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Abstract

Most modern approaches for multiple people track-
ing rely on human appearance to exploit similarity be-
tween person detections. In this work we propose an
alternative tracking method that does not depend on
visual appearance and is still capable to deal with very
dynamic motions and long-term occlusions. We make
this feasible by: (i) incorporating additional informa-
tion from body-worn inertial sensors, (ii) designing a
neural network to relate person detections to orienta-
tion measurements and (iii) formulating a graph label-
ing problem to obtain a tracking solution that is globally
consistent with the video and inertial recordings. We
evaluate our approach on several challenging tracking
sequences and achieve a very high IDF1 score of 91.2%.
We outperform appearance-based baselines in scenarios
where appearance is less informative and are on-par in
situations with discriminative people appearance.

1. Introduction

Multiple people tracking (MPT) in image sequences
has been an active field of research for decades. Sev-
eral applications exist where trajectories are required
for further analysis and interpretation. This could be
to understand social interactions of humans [48, 4, 5, 2],
support urban planning [6], secure areas against dan-
gerous behavior [15] or to provide an automatic analy-
sis of player’s performance in sports [1, 31].

Most state-of-the-art MPT approaches tackle this
problem in two steps: First, a person detector is ap-
plied to each frame of the image sequence. Then, an
optimization problem is formulated, which clusters all
detections such that ideally each cluster represents the
trajectory of a person and false detections remain un-
considered.

A crucial part of this strategy is to derive a measure
whether two detections belong to the same person or

Figure 1: Qualitative results obtained by fusing person
detections and local motion measurements of body-
worn IMUs. Instead of relying on person appear-
ance, the proposed approach enables accurate long-
term tracking by finding a globally optimal assignment
of detection boxes to IMU devices, such that resultant
trajectories in the video are consistent with the IMU
measurements.

not. Typically, this involves a motion model or person
appearance. A motion model attempts to assign like-
lihoods to observed person movements. This is very
generic and only depends on corner coordinates of de-
tection boxes. However, as soon as the motion becomes
more dynamic, simple motion models [28] are insuffi-
cient and tracking degrades. In particular, most mo-
tion models assume low and constant velocities, which
holds for pedestrians only within a short temporal win-
dow [40].

Another complementary strategy is to model rela-
tions between detections based on person appearance.
Here, CNN-based feature representations are used to
evaluate if two detections show the same person. Re-
cent works have shown very impressive tracking results



using this information exclusively [18, 40] or in combi-
nation with motion models [37, 41]. A major advantage
of utilizing appearance information over motion models
is that they allow to relate detections which are tem-
porally far apart. This facilitates to re-identify people
even after long-term occlusions or if they temporally
fall out of the camera view.

Despite the enormous progress with Neural
Network-based appearance features, it remains chal-
lenging to differentiate persons wearing similar or iden-
tical clothing. A prototypical example for such a sit-
uation is sport player tracking, where team members
wear almost identical dresses. Another challenge arises
if people change appearance throughout a sequence,
e.g. they put on a jacket or open an umbrella. Then
the assumption of appearance constancy is violated and
consequently tracking accuracy degrades.

In this work we propose an alternative tracking
method that does not rely on appearance features and
is still capable to deal with very dynamic motions and
heavy occlusions. We got inspired by other works in
the field of human motion capture [43, 42] and SLAM
[23]. In these fields vision has been combined with ad-
ditional sensor modalities provided from inertial mea-
surement units (IMUs). IMUs are small motion sensors
measuring local orientation and acceleration.

Incorporating additional sensory input for the task
of MPT creates a very different problem setup com-
pared to the aforementioned vision-only methods.
Hence, we will refer to this setting as Video Inertial
Multiple People Tracking (VIMPT).

In VIMPT we consider a monocular camera view
and a single IMU attached to each person to be tracked.
Conceptually, the idea is to incorporate local IMU mo-
tion measurements in order to disambiguate the assign-
ment of detections to person trajectories. Since IMUs
are body-worn, the corresponding motion measure-
ments are unique for each person. Similar to appear-
ance, this property facilitates to track and re-identify
persons even after long-term occlusions. Hence, such a
tracking approach is predestinated for scenarios where
it is possible to equip people with an IMU and appear-
ance is less informative or not available. The latter
could be the case if night-vision is used or for a sports
team during training. In summary: VIMPT allows
to track people and at the same time to recover their
identities in terms of the associated IMU devices.

