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Abstract—Roads constitute a major part of the lives of every-
body. Heavy use, for instance by cars and especially trucks, and
even soil movement lead to visible damages. While major roads
are regularly inspected, smaller roads often lack attention. It is
therefore of great interest to have camera-based systems which
can automatically detect and even classify damages.

This report presents a system developed by the authors as
part of the Road Damage Detection and Classification Chal-
lenge at the 2018 IEEE Big Data Cup [1]. Further contributions
made here are techniques to augment the small set of training
data. As a major contribution we also propose refinements to
the dataset and evaluation metric to improve the challenge.

1. Introduction

Detecting damages on road surfaces is a useful applica-
tion for road users and administrators alike. Less important
roads are less frequently inspected, thus damages can escape
attention. Since manual inspection by experts is expensive,
it is of great interest to have an automatic system available
which does not require sophisticated and expensive capture
devices. This report presents a system to detect damages on
road surfaces. It uses image data captured by cameras of
mobile phones.

In addition to presenting results of the Road Damage
Detection and Classification Challenge at the 2018 IEEE
Big Data Cup [1], we will propose two improvements to
the data. The first aims at increasing the limited amount
of training data. We will explain how more data can be
augmented by modern machine learning techniques using
only the provided data. Furthermore, we argue that several
of the ground truth labels are inherently ambiguous. For
instance, classes whose definitions are based on particular
orientations of cracks w.r.t. the camera cannot be easily
discriminated even by a human expert. Here, the difference
between two classes rests upon a rotation by 90◦. However,
cracks in roads are often not only vertically or horizontally
oriented but in-between. Please notice that this definition
even depends on the orientation of the camera which takes
the images. Moreover, there are several annotated damages
that cannot be exactly determined to belong to exactly one
class.

Starting from our experimental results, where two of the
proposed methods achieve a Top-10 score in the challenge,

we present an analysis of the results which leads to a pro-
posal of several improvements of the dataset as well as the
evaluation criteria. We present a simple yet effective guided
labeling approach based on our inferred bounding boxes that
significantly reduces labeling time and cost. Additionally,
we propose to use a modified evaluation metric which does
not penalize ambiguous annotation possibilities too heavily.
Fig. 12 shows an example where both instances of the
bounding box are reasonable but have a very low IoU. By
setting a soft threshold these get a higher similarity score.

Summarizing, our contributions are:

• Provably competitive performance in the Road Dam-
age Detection and Classification Challenge at the
2018 IEEE Big Data Cup.

• A data augmentation method using only the provided
dataset.

• A guided labeling approach for quick annotation of
incompletely labeled data.

• An evaluation metric that tackles the problem of
ambiguous bounding boxes.

2. Dataset

For the Road Damage Detection and Classification
Challenge within the 2018 IEEE Big Data Cup a dataset
consisting of around 9,053 images has been provided [1].
The images were recorded with a mobile phone which was
attached to the dashboard of a car. The dataset consists of
80% training data and 20% test data. For each image of the
dataset the position and type of road damages are annotated
as rectangular bounding boxes. Overall nine different classes
of road damages are annotated (D00, D01, D10, D11, D20,
D30, D40). Because class D30 has only a few labels, it is
ignored according to the challenge organizers.

3. Detection Methods

In this section we present different methods for object
detection to tackle the problem of detecting and classifying
road damages. We start by applying state-of-the-art objec-
tion detection methods, namely Faster R-CNN [2], Reti-
naNet [3] and a combination of random forests with neural
networks [4]. We briefly describe the most important parts



of these approaches in the following sections. For detailed
explanations we would like to refer to the respective papers.
To combine the advantages of the different approaches we
present an ensemble learning method in the last section. The
evaluation on the test set of the Road Damage Detection and
Classification Challenge is shown in Table 1.

3.1. Faster R-CNN

Faster R-CNN [2] is an object detection framework
composed of two stages: a region proposal network (RPN)
followed by an object classifier. In the first stage, a fully con-
volutional network (FCN) – based on e.g. a VGG network
[5] or ResNet [6] – generates a feature map for the complete
image. Operating on this feature map, a second network
then predicts for each location in the image whether one
of k different predefined anchor bounding boxes contains
an object at said location, and computes refined bounding
box coordinates. The second stage applies non-maximum
suppression to the detected bounding boxes and feeds their
corresponding features from the FCN feature map into a
classification network, which predicts the classes of the
detected objects.

