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Non-linear contour-based multidirectional
intra coding

thorsten laude, jan tumbrägel, marco munderloh and jörn ostermann

Intra coding is an essential part of all video coding algorithms and applications. Additionally, intra coding algorithms are pre-
destined for an efficient still image coding. To overcome limitations in existing intra coding algorithms (such as linear directional
extrapolation, only one direction per block, small reference area), we propose non-linear Contour-based Multidirectional Intra
Coding. This coding mode is based on four different non-linear contour models, on the connection of intersecting contours and
on a boundary recall-based contour model selection algorithm. The different contour models address robustness against outliers
for the detected contours and evasive curvature changes. Additionally, the information for the prediction is derived from already
reconstructed pixels in neighboring blocks. The achieved coding efficiency is superior to those of related works from the literature.
Compared with the closest related work, BD rate gains of 2.16 are achieved on average.
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I . I NTRODUCT ION

During the past decades, a tremendous improvement of
video coding algorithmshas been observed. In January 2013,
the Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T VCEG and ISO/IECMPEG finished the technical
work for the latest video coding standard, High-Efficiency
Video Coding (HEVC) [1, 2], which is also referred to as
H.265 by ITU-T and as MPEG-H Part 2 by ISO/IEC. For
the same visual quality, depending on the selected configu-
ration and application, HEVC enables a bit rate reduction of
40–60 comparedwith the predecessor standardAdvanced
Video Coding (AVC) [3, 4]. After the finalization of HEVC,
the research for new coding tools is stimulated by a constant
strive for even higher coding efficiency [5].
The prediction tools, which led to the prosperous appli-

cation of these video coding standards, can be roughly dis-
tinguished into inter and intra coding tools. In contrast to
intra coding, which solely employs spatial redundancy in
the current picture, inter coding additionally uses motion
compensated prediction to reduce the temporal redun-
dancy between subsequent pictures to further increase the
coding efficiency. For typical video signals, the resulting bit
rates to achieve the same visual quality are, therefore, for
intra coding considerably higher (10–100 times) compared
with inter coding.
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Nevertheless, intra coding is an essential part of all video
coding applications and algorithms: it is used to start trans-
missions, for random access (RA) into ongoing transmis-
sions, for error concealment, in streaming applications for
bit rate adaptivity in case of channels with varying capacity,
and for the coding of newly appearing content in the cur-
rently coded picture. Additionally, intra coding algorithms
are predestined for efficient still image coding. This can be
considered as a special case of a video sequence with just
one picture. For example, the High-Efficiency Image File
Format as a container for HEVC encoded pictures is used
as the default image file format on mobile devices running
iOS which were released since 2017.
The intra prediction as specified by the HEVC standard

is based on the spatial prediction of sample values1 based
on neighboring, previously coded sample values (reference
values) followed by a transform coding of the prediction
error [6]. For the prediction, there are 33 directional modes,
one mode for the planar prediction, and one mode for the
prediction with the mean value of the reference values (DC
mode). The reference values are located in a 1 pel wide col-
umn and a 1 pel high row of sample values within previously
coded blocks directly to the left and top of the currently
coded block (reference area). The directional modes allow
for the linear extrapolation of the reference values in the
direction of 33 different angles. Considering that there are
many horizontal and vertical structures in typical video
sequences, a higher angle resolution is selected for these

1Within this paper, we differentiate between the terms pixel and
sample value. One pixel consists of three sample values for the Y, Cb, and
Cr components, respectively.
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directions [7]. The directional modes aim at the prediction
of blockswith the linear structure or linear contours [6].Not
all blocks to be coded comprise a linear structure. For blocks
without a linear structure, the prediction with the DCmode
and with the planar mode (weighted combination of four
sample values) were developed [6].
An analysis of the intra coding in the HEVC standard

reveals multiple limitations:

(i) The reference area is relatively small with a width or
height of 1 pel, respectively. Further information could
be gained by processing additional neighboring, previ-
ously coded sample values.

(ii) The directional modes only enable the prediction of
linear structures.

(iii) In the case of directional prediction, only one direction
per block can be selected by encoders.

In consequence, blocks with non-linear contours or with
multiple contours in different directions are difficult to pre-
dict. This conclusion is in line with the finding of Lotter-
mann and Steinbach in their work on signal-dependent bit
rate modeling [8]. Their finding (high bit rates for blocks
with many edges) matches our premise that blocks with
many edges are difficult to predict.
To overcome these limitations, we propose Contour-

based Multidirectional Intra Coding (CoMIC). The under-
lying principle of the CoMIC prediction is the detection
and modeling of contours in already reconstructed blocks
followed by the extrapolation of the contours into the cur-
rently coded block. Namely, the main contributions of this
paper are:

(i) four non-linear contour models,
(ii) an algorithm for the connection of intersecting
contours,

(iii) an along-edge sample value continuation algorithm,
(iv) and a mode decision algorithm for the selection of the

best contour model based on the Boundary Recall.