Even though in VIMPT motion information is avail-
able through IMU measurements it still poses a very
challenging problem. From IMU data alone it is not
possible to generate stable 3D trajectories due to un-
known initial states and accumulating drift caused by
double integration of acceleration signals [22, 44]. If

this was possible, we could easily associate each de-
tection box to the closest IMU trajectory projected to
the image. Hence, instead of working on pre-computed
IMU trajectories, we have to associate 3D orientation
and acceleration measurements to 2D motion informa-
tion observed in the video. Relating 3D to 2D informa-
tion under perspective projection is a difficult task by
its own. In particular, this requires to relate IMU orien-
tations, which are elements of SO(3), to image data be-
ing a two-dimensional pixel array. Further, IMU mea-
surements often fit to several people at a time step and
the person wearing the IMU might be occluded or out
of the camera view.

In this work we propose a new method that can cope
with the aforementioned challenges. In particular, the
method enables long-term tracking of multiple people
without using person appearance, see Figure 1. We
make this feasible by

• integrating inertial measurements from body-worn
IMUs,

• designing a neural network to relate person detec-
tions to orientation measurements,

• finding a globally coherent assignment of IMU de-
vices to person detections, by integrating all avail-
able information in a single graph labeling formu-
lation.

In order to evaluate our proposed method, we
recorded a new dataset containing challenging soccer
sequences and a regular outdoor scene. We demon-
strate that our approach is capable to accurately track
and identify persons during fast and dynamic motions.
This even works reliably under heavy occlusions and if
they temporally leave the field of view.

To the best of our knowledge, we are the first who
achieve a fully automatic system that integrates IMUs
into a multi-people tracking framework in order to im-
prove the accuracy and to obtain automatic person as-
signments.

2. Related Work

Data Association. Most multiple people track-
ing works employ the tracking-by-detection paradigm
[18, 41, 19, 20, 10, 24, 37, 29, 12] that connects ei-
ther detections [18, 41, 29] or precomputed tracklets
[47, 10, 12] to form the trajectories. The problem of
creating trajectories is usually formulated as a graph
optimization problem. Several works apply network-
flow [28, 49], while more recently minimum cost multi-
cut [41, 24, 40] or graph labeling [18] formulations have
been proposed.



Association Weights. Crucial for graph-based
tracking approaches are the association weights be-
tween detections (or tracklets) that indicate how likely
they belong to the same person. Several works have
focused on obtaining these weights from motion mod-
els [28, 33, 47, 8, 46, 27]. Typically a linear constant
velocity model within short time windows is assumed
[28, 8]. However, the performance of these approaches
degrades if motions become more dynamic or people
get temporally occluded. Consequently, current state-
of-the-art tracking systems [26, 41, 40, 24, 37, 18, 25,
50, 11] rely on appearance models which are invariant
to these issues. They use sophisticated neural networks
to derive association weights from person appearance.
These association weights have improved to a level that
some works reformulate the tracking problem as a per-
son re-identification problem [11, 37].

Despite the impressive progress of current tracking
methods that build upon appearance models, common
to all these approaches is the assumption of constant
and discriminative appearance information. However,
these assumptions are violated if persons look identical
or change their appearance. Similarly, viewpoint and
lightning variations can change the perceived appear-
ance of a person.

An alternative solution is to integrate additional
modalities into the tracking method.

Vision and Inertial Sensors. Body-worn iner-
tial sensors provide motion information independent of
person visibility. However, it is not possible to recover
the 3D person trajectory from IMU information alone
[22, 44]. In contrast, video allows to extract positional
information, which is complementary to the IMU mo-
tion information.

Consequently, IMUs have been combined with visual
information in many application, e.g. the works [23, 16]
fuse video and inertial data to stabilize self localization
and mapping (SLAM). The same modalities have been
used to recover human poses in [43, 42].

There exist only very few works that incorporate
IMUs for people tracking in videos. The closest ref-
erence to our work is [21], which tackles single person
tracking. An IMU-equipped person has to be manually
localized in the first video frame. Then, IMU informa-
tion is used to recover the trajectory in situations where
the visual tracker fails. Instead, we propose a method
that automatically identifies and tracks multiple IMU-
equipped persons.