For our experiments we use a ResNet-101 as a base for
the RPN and employ nine different anchors with sizes of
1282, 2562 and 5122 pixels, and aspect ratios of 2 : 1, 1 : 1,
and 1 : 2.

3.2. RetinaNet

RetinaNet [3] is a state-of-the-art one-stage object de-
tector with similar performance as two-stage detectors, for
instance Faster R-CNN. It is composed of a feature pyramid
network (FPN) on top of a feedforward ResNet architecture
which computes a convolutional feature map over the en-
tire input image, and two task-specific subnetworks. One
subnetwork performs object classification on the output of
the FPN, while the other performs bounding box regression.
The FPN efficiently constructs a multi-scale feature pyramid
of which each layer can be used for detecting objects of
different scale. For each scale anchor boxes are generated
which are then fed to the classification and regression sub-
nets. The classification subnet predicts the potential class of
an anchor and the regression subnet modifies the size of the
original anchor to fit potential objects better. To counteract
the imbalance between foreground and background classes
that one-stage object detectors encounter during training, the
RetinaNet replaces the standard cross entropy loss with the
so called focal loss that down-weights the loss assigned to
well-classified examples, thus focusing on harder examples.
For our experiments we use a ResNet-50 as base network
and anchor ratios of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and
2.

3.3. Random Forest

End-to-end learning for object detection with convolu-
tional neural networks is very successful and provides good
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Figure 1: Based on a trained Faster R-CNN, we generate
regional proposals. For better visualization only 30 region
proposals per class are shown.

results, as demonstrated by [2], [3]. Furthermore, convolu-
tional layers in convolutional neural networks have shown to
learn good feature representations which can be combined
with other methods such as random forests [4]. Random
forests are able to learn with small amounts of data and are
very robust to overfitting.

Based on the trained Faster R-CNN presented in Section
3.1 we use the region proposal network which is part of the
object detection network to generate regional proposals. An
example is shown in Fig. 1. For each image 300 region
proposals are generated per class. In the next step, image
features are generated by passing an image through the
network and extracting features from the last convolutional
layer before the object detection specific layers. The re-
sulting image features in our network have a dimension of
38×38×1024 consisting of 1024 filter outputs with a width
and height of 38. To generate a feature representation for
each region proposal we extract a patch of the image features
depending on the position of the bounding box. Finally, we
match each region proposal with the ground truth data and
assign a label if the intersection over union (IoU) of a ground
truth bounding box is greater than or equal to 0.5. Otherwise
the region proposal gets the label background.

Our generated dataset has over 14 million training region
proposals. By extracting the features and determining the
labels, we transferred the problem to a classification task.
Thus, we can train a random forest on the dataset. The
dataset, however, is very large and does not fit into the
memory. Therefore, standard methods cannot be applied. To
circumvent that we learn each tree individually by selecting
a random subset of region proposals, loading the features
as well as the corresponding labels and train the tree on the
subset of the data. In our application, we train a random
forest with 100 individual trees and repeat the process for
each tree.

During inference, the region proposals are extracted in
the same way. Each region proposal is then classified using
the trained random forest. Afterwards all region proposals
with a probability higher than 0.1 are selected. Finally, we
apply non-maximum suppression by iteratively selecting the
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Figure 2: Example for classifying region proposals with
random forests. In (a) all region proposals with a probability
higher than a threshold are shown and in (b) all filtered
region proposals. The ground truth bounding boxes are
shown in green.

Method F1

Faster R-CNN (Section 3.1) 0.610
RetinaNet (Section 3.2) 0.456
Random Forest (Section 3.3) 0.540
Ensemble Learning (Section 3.4) 0.602

TABLE 1: Evaluation on test set of the road damage detec-
tion benchmark. For each method the F1 score is calculated.

bounding box with the maximum score and removing all
other bounding boxes which overlap with an IoU greater or
equal than 0.5. An example for classifying region proposals
with random forests is shown in Fig. 2.