The remainder of this paper is organized as follows: In
Section II, we discuss related work from the literature and
elaborate on the distinguishing features of our work. In
Section III, we start by introducing the CoMIC framework,
present our novel non-linear contour modeling and extrap-
olation algorithms, our sample value prediction algorithm,
our mode decision algorithm, and our codec integration.
Subsequently, in Section IV, we evaluate our algorithms and
demonstrate their efficiency by comparing them with the
closest works from the literature.

I I . RELATED WORK

The findings of numerous works in the academic literature
indicate that valuable information for the prediction of the
currently coded block can be extracted from contours in
neighboring blocks.

Yuan and Sun demonstrate that a contour map of the
currently coded picture is suitable for a fast encoder deci-
sion for the selection of a good intra mode [9]. In contrast
to applying edge information for the sake of an acceler-
ated encoding process, we utilize extracted edge informa-
tion to increase the coding efficiency with a new coding
mode.
Asheri et al. [10] as well as Au and Chan [11] use contour

information for error concealment algorithms. For this pur-
pose, contour information from the current picture (Asheri
et al.,) or from the current and the previous picture (Au
and Chan) is utilized to conceal transmission errors. Differ-
ently, from our approach, their algorithms do not influence
the actual coding process but are used as post-processing in
case of errors. Furthermore, we assume a causal encoding
system in which the reference sample values can only be in
previously coded blocks.
Liu et al., increase the coding efficiency of JPEG (in

[12]) and of JPEG 2000 as well as AVC (in [13, 14]) with
contour-based inpainting and texture synthesis algorithms.
Their algorithms include the signaling of contour shapes
similar to JBIG, the linear extrapolation of contours from
already coded parts of the picture, the signaling of patches
for texture synthesis, the signaling of representative sample
values for the inpainting, and the solving of partial dif-
ferential equations for the inpainting. In contrast to the
HEVC intra coding algorithm, this enables the prediction
of multiple contours with different directions per block.
Liu et al., achieve an increased coding efficiency. However,
only linear contours are extrapolated. Moreover, for the
sample value prediction it is required to either signal a
considerable amount of side information (patches for tex-
ture synthesis) or to solve computationally complex sys-
tems of partial differential equations for the inpainting (the
decoding of a picture with 512 × 512 pel spatial resolu-
tion takes “multiple minutes” [14]). Considering that the
coding efficiency of their algorithm is only demonstrated
for solely intra-coded pictures (all-intra) [13, 14], it cannot
be assumed that the visually pleasing results of the tex-
ture synthesis are a good prediction for subsequently coded
pictures.
To compensate for the described limitations of the

algorithm of Liu et al., we proposed CoMIC in our con-
ference paper [15] to increase the coding efficiency of JPEG
and HEVC. In general, JPEG coding is extended by a spa-
tial prediction and the DCT is computed on the predic-
tion error instead of the signal to be coded. By combining
a prediction with the coding of the prediction error, the
problem of Liu et al., that the synthesized picture is unsuit-
able as a prediction reference is circumvented. Like the
approach of Liu et al., this first version of CoMIC (v1) is
based on the separate processing of contours and sample
value prediction. The contours are detected in the refer-
ence area (which is three times the size of the currently
coded block) and extrapolated linearly into the currently
coded block without the signaling of any side information.
The sample value prediction is based on the continua-
tion of neighboring sample values along the extrapolated
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contours. In contrast to the sample value prediction as
specified by the HEVC standard, the individual contours
are treated separately in our approach. This way, the sam-
ple values can be continued in multiple directions per
block.
CoMIC v1 is suitable for the prediction of linear

contours and structures. However, in real images and
video sequences, there are plenty of non-linear contours
which cannot be predicted by CoMIC v1. As a con-
sequence of this limitation, CoMIC v1 allows a reli-
able prediction only in those areas of the currently
coded block which are in proximity to the reference
area. The contour extrapolation with this algorithm into
parts of the block which are further away from the
reference area results in a too large uncertainty with
respect to the contour shape. In turn, this results in
a high prediction error and a high bit rate to com-
pensate for this prediction error. Hence, a distance-
dependent diminishing of the continued reference sam-
ple value to the mean value of all reference samples is
applied [15].
In our experimental section, our novel non-linear