Other Sensor Modalities. While we are the first
that combine video information with inertial sensors
for the purpose of multiple people tracking, there exist
several works that incorporate other sensor modalities,
e.g. [9] provides a survey of tracking approaches us-
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Figure 2: Every tracklet represents a node in the graph.
Each node can be assigned to an IMU device (indi-
cated by color) and is linked to other nodes by short-
term edges (solid) and long-term edges (dashed). An
edge is activated if corresponding nodes share the same
color. The idea is that every graph color configuration
is associated to costs representing consistency of video
information and IMU data. The goal is to find the
assignment with minimal costs.

ing RGB-D cameras and [3] integrates wireless signals
emitted from cell phones.

3. Method

We follow the tracking-by-detection paradigm and
group detections to short tracklets in a first step.

Then the tracking task can be formulated to assign
IDs to tracklets, such that all tracklets with identical
IDs correspond to person trajectories in the video.

In the context of this work, we want solve the track-
ing task by incorporating motion information from
body-worn IMUs. Hence we formulate a graph labeling
problem to find an optimal assignment of IMU IDs to
tracklets, such that the resultant trajectories are visu-
ally smooth in the video and consistent with measured
IMU orientations and accelerations.

We integrate the IMU signals at different concep-
tual levels: For each potential detection to IMU as-
signment, we require that the person orientation as
seen by the camera is consistent with the corresponding
IMU orientation. Orientation consistency alone is very
ambiguous and hence we also enforce spatio-temporal
consistency if two detections are associated to the same
ID. Here, we exploit the complementary characteristics
of short-term detection box motion features and long-
term IMU acceleration features. Figure 2 illustrates
the graph and shows an exemplary labeling solution.
Note that using initial tracklets allows (i) to reduce the
problem size and (ii) to make the orientation regression
more robust to occasional cases where multiple people
appear within a detection box.

3.1. Model

In order to solve the tracking task, we create an
undirected weighted graph G = (V, E , C,L), where V



is the vertex set comprising all tracklets of the en-
tire sequence and E is the edge set containing all
edges that connect a pair of tracklets. Vertices and
edges may obtain a label l ∈ L, where the label set
L = {1, 2, 3, ..., P} contains an ID for all P persons
wearing an IMU.

We introduce the notion of an assignment hypothesis
H = (v, l), which associates a label l ∈ L to tracklet v ∈
V. Associated to each hypothesis are assignment costs
clv ∈ C and indicator variables xlv, which take value
1 if H is selected, and 0 otherwise. Additionally, for
pairs of hypotheses sharing the same label and whose
vertices are connected by an edge e ∈ E we consider
compatibility costs cle ∈ C modeling the likelihood that
two tracklets belong to the same person.

The tracking task is then to select hypotheses for
the entire sequence that minimize the total costs. This
can be casted into a binary optimization problem:

arg min
x∈F∩{0,1}|V|P

∑
l∈{1,··· ,P}

(∑
v∈V

clvx
l
v +

∑
e∈E

cle
∏
v∈e

xlv

)
,

(1)
where the feasibility set F is subject to

∀v ∈ V :

P∑
l=1

xlv ≤ 1, (2)

∀t, ∀l ∈ {1, . . . , P} :
∑
v∈Vt

xlv ≤ 1. (3)

The subset Vt ⊂ V comprises all tracklets v that con-
tain a detection in frame t. Eq. (2) ensures that each
tracklet v is assigned to at most one label and Eq. (3)
guarantees that a label is not assigned to more than
one tracklet at a time.

Next, we describe the unary and pairwise potentials
in detail. Specifically, we introduce consistency fea-
tures which are later mapped to costs clv and cle.

3.2. Unary Features

In order to provide a measure for the likelihood of an
assignment hypothesis H = (v, l), we estimate the per-
son orientation in each detection box of tracklet v and
compare those orientations to the temporally aligned
orientation measurements of IMU l.

We define the person orientation n ∈ R2 as the nor-
mal vector of the torsos coronal plane projected to the
ground plane as illustrated in Figure 3a. We use the
projected normal as this comprises less degrees of free-
dom and people usually move in a rather upright pose.

