right knee Right hip Right wrist Right elbow Right shoulder
Accuracy(%) 89.05 88.89 88.55 88.81 88.74 90.45

Table 2. Training accuracies of the joint-to-box temporal classifier.

distance of 9 frames, which is acceptable.

Figure 7. Accuracies of the joint-to-joint temporal classifiers.

Joint-to-joint temporal features Finally, we evaluate the
joint-to-joint temporal features (5) and (6). The validation
accuracies are shown in Table. 3 and Fig. 7 plots the impact
of time. The results show that knowing the scale of the
detection box (feature (6)) brings roughly 2% improvement.

4.2. Evaluation details

Finally, we evaluate the tracking performance of the
proposed system. We use the classifiers as introduced in
Sec. 4.1. To obtain joint detections we utilize [16]. Then,
we evaluate the tracking performance using the state-of-the-
art MOT17 benchmark [25]. It comprises sequences filmed
from various viewpoints, with crowded scenarios and dif-
ferent lighting conditions. In total, there are 7 training and
7 test sequences. Each sequence is provided with 3 sets
of detections: DPM [10] with a low recall and precision,
Faster-RCNN [27] which performs better and SDP [37],
which shows the best detection performance.

Tracking metrics. The MOT benchmark employs the
CLEARMOT metrics [4]: MOT accuracy (MOTA), the
main metric used to compare MOT approaches, com-
prises false positives (FP), false negatives (FN) and iden-
tity switches (IDS). Another important metric is IDF1 [28]
which measure the identity consistency of each trajectory.
Further, mostly tracked (MT), mostly lost targets (ML) and
track fragmentations (FM) are taken into account [23].

Further, we filter out too short trajectories (length ≤ 3),
as they are very likely false positive detections.

4.3. Tracking with additional joint detections

We investigate the impact of adding joint detections to
a tracking system. We compare our tracker using body
detections only (Body) against body and joint detections
(Body+Joints). We compare on all MOT17 training se-
quences using all 3 full-body detectors. For the temporal
sliding window, we set 4t1 = 4 and 4t2 = 5 in order to
emphasize the effect of interpolation and extrapolation. We
present the evaluation in Table. 5.

We observe that the MOTA score increases by using both
detections. Among the 3 detectors, MOTA increases the
most for DPM by more than 10% and the least for SDP by
0.2%. The number of IDs decreases significantly, which
is more than halved for Faster-RCNN and SDP. Detectors
with a high precision rate (FRCN and SDP) allow to se-
curely revoke remaining wrong detections, either by the so-
lution of the data association problem (2) or by using the
aforementioned filter strategy. Accordingly, we observed a
decrease of the FP score. Using a detector with a low recall
rate (DPM) showed a significant improvement in recovering
missing detections, mainly due to the stable interpolation
and extrapolation guided by the joints. At the same time,
the placement of body detections of DPM show an unsta-
ble behavior, making it difficult to revoke wrong detections
with the proposed affinities.

4.4. Sliding window size

We investigate the impact of different sliding window
sizes on the MOT17 training set. As introduced in Sec. 3.1,
the size of the sliding window4t depends on4t1 and4t2
as it is the sum of these two terms: 4t = 4t1 + 4t2.
We keep 4t1 = 4 and change 4t2 from 1 to 5 frames.
Fig. 8 shows the corresponding MOTA values. The MOTA
scores increase and reach the maximum at a window size
of 3 frames for all three detectors. A major decrease hap-
pens at a window size of 5. This means that the added joint
feature is robust in small temporal distance and the tracking
system benefits from the near-online data association.

4.5. Evaluation on MOT17 test

Finally, the results of our proposed tracker on the
MOT17 test dataset are shown in Table. 4 together with the
best 10 performing methods.

As we can see, our method outperforms other approaches



Accuracy(%) Right ankle Right knee Right hip Right wrist Right elbow Right shoulder
feature (5) 86.67 87.80 88.57 88.14 87.16 87.92
feature (6) 88.05 89.63 90.49 89.70 88.36 89.86

Table 3. Training accuracies of the joint-to-joint temporal classifiers.