Overall, random forests combined with convolutional
neural networks for feature generation achieve good results.
In comparison to standard architectures based on convolu-
tional neural networks, random forests are able to learn with
very few training data.

3.4. Ensemble Learning

Looking at the results of our different detection meth-
ods we noticed that some methods outperform others on
different target classes. Therefore, we aggregated the results
of each detector for each image and sorted them by the
confidence score of each network. Comparing all possible
combinations the ensemble of the Faster R-CNN and the
RetinaNet performs better than RetinaNet alone, but slightly
worse than Faster R-CNN. Additionally, we filtered out
predictions that had more than a 0.5, 0.6, 0.7, 0.8 or 0.9 IoU
with a more confident prediction, but observed a decrease
in overall detection score using this approach.

4. Findings

All state-of-the-art region detection approaches – even
as an ensemble – created unsatisfactory results with a
maximum F1 score of 0.61. However, comparing to other
submissions on the leaderboard we still are in the Top-10.
In fact, the best 10 submissions only differ by an F1 score

Figure 3: Confusion matrix for all damage classes. Every
row corresponds to a detected class and every column
contains the ground truth label. bg is the background class,
i.e. an undamaged road or other objects.

(a) (b)

Figure 4: (a) Some damages are difficult to annotate, e.g.
when different classes overlap. (b) Rectangular bounding
boxes may be a suboptimal choice for some classes, as small
ambiguities lead to large variances in IoU.

of approximately 0.1. This gave rise to the idea that there
are some inherent flaws in the dataset itself. Taking an in-
depth look at the outputs of our methods reveals three main
factors for these low scores.

1) Due to overlapping classes of damages that are hard
to detect (even by a human) the problem is indeed
very challenging.

2) Rectangular bounding boxes are not optimal for
long diagonal cracks.

3) Many clearly identifiable damages are not labeled
in the ground truth data of the test set.

Figs. 4-5 show some examples for points 1) – 3). Since
it is not possible for us to manually label all images by
ourselves we calculated a lower bound for our method.
We selected a random subset of 1,446 images from the
training set and used it for validation purposes. Evaluating
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Figure 5: Examples of detections wrongly counted as false positives due to incomplete ground truth labels.

bg d00 d01 d10 d11 d20 d40 d43 d44
bg 0 35 29 15 5 46 15 3 51

TABLE 2: First column of the confusion matrix after re-
labeling. There is a significant difference compared to the
original confusion matrix in Fig. 3

our detection algorithm on this validation set, we get the
confusion matrix in Fig. 3. Every row corresponds to a
detected class and every column contains the ground truth
label. bg is the background class, i.e. an undamaged road or
other objects. To define the lower bound we relabeled the
images of the first column. These images contain damages
detected by our network but marked as undamaged road.
Every damage that is correctly detected in type and size is
deleted from the confusion matrix. This gives a first column
as in Table 2. These numbers are significantly lower than the
original. If we ignore the class label and evaluate only for
the presence of a damage in the image we have an average
over all our labeling experts of 96.6% mislabeled images
in the validation set. In total numbers it means that only
20 images from the first column of Fig. 3 are misdetections
of our network. According to this findings we propose in
the following several methods and new evaluation criteria
to further improve the dataset.

5. Proposals

Our evaluation in Sec. 4 revealed some major flaws in
the dataset. In the following we propose several approaches
to improve the dataset, augment images of damaged roads
for more synthetic training data, and more meaningful eval-
uation criteria. These proposals will significantly enhance
the dataset as well as improve the challenge.

5.1. Generating new labeled data

Convolutional neural networks and other machine learn-
ing approaches achieve very good results in a wide range of
applications. Such supervised learning methods however re-
quire labeled data. Especially convolutional neural networks
are trained with huge amount of data. Generating labeled
data is time consuming and very expensive.

Figure 6: Schematic structure of a CycleGAN. Generator A
gets an image from domain A as input and generates a fake
image in domain B. Generator B does the same the other
way around. The discriminators detect whether an image is
real or fake in the respective domain.