CoMIC algorithm (CoMIC v2) will be compared with the
algorithm of Liu et al., and to the first version of CoMIC
from our conference paper.
The main difference between our contribution and

related inpainting approaches is that we assume a causal
encoding system where only already coded blocks (i.e.
above of and to the left of the current block) are available
for the contour extrapolation. In contrast to that, inpaint-
ing approaches use the signal on all sides of the miss-
ing block. For example, Liu et al., signal the sample val-
ues on the contours in the currently coded block as side
information and construct Dirichlet boundary conditions
this way in their respective method. This knowledge is
highly beneficial for the prediction. Taking into account
that this information is not available for the decoder with-
out signaling, our method solves a harder problem and
also requires less signaling overhead.Aproof-of-concept for
PDE-based video compression is demonstrated by Andris
et al. [16].
In the work [17], Rares et al., proposed a method for

image restoration (i.e. artifact removal). There are multi-
ple commonalities between the related work and our paper:
The starting point in both works is similar. Some content
is missing, in our case because a block is to be predicted,
in the case of Rares et al., because the content is occluded
by an artifact. Then, the aim in both works is to “invent”
the missing content. In our case by prediction, in the case
of Rares et al., by restoration. Additionally, both works
are based on contours. Their work is based on modeling
the connection of “strongly related” contours on oppos-
ing sides of the artifact. The knowledge of where contours
end at the other side of the unknown area is highly bene-
ficial for reconstructing the contour in the unknown area.
Unfortunately, this knowledge is not available in a causal
coding system where blocks are encoded one after another.
In consequence, the model proposed by Rares et al., is not

transferable to the prediction problem in a causal coding
system.

I I I . CONTOUR -BASED
MULT ID IRECT IONAL
INTRA COD ING

In this section, we discuss the novel contributions of this
paper. For the sake of a cohesive presentation, we start
by reviewing the CoMIC framework briefly. Subsequently,
we elaborate on our novel non-linear contour modeling
and extrapolation algorithms, our sample value predic-
tion algorithm, our mode decision algorithm, and describe
the integration of the above mentioned algorithms in the
CoMIC codec.
With CoMIC, we designed an intra coding mode for

the prediction in multiple directions with minor signaling
overhead by combining contour detection, contour param-
eterization, and contour extrapolation algorithms with con-
ventional video coding algorithms like sample value contin-
uation. As a basic working principle, contour information
is extracted from reconstructed samples and employed to
extrapolate these contours into the currently coded block.
In this pipeline, we limit our area of operation to the cur-
rently coded block and the adjacent blocks as illustrated in
Fig. 1. The blocks in the reference are of the same size as the
currently coded block.

A) CoMIC framework
Both versions of the CoMIC codec (v1 published as [15],
v2 proposed in this paper) share the same basic work-
ing principle which will be discussed with reference to
Fig. 2.
The encoding of a block starts by detecting contours in

the reference area (see Fig 2a). Our contour detection is
based on the well-known Canny edge detection algorithm
[18]. Aminor additional coding gain (0.3) can be achieved
by usingmore advanced edge detection algorithms like [19],
but this also increases the computational complexity by
a factor of 90 for the entire encoder. Thus, we chose to

Fig. 1. Area of operation. For the prediction of the current block (predicted
block, PB), the following four blocks highlighted by green boundaries are used
as reference: left block (LB), left-upper block (LUB), upper block (UB), and
right-upper block (RUB). In this example the block size is 16 × 16.
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Fig. 2. CoMIC v1 pipeline: the contours are detected using the Canny algorithm, labeled, modeled with linear functions, and extrapolated into the currently coded
block. The major limitation of CoMIC v1 is the linear contour model. In consequence, the contours can only be extrapolated partly into the currently coded block
because the accuracy of the extrapolated contours drops considerably with increasing distance from the reconstructed area. (a) Detected contours, (b) Labeled
contours, (c) Modeled contours, (d) Extrapolated contours.

content ourselves with the original Canny edge detector for
this paper.
Once the edges have been detected with the Canny

algorithm, a binary image is available that describes all edge
pixels in the reconstructed area. Our goal is the extrapola-
tion of distinctive contours. Therefore, we label individual
contours in the binary edge picture with the algorithm of
Suzuki and Abe [20] (see Fig 2b).
The part of the framework as it is described so far

is maintained for this paper. In the following, we briefly
present the remainder of the framework as it was used
for our conference paper. It is noteworthy that the follow-
ing parts of the framework will not be used by the con-
tributions of this paper but are described for the sake of
cohesiveness.
In [15], each contour is modeled by a straight line (see

Fig 2c), i.e. by a polynomial parameterization with two
parameters. For contours which hit the left border of the
currently coded block, the horizontal coordinate x is used
as the independent variable while the vertical coordinate y
is used as the independent variable for contours that hit the
upper border of the currently coded block. This differentia-
tion facilitates the parameterization of horizontal and verti-
cal structures. Thus, the polynomial p(a), with a being the
independent variable (i.e. either x or y) andwith coefficients
βi ∈ R is parameterized as noted in equation (1):

p(a) = β0 + β1a. (1)