Hence, given the image data Id of detection d we seek
to estimate the heading n̂d of the person. However, the
observed heading in Id depends on the person position
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Figure 3: (a) We define person orientation in terms of
the normal vector of the torso’s coronal plane (black
arrow) projected to the ground plane (blue arrow). (b)
Even though global orientation (blue arrows) is con-
stant at depicted positions, the perceived orientation
as seen from the camera varies.
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Figure 4: The Visual Heading Network predicts the
heading n̂d of a person using the image data Id of de-
tection d. Based on the box position pd, the network
performs a perspective correction (PC) in the last layer.

in the image, see Figure 3b. To see this, consider a
person walking on a straight line parallel to the image
plane of a non-moving camera. In a global context
this person has a constant orientation. However, due
to perspective effects the perceived orientation of that
person with respect to the view point of the camera is
different at every point in the image. We compensate
for this by considering a correction angle derived from
the detection box within the image. Let αd be the
angle between the vector defined by the camera center
and box position pd, and the depth-axis of the camera.
In order to compensate the perspective influence, we
rotate the perceived orientation by −αd and obtain the
prediction n̂d, cmp. Figure 3b.

In order to obtain the person heading from image
data we employ a Neural Net to learn the mapping
Id 7→ n̂d. More specifically, we extend VGG16[38] pre-
trained on ImageNet[13] to regress the heading, which
also incorporates the aforementioned perspective cor-
rection (PC) in the last layer. We refer to this network
as the Visual Heading Network (VHN) in the following.
A graphical illustration showing the network architec-
ture is depicted in Figure 4.

In the VIMPT setting, IMUs are consistently placed



at the back of each person such that the local sensor
z-axis corresponds to the normal vector of the torsos
coronal plane. Hence, we get the measured torso ori-
entation vector nl,t of IMU l at time t according to

nl,t = Π(Rl,tz), (4)

where z = [ 0 0 1 ]T is the local z-axis vector, Rl,t ∈
SO(3) is the measured IMU orientation mapping the
local sensor coordinate frame to the global coordinate
frame and Π projects the normal vector to the ground
plane.

Finally, we define the unary orientation feature rep-
resenting the likelihood of hypothesis H as

fori(H) =
1

Nd

∑
d∈v

Φ(n̂d,nl,td), (5)

where Φ denotes the cosine similarity, Nd corresponds
to the number of detections of tracklet v and td repre-
sents the time stamp of a detection d.

3.3. Pairwise Features

We define pairwise features which represent the com-
patibility of two hypotheses H = (v, l) and H′ = (v′, l).
Two hypotheses are said to be compatible, if the assign-
ment of a joint label l to v and v′ is reasonable with
respect to spatio-temporal aspects.

Box Features. Within a short temporal window a
person cannot move arbitrarily fast. Hence, the track-
lets of a compatible hypothesis pair should be spatially
close and corresponding detection boxes should be sim-
ilar in size. Accordingly, we employ well-established
spatio-temporal features, which allow the tracker to be
independent of appearance information. We derive cor-
responding features in the following.

For each detection box d we get a rough 3D position
estimate pd ∈ R3 by projecting the detection box foot
point to the 3D ground plane of the scene. Hence, for
detections d of v and d′ of v′ let v3D(d, d′) denote the
velocity in 3D from d to d′. Let N(v, v′) be the set
of all pairs of detections between H and H′ considered
for the feature. We define the mean velocity feature
between H and H′ as

fvel(H,H′) =
1

|N(v, v′)|
∑

(d,d′)∈N(v,v′)

||v3D(d, d′)||2.

(6)
Additionally, we compare the detection box heights

of both hypotheses. Let hd denote the height of detec-
tion box d in pixels. We define a compatibility measure
∆h(d, d′) based on the heights of detections d and d′

according to

∆h(d, d′) = ∇t(d, d
′)
|hd − hd′ |

min{hd, hd′}
, (7)

where the factor in front of the fraction compensates
for the temporal distance between d and d′:

∇t(d, d
′) =

1

log(2 + |td − td′ |)
. (8)

Finally, we define a box height feature as

fheight(H,H′) =
1

|N(v, v′)|
∑

(d,d′)∈N(v,v′)

∆h(d, d′). (9)

Both, fvel and fheight are meaningful within short tem-
poral windows. However, in this work we focus on se-
quences where people get occluded or fall out of the
camera view quiet often and for longer time periods.
Hence, in the following we utilize acceleration measure-
ments to link hypotheses which cover larger temporal
horizons.