Thus, we propose a pipeline for generating new road
damages to increase the size and variety of the dataset based
on Generative Adversarial Networks and Cycle-Consistent
Generative Adversarial Networks, respectively. Generative
Adversarial Networks (GAN) have been introduced by
Goodfellow et al. [7] in 2014. Generative Adversarial Net-
works are based on a game-theoretic approach and consist
of two networks - a generator and a discriminator - which
compete against each other. The generator has the goal to
generate real-looking images. The discriminator on the other
hand should detect whether an image is real or fake. During
the training, the two networks are in conflict with each other.

Cycle-Consistent Adversarial Networks (CycleGAN) are
an extension of Generative Adversarial Networks developed
by Zhu et al. [8] in 2017. The goal is to transform images
from domain A to domain B without having paired images
from domain A and B. In a CycleGAN two GANs are
combined together where the input of the second network
receives the output of the first network. In Fig. 6 a schematic
structure of a CycleGAN is shown. Distriminator A de-
cides whether an image from domain A is real or fake.
Discriminator B does the same for domain B. Generator A
gets images from domain A as input and generates images
in domain B. Generator B does the same vice versa. The
resulting cycle enable to transform images from domain
A to domain B and back into the original domain A. The
generated image should be equal to the original input image.
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Figure 7: The images are analyzed using a semantic seg-
mentation (a) to detect the road (b) where potentially new
damages can be generated.

CycleGANs work in both directions which means that the
starting point can be domain A but also domain B.

5.1.1. Unpaired CycleGAN Dataset. To generate road
damages, we define domain A as images without road
damages and domain B as images with road damages. As de-
scribed previously in Section 2 multiple classes are defined
so that domain B is further divided into multiple subdomains
based on the class of the road damages. For each subdomain
in domain B an individual CycleGAN is trained. The images
for domain B (images with road damages) are given by the
annotations in the dataset.

Collecting images for domain A is more difficult because
regions of the road without damages have to be found. To
achieve this, we perform a semantic segmentation which
classifies an image pixel-wise. We train a Pyramid Scene
Parsing Network (PSPNet) [9] on the Cityscapes dataset
[10] which has multiple classes including a road class.
Afterwards we analyze each image from the road dam-
age detection dataset using the trained PSPNet as shown
in Fig. 7 and get the probability for each pixel that the
corresponding pixel belongs to the road which is visualized
in Fig. 7b. Additionally, we integrate the information of
existing annotated road damages in the images and are able
to generated regions of the road which do not have a road
damage. For followup works, this could be further improved
by operating on images rectified w.r.t. the ground plane,
which can be computed automatically using vanishing points
or the horizon line [11], as this would reduce variance in
appearance due to the camera projection.

5.1.2. Generating Road Damages. CycleGANs are trained
in two directions. On the on hand starting with domain A
which is visualized in Figure 8. The input image is an image
without a road damage and the generator adds a road damage
to the image. This image is then used as input for generator
B to remove the road damage again which completes the
cycle. The image which is transformed back to domain A
should be equal to the input image. The discriminators A
and B try to detect whether an image is real or fake. During

(a) Domain A: real (b) Domain B: fake (c) Domain A: cycle

Figure 8: Example for Cycle A of the CycleGAN. Input
image (a) without a damage is transformed into an image
with road damage (b) which is than removed again (c).

(a) Domain B: real (b) Domain A: fake (c) Domain B: cycle

Figure 9: Example for Cycle B of the CycleGAN. Input
image (a) with a damage is transformed into an image
without a damage (b) which is than added again (c).

training the cycle is also performed the other way around
starting with domain B as visualized in Fig. 9.

We trained a CycleGAN for each class where generator
A generates road damages on images and Generator B
removes road damages from the images. To generate new
road damages we extracted possible regions as described
in the previous section and generate road damage using
generator A. As a result, new data can be created very
easily to extend the dataset. Some examples are shown in
Fig. 10. The left image show the original images and the
right image the generated image where the new road damage
is highlighted in yellow.