Method Type MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓
Ours NO 52.6 50.8 19.7 35.8 31,572 232,659 3,050 3,792

eHAF17 [31] B 51.8 54.7 23.4 37.9 33,212 236,772 1,834 2,739
FWT [13] B 51.3 47.6 21.4 35.2 24,101 247,921 2,648 4,279
jCC [18] B 51.2 54.5 20.9 37.0 25,937 247,822 1,802 2,984

MOTDT17 [24] O 50.9 52.7 17.5 35.7 24,069 250,768 2,474 5,317
MHT DAM [19] B 50.7 47.2 20.8 36.9 22,875 252,889 2,314 2,865

TLMHT [30] B 50.6 56.5 17.6 43.4 22,213 255,030 1,407 2,079
EDMT17 [6] B 50.0 51.3 21.6 36.3 32,279 247,297 2,264 3,260
MTDF17 [12] O 49.6 45.2 18.9 33.1 37,124 241,768 5,567 9,260

HAM SADF17 [39] O 48.3 51.1 17.1 41.7 20,967 269,038 3,410 6,351
Table 4. Results for our method on the MOT17 test set. The ten best performing trackers of MOT17 (accessed on 22/03/2019) are listed.
The best values are in bold. Second column: method type with O standing for online, NO for near-online and B for batch.

Detectors Features MOTA MT ML FP FN IDs

DPM Body 23.9 35 263 12381 70780 839
DPM Body+Joint 36.8 103 210 13346 55734 710

F-RCNN Body 49.6 135 121 3952 50652 1086
F-RCNN Body+Joint 51.4 115 180 1590 51634 428

SDP Body 62.9 190 128 3563 34510 1883
SDP Body+Joint 63.1 168 134 1475 38732 528

Table 5. Feature evaluation on the MOT17 training sequences.

with the best MOTA score and the lowest number of false
negatives (FN) on the benchmark. Also the mostly lost
(ML) metric shows that our method achieves better or com-
parable results comparing with most of these approaches.
This indicates that many positions have been recovered due
to the help of joint detections via interpolation and extrap-
olation. As our tracker utilizes only a few frames, the IDS
score is relative high and IDF1 a bit worse than some other
methods. However, comparing with the other online meth-
ods, the number of track fragmentations (FM) is consider-
able lower. This indicates that using a sliding window yields
more robust trajectories than only considering the informa-
tion from the current frame.

5. Conclusions
The integration of joint detections to a MOT framework

is a difficult task. In this work we proposed suitable affini-
ties that allowed to consider body detections together with
joint detections for the purpose of multi object tracking.
Further, we embedded these information into an efficient
near-online tracking framework. In our experiments, we
validated several possible affinities. Using the best per-
forming features, we investigated the impact of adding joint

(a) DPM

(b) FRCNN

(c) SDP

Figure 8. Impact of the sliding window on the MOTA score.

detections, which showed a clear improvement over stay-
ing in the traditional tracking-by-detection paradigm, even
with hand-crafted features. Finally, the experiments showed
that the proposed system outperforms state-of-the-art on the
challenging MOT17 benchmark.
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[15] R. Henschel, L. Leal-Taixé, B. Rosenhahn, and K. Schindler.
Tracking with multi-level features. arXiv preprint
arXiv:1607.07304, 2016.

[16] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang,
E. Levinkov, B. Andres, and B. Schiele. Arttrack: Articu-
lated multi-person tracking in the wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[17] U. Iqbal, A. Milan, and J. Gall. Posetrack: Joint multi-
person pose estimation and tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[18] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. Mo-
tion segmentation & multiple object tracking by correlation
co-clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2018.

[19] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple hypoth-
esis tracking revisited. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015.

[20] C. Kim, F. Li, and J. M. Rehg. Multi-object tracking with
neural gating using bilinear lstm. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2018.
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