Acceleration Feature. Ideally, the position pt1 ∈
R3 at time t1 of an IMU can be recovered by double
integration of the corresponding acceleration signal a
according to

pt1 = pt0 + vt0(t1 − t0) +

∫ t1

t0

∫ u

t0

a(s)ds du, (10)

where t0, pt0 and vt0 denote initial time, initial posi-
tion and initial velocity, respectively. Please note that
a in this case represents the gravity-free acceleration in
global coordinates.

Let pt0 be the 3D position of detection d and pt1

the 3D position of d′. After double integration of the
acceleration signal, we can solve Eq. (10) for the initial
velocity, which we denote vIMU(d, d′). Concurrently we
can approximate a persons velocity vd at initial time t0
in terms of finite differences of neighboring detections
of d. Hence, for a compatible hypotheses pair H and
H′ the velocity differences

∆v(d, d′) = ||vIMU(d, d′)− vd||2 (11)

should be small for all possible detection pairs d ∈ v
and d′ ∈ v′. We define the acceleration feature as the
set of all such differences according to

facc(H,H′) = {∆v(d, d′) | (d, d′) ∈ N(v, v′)} . (12)

3.4. Optimization

The graph labeling problem defined in (1) is a binary
quadratic program. We reformulate this program as an
equivalent binary linear program (BLP) by introducing
slack variables: Each product of variables xlvx

l
v′ is re-

placed by a new binary variable zlv,v′ and the following
constraints are added:

(i) zlv,v′ ≤ xlv, xlv′ , (ii) zlv,v′ ≥ xlv + xlv′ − 1. (13)

A similar reformulation is proposed in [45]. The re-
sulting problem can then be solved to optimality using
BLP solvers like gurobi [17].



4. Evaluation

We evaluate our tracking approach on a new dataset,
which is introduced in Section 4.1. The dataset con-
tains challenging sequences captured with a calibrated
camera and body-worn IMUs. In Section 4.2 we pro-
vide technical details of our tracking approach and as-
sess its performance in Section 4.3. We evaluate track-
ing accuracy with respect to several relevant tracking
and re-identification metrics and examine the influence
of IMU features. In order to demonstrate the advan-
tages of incorporating IMU data, we also compare to
vision-based state-of-the-art baselines.

4.1. VIMPT Dataset

Current benchmarks for MPT do not contain IMU
data. Hence, in order to evaluate our approach we
recorded a new dataset denoted VIMPT dataset.

Sequences. The dataset comprises 7 challenging
soccer and outdoor recordings. In total, it contains
nearly 6500 frames captured with a static camera and
8 IMU-equipped actors in varying clothing styles. Dur-
ing soccer recordings, two four-person teams in team
dresses (see Figure 5(a)) played soccer in a competi-
tive manner. Consequently, these recordings contain a
lot of motion, abrupt changes in direction and occlu-
sions, see Figure 5(b)-(c). Hence, tracking challenges
arise from non-linear motion and ambiguous appear-
ance information. Furthermore, the soccer sequences
were captured from two different viewpoints and differ
in recorded game situations.

In addition to the soccer recordings, the VIMPT
dataset contains an outdoor sequence recorded at a
pedestrian crosswalk in a public park. Actors walk
around in natural apparel and meet regularly for
short conversations, see Figure 5(d). This sequence
serves as a reference to standard benchmarks such as
MOT16[32], since it is comparable in terms of motions
and scenery. Throughout all sequences, actors regu-
larly left the field of view and got heavily occluded by
other actors.

Camera setup. For all sequences a calibrated cam-
era has been mounted to a tripod at a height of ap-
proximately 1.8m. Video was captured in landscape at
30Hz and the camera extrinsics were calibrated to a
fixed reference point in the scene.

Detections. We used the person detector Faster
R-CNN[35] trained on COCO[30] to generate person
detections within all frames of the dataset. For all de-
tections, we compute the corresponding 3D position us-
ing the homography between ground and image plane.
In addition, we manually created ground-truth detec-
tion boxes and labeled them with the corresponding

person IDs. Similar to MOT16[32], we interpolated
ground-truth detections for occluded persons.

IMU setup. Throughout all sequences, eight per-
sons were equipped with an IMU. Each sensor was at-
tached at the person’s back at hip height. IMU ori-
entation and acceleration are captured at a framerate
of 60Hz and we calibrated the inertial reference coor-
dinate frame to the same reference point as for the
camera extrinsics.