5.2. Modified Evaluation Metric

For evaluation during the challenge, the mean F1 score
is used as defined by:

F1 = 2 · precision · recall
precision + recall

(1)

with

precision =
tp

tp + fp
, recall =

tp
tp + fn

(2)

and tp, fp, fn being the number of true positives, false
positives and false negatives respectively. A detected bound-
ing box is counted as a true positive if its IoU with a
ground truth bounding box of the same class is greater than
0.5. Due to the nature of the problem and characteristics
of the ground truth labels, this metric appears to penalize
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Figure 10: Generating new road damages for training in areas without a damage. Each image pair shows the original image
on the left side and the image with a generated road damage (highlighted in yellow) on the right side. Existing bounding
boxes are not shown.

reasonable yet imperfect (w.r.t. the ground truth) detections
to a great extent, as mentioned in Sec. 4

Ambiguity w.r.t. the degree of segmentation: Unlike
typical object detection problems based on bounding boxes
where different instances are easily distinguishable, e.g.
multiple chairs, cars, people etc. next to each other, it can
be difficult to define where one damaged area of a road
ends and another one starts. As illustrated by Figs. 11 and
12b, this can lead to a number of different bounding box
configurations that appear plausible but are incompatible
with each other w.r.t. the evaluation metric defined above.

Ambiguity w.r.t. bounding box size: For damages
such as longitudinal cracks especially, it may not be clear
where to define the start and end points of the damage. As
illustrated by Figs. 4b and 12a, this ambiguity can lead to
large variations in bounding box size and position.

We therefore propose to use a less discriminative evalu-
ation metric without a firm threshold, for example the mean
average precision (mAP) over a range of IoU values between
0.05 and 0.95 which is also used for the MS COCO [12]
dataset. As exact localization of road damages appears of
relatively little importance, a smaller upper bound for the
IoU may be reasonable for this challenge.

5.3. Guided Labeling

Manually labeling a large amount of data is not only
time and cost intensive but also error-prone. To reduce costs
and time for the dataset of the challenge we propose a

(a) Our detection (b) Ground truth

Figure 11: Our method detected two bounding boxes (a) of
the correct class, while the ground truth (b) combines them
to a single large bounding box.

guided labeling. In the current state there are some damages
that have not yet been labeled (cf. Sec. 4). To improve
the dataset without much manual re-labelling, we propose
an automatic generation of region proposals by the already
trained object detectors. Such region proposals can be easily
checked without great time consumption. As long as the
bounding box proposed by the damage detectors is correct
(which it is in most cases) the new label can be easily set
or rejected by the click of a button. In the case of bounding
boxes of incorrect sizes, they can be quickly corrected. This
procedure is far less time-consuming.
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Figure 12: Examples where the ground truth (green) is
ambiguous, and reasonable alternatives (blue) with low IoU
are possible.

5.4. Adjusted Classes via Clustering

As we noticed, some classes being quite similar can
result in misclassifications. Since the reasoning behind the
discrimination between some classes is not well defined,
we suggest to first generate region proposals with class
annotations for all damages and afterwards use a clustering
algorithm, for instance K-means, mean shift or autoencoder
based clustering algorithms, to generate clusters of all these
region proposals. It then can be checked by experts to assign
more meaningful class labels to them. This should result
in more natural class labels, by merging similar classes
together.

6. Conclusion

In this report we propose an ensemble of several state-
of-the-art region detection methods well suited for the de-
tection of road damages from mobile phone cameras. We
achieved Top-10 results in the Road Damage Detection and
Classification Challenge at the 2018 IEEE Big Data Cup.
By deeply analyzing our results we found some formerly
unknown and unexpected flaws in the dataset. This led us
to propose a set of improvements for the dataset, the labeling
process, and new evaluation metrics.

First, we propose a pipeline for artificially extending the
dataset by generating new training data based on Cycle-
Consistent Generative Adversarial Networks. Our Cycle-
GAN is able to generate or remove a road damage in any
specified region of an image. Second, we suggest new evalu-
ation metrics in particular due to the fact that annotations are
very difficult to define and may be ambiguous. Furthermore,
we propose to employ a guided labeling to quickly annotate
unknown or incompletely labeled images. By suggesting
bounding box candidates to the user these can be efficiently
accepted or modified by the click of a button.

In summary, we showed Top-10 performance for two of
our approaches in the Road Damage Detection and Clas-
sification Challenge at the 2018 IEEE Big Data Cup. We
are convinced that further challenges will benefit from our

proposed methods for improving the dataset as well as the
evaluation.
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