Training, validation and test split. We split
the VIMPT dataset into three disjoint subsets. The
longest soccer sequence is splitted into training and
validation parts, while the residual six sequences are
used for testing and evaluation.

4.2. Tracker Parameters

The following parameters were empirically chosen,
using the training data.

Tracklet generation. We generate reliable track-
lets by grouping detections using the method of [34].
In order to avoid error propagation, temporally subse-
quent detections can only be connected if their intersec-
tion over union is above 0.7 and the maximal tracklet
length is set to 0.5 seconds.

Visual Heading Network. The overall network
architecture is depicted in Figure 4. It contains the
VGG16 architecture, which is truncated after its last
pooling layer. The layers FC1, FC2 and FC3 are fully
connected layers with 16, 16, and 2 neurons, respec-
tively. To output an orientation vector n that is within
the unit sphere S1 we use hyperbolic tangent activation
functions. Note that VGG16 has been trained on Im-
ageNet with an invariance for horizontal flipping [38].
To undo this, we train the layers FC1, FC2 and FC3
together with the last convolutional layer of VGG16,
while keeping the weights of all other layers fixed. Dur-
ing training, we add dropout layers [39] with p = 0.3
between the fully connected layers to avoid overfitting.
Finally, the network parameters are learned by min-
imizing the cost function (5), for given ground-truth
detections and corresponding IMU heading vectors of
the VIMPT training sequence.

Graph edge settings. In the graph G, weighted
edges e ∈ E are created between two nodes v and v′

in the following cases. If the shortest temporal dis-
tance between all detections of v and v′ is at most 0.4
seconds, we establish a short-term edge associated to
costs derived from box features. Similarly, we estab-
lish long-term edges associated to costs derived from
acceleration features between all detections of v and v′

if the temporal distance is between 0.4 and 5 seconds.

Feature to cost mapping. In order to transform
unary and pairwise features to costs, we use different
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Figure 5: Challenges in the VIMPT dataset. (a) Very similar person appearances. (b) Rapid motions and motion
blur. (c) Heavy occlusions. (d) Outdoor scene with frequent occlusions.

strategies. For orientation and box features we learn a
logistic regression model[14] that predicts optimal costs
based on ground-truth trajectories in the training se-
quence of the VIMPT dataset. This did not work satis-
factory for the acceleration feature. We observed that
noise in 3D position estimates destroys much of the ex-
pressiveness of this feature. Instead, we use a threshold
δ to indicate if two hypotheses are highly incompati-
ble. Hence, we assign a high constant cost to an edge
if min facc(H,H′) > δ.

4.3. Evaluation

The goal of this work is to accurately track IMU-
equipped persons in a video. Hence a perfect tracking
result is achieved if the assignment of person specific
IDs to corresponding tracklets is coherent throughout
the whole tracking sequence.

Error metrics. We evaluate tracking perfor-
mance by assessing assignment coherency in terms of
ID metrics. According to [36] we compute IDP, IDR
and IDF1. IDP is the ID precision measuring the frac-
tion of ground-truth person detections, that are cor-
rectly assigned to a unique person ID. Similarly, IDR
is the recall rate of respective ground-truth detections.
The metric IDF1 is the ratio of correctly identified de-
tections over the average number of ground-truth and
computed detections. The basic idea of IDF1 is to com-
bine IDP and IDR to a single number.

In addition to the aforementioned ID metrics, we re-
port the CLEAR-MOT metric MOTA[7]. MOTA com-
prises three different error metrics, namely number of
ID switches, false positives and false negatives. Note
that MOTA is calculated based on detection existence
only. Instead, IDF1 evaluates false positives (nega-
tives) and also verifies that the person ID is correct.
Thus we consider IDF1 as the more meaningful metric
for the VIMPT task. However, MOTA is a well-known
metric for MPT and it enables to put the tracking re-
sults into context of other works.

Tracking accuracy. We report tracking accu-
racy of our approach, denoted as Video Inertial Tracker

Tracker IDF1 ↑ IDP ↑ IDR ↑ IDs ↓ MOTA ↑
DeepCC[37] 39.4 40.8 38.2 243 28.7
DeepSORT[46] 45.8 49.6 42.4 193 77.1
FWT[18] 28.1 29.7 26.7 489 71.6
VIT 91.8 93.6 90.1 44 86.1

Table 1: Tracking accuracy soccer sequences.

Tracker IDF1 ↑ IDP ↑ IDR ↑ IDs ↓ MOTA ↑
DeepCC[37] 64.6 64.5 64.7 18 78.2
DeepSORT[46] 50.5 53.4 48.0 28 83.5
FWT[18] 37.6 39.1 36.3 66 82.4
VIT 88.5 89.5 78.5 22 81.8

Table 2: Tracking accuracy outdoor recording.

(VIT), on the VIMPT dataset in the bottom rows of
Table 1 and Table 2. For the challenging soccer se-
quences VIT achieves a very high IDF1 score of 91.8%.
Hence, for all IMU-equipped persons we find and cor-
rectly assign almost all corresponding tracklets in the
video. This works even though the motions are very
dynamic and people get occluded or temporarily leave
the field of view. The overall good tracking perfor-
mance is also supported by the other metrics. Addi-
tionally, we obtain almost identical scores for the park
sequence, which contains less dynamic motions but is
comparable in terms of people visibility. This proves,
that our approach is not limited to sport tracking but
generalizes to other scenarios too.

Comparison to vision-based methods. We
apply three different state-of-the-art vision-based
trackers to the VIMPT dataset, namely FWT[18],
DeepSORT[46] and DeepCC[37]. FWT is the current
leader of the MOT17[32] benchmark, DeepSORT is an
online tracker using a sophisticated motion model and
DeepCC focuses on re-identifying persons across differ-
ent cameras. These approaches have in common that
they rely on person appearance to establish affinities
between detection boxes. In order to better analyze the
impact of IMUs, and to be independent of appearance



ambiguities, VIT uses simple spatio-temporal features.

During soccer sequences all players of a team wear
identical dresses and hence appearance information is
very ambiguous. The tracking results shown in Ta-
ble 1 validate that this is very challenging for all consid-
ered state-of-the-art trackers. Respective IDF1 scores
vary between 28.1% and 45.8%. In contrast, by using
IMU information VIT can double the IDF1 score to
91.8%. The other metrics show the same trend and
also the MOTA score of VIT is approximately 9 per-
centage points higher compared to appearance-based
approaches.

Interestingly, for the park sequence our proposed
tracker is on par with the other trackers when MOTA is
considered. However, the IDF1 score is still higher in-
dicating that people specific trajectories are recovered
more accurately by VIT.

However, the comparison of VIT to vision-based
trackers is not completely fair. The number of tracked
people for these approaches is not fixed, which is the
case for VIT. Consequently, the presented evaluation
is more of a qualitative nature and this should be kept
in mind when judging absolute numbers.

Influence of IMU features. In order to in-
vestigate the influence of orientation and acceleration
measurements on the tracking result we report track-
ing accuracy of three tracker variants: VT, VT+Acc
and VT+Ori. We evaluate all trackers on the full
VIMPT dataset and show the results in Table 3. VT
uses only box features with all costs related to IMU
data set to zero. It obtains an IDF1 score of 44.9%,
which is approximately 50% worse compared to VIT.
VT+Acc extends VT by taking the acceleration feature
into account. Tracking accuracy remains almost iden-
tical to VT, indicating that simple rejection of very
implausible hypothesis pairs is not sufficient in this
case. In contrast, incorporating orientation informa-
tion to VT, denoted as VT+Ori, leads to a significant
increase in tracking accuracy yielding an IDF1 score of
88.9%. Hence, orientation consistency in combination
with the simple motion model are key to disambiguate
tracklet assignments and help to correctly reject most
of implausible hypotheses. By considering all features,
which corresponds to our proposed VIT approach, we
obtain the highest IDF1 score of 91.2%. In this case,
the rejection of implausible hypotheses pairs based on
acceleration is more meaningful.

Visual Heading Network accuracy. We evalu-
ate the Visual Heading Network accuracy by comput-
ing the relative number of predicted heading vectors
n̂d that deviate not more than ε degrees from ground-
truth. The network is trained on the VIMPT train-
ing sequence and tested on all other sequences of the

Tracker IDF1 ↑ IDP ↑ IDR ↑ IDs ↓ MOTA ↑
VT 44.9 44.9 44.9 266 65.2
VT+Acc 45.0 44.9 45.1 256 65.0
VT+Ori 88.9 89.9 87.9 79 82.9
VIT 91.2 92.9 89.6 66 85.3

Table 3: Tracking accuracy of three tracker variants
and our proposed tracker (VIT), evaluated on all se-
quences.

dataset. According to Table 4 the network predicts
orientation with high accuracy and is able to general-
ize to unseen images. Since the orientation feature has
shown to be very discriminative, the VHN is key to our
proposed tracking approach.

≤ 45◦ ≤ 30◦

Train 97.2% 88.8%
Test 96.2% 88.1%

Table 4: Training and test accuracy of the Visual Head-
ing Network. We provide the relative number of head-
ing errors within a threshold of ε ∈ {30◦, 45◦}.

Identification accuracy. According to [36] the
ID precision metric (IDP) evaluates if all tracklets of
a person are correctly assigned to a unique ID i ∈ N.
However, this does not necessarily mean that a persons
trajectory is assigned to the person label j ∈ L defined
by the corresponding IMU device. Hence, we manually
investigated if each ID i actually corresponds to the
associated IMU ID j. This is the case for all persons
and sequences in the VIMPT dataset.

Within the VIMPT setting, our method is thus able
to simultaneously track and identify IMU equipped
people from a video.

5. Conclusions

Combining video and IMU measurements to obtain
accurate long-term trajectories is a challenging task. In
this work we propose a graph labeling formulation to
assign tracklets in the video to corresponding IMU de-
vices. In our experiments, we show that the proposed
tracker accurately tracks multiple people even under
dynamic motions and heavy occlusions. This demon-
strates the potential of the VIMPT setting. As a by-
product, we obtain the assignment of each trajectory
to the corresponding identity for free. Hence, if a sit-
uation at hand allows to equip people with IMUs, our
approach represents a useful alternative to appearance-
based trackers.



References

[1] A. Alahi, Y. Boursier, L. Jacques, and P. Van-
dergheynst. Sport players detection and tracking with
a mixed network of planar and omnidirectional cam-
eras. In ACM/IEEE International Conference on Dis-
tributed Smart Cameras (ICDSC), 2009.

[2] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet,
L. Fei-Fei, and S. Savarese. Social lstm: Human tra-
jectory prediction in crowded spaces. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[3] A. Alahi, A. Haque, and L. Fei-Fei. Rgb-w: When vi-
sion meets wireless. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[4] A. Alahi, V. Ramanathan, and L. Fei-Fei. Socially-
aware large-scale crowd forecasting. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[5] A. Alahi, V. Ramanathan, K. Goel, A. Robicquet,
A. A. Sadeghian, L. Fei-Fei, and S. Savarese. Learning
to predict human behavior in crowded scenes. In Group
and Crowd Behavior for Computer Vision. 2017.

[6] A. Alahi, J. Wilson, L. Fei-Fei, and S. Savarese. Un-
supervised camera localization in crowded spaces. In
Proceedings of the IEEE Conference on Robotics and
Automation (ICRA), 2017.

[7] K. Bernardin and R. Stiefelhagen. Evaluating multiple
object tracking performance: the clear mot metrics.
Image and Video Processing, 2008.

[8] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft.
Simple online and realtime tracking. In Proceedings
of the IEEE Conference on Image Processing (ICIP),
2016.

[9] M. Camplani, A. Paiement, M. Mirmehdi, D. Damen,
S. Hannuna, T. Burghardt, and L. Tao. Multiple hu-
man tracking in rgb-depth data: a survey. IET com-
puter vision, 11(4):265–285, 2016.

[10] W. Choi. Near-online multi-target tracking with ag-
gregated local flow descriptor. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV), 2015.

[11] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and
N. Yu. Online multi-object tracking using cnn-based
single object tracker with spatial-temporal attention
mechanism. In Proceedings of the IEEE Conference
on Computer Vision (ICCV), 2017.

[12] A. Dehghan, S. Modiri Assari, and M. Shah. Gmmcp
tracker: Globally optimal generalized maximum multi
clique problem for multiple object tracking. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[15] M. Fenzi, J. Ostermann, N. Mentzer, G. Payá-Vayá,
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hahn. Fusion of head and full-body detectors for multi-
object tracking. In CVPR Workshop on Joint Detec-
tion, Tracking, and Prediction in the Wild (CVPRW),
2018.

[19] R. Henschel, L. Leal-Taixé, and B. Rosenhahn. Effi-
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