The coefficients βi are determined by minimizing the mean
squared error between the detected contour and the linear
contour model using a least squares regression.
With the parameterization of the contour available, the

contour can be extrapolated in the currently coded block.As
disclosed in Section II, our linear contourmodel only allows
an accurate extrapolation in parts of the currently coded
block (see Fig 2d). The reference sample values are contin-
ued parallel to the linearly extrapolated contours to predict
the sample values of the current block. In the course of the
continuation, the sample values are diminished towards the
mean value of the reference sample values due to the dis-
cussed limitation of the linear contour model. As a fallback
solution for blocks without extrapolatable contours, a DC

mode similar to the DC mode as specified by the HEVC
standard is available.

B) Non-linear contour modeling
As it was revealed in the previous sections, the major limi-
tation of CoMIC v1 is the lack of capability to model non-
linear contours. To overcome this limitation, we propose
four different non-linear contour models in this paper. A
Boundary Recall-based contour model selection algorithm
is applied to select the best model for each block.
Naturally, the straightforward extension of our linear

contour model towards a non-linear model is a polyno-
mial model with three or more parameters. Thus, as first
non-linear contour model, we propose a quadratic func-
tion. Extending equation (1), the model is formulated as in
equation (2):

p(a) = β0 + β1a + β2a
2, (2)

This model will be referred to as Contour Model 1. Simi-
larly to the linear model, the independent variable is chosen
depending on whether the contour enters the predicted
block horizontally (x is the independent variable) or ver-
tically (y is the independent variable). In the following, we
describe the polynomial calculation only for x as an inde-
pendent variable. For n given edge pixels (xi , yi ) with i =
1, . . . , n we write equation (3):

x =

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ ∈ R

n×1, y =

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ ∈ R

n×1. (3)

The approximation of the contour is written as in
equation (4) with ε as approximation error:

y =

⎡
⎢⎣

1
... x x2

1

⎤
⎥⎦ β + ε with β =

⎛
⎝β0

β1

β2

⎞
⎠ , ε ∈ R

n×1

= Xβ + ε. (4)

This linear regression problem (with βi as regression
parameters) can be solved with a least squares approach, i.e.
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by minimizing f (β) in equation (5):

f (β) = (y − Xβ)T (y − Xβ). (5)

The estimated regression parameters, denoted as β̂ , are
calculated as in equation (6):

β̂ = (X T X)−1 X T y. (6)

This model enables a favorable approximation for some
contours. However, we observed that this model is not
robust enough for all contours by reason of the small
number of contour pixels (on which the regression is per-
formed) and that to some extend imprecise contour location
and volatile contour slope. Considering these reasons, we
project the contour information into a different space prior
to themodeling for the remaining three contourmodels. To
be precise, we model the curvature of the contour by mod-
eling the slope of the contour location linearly. This model
is more robust than the quadratic model since it has fewer
parameters. Additionally, the slope is smoothed to reduce
the volatility of the curvature.
Let mi denote the slope of the contour at location i .

Furthermore, let

m =

⎡
⎢⎣

m1
...

mn

⎤
⎥⎦ ∈ R

n×1,

with

mi = yi+1 − yi

xi+1 − xi
.

Note that the denominator could be zero if no precautions
were taken. This is due to the fact that the contour location
is only determined with full-pel precision. The difference of
the independent variable for two neighboring contour pix-
els is calculated in the denominator. Therefore, the problem
arises in cases when two neighboring contour pixels share
the same value for the independent variable (e.g. for nar-
row bends). To circumvent the problem, a single value of
the dependent variable is interpolated from the two val-
ues of the neighboring pixels. Thereby, only one slope value
(instead of two) needs to be calculated for this value of
the independent variable. No difference of the independent
variable needs to be computed if two pixels share the same
value for this variable as these two pixels are combined to
one data point. Then, the second non-linear contour model
which we refer to as Contour Model 2 is formulated as in
equation (7):

m =

⎡
⎢⎣

1
... x
1

⎤
⎥⎦ γ + ε with γ =

(
γ0

γ1

)
, ε ∈ R

n×1

= Mγ + ε,

(7)

where γ describes the regression coefficients which can be
approximated by applying equation (6) analogously.

It is known that it can be beneficial to address out-
liers when formulating approximation models. Therefore,
adopting the approach of Holland and Welsch [21] to itera-
tively reweighten the least squares residues, we propose the
third contour model (Contour Model 3). The weights ωi for
the residues ri are calculated with an exponential function
which is parameterized by the largest residue (rmax) as noted
in equation (8):

ωi = e−(2ri /rmax)2
. (8)

Given the weights from one iteration, the regression
parameters for the next iteration can be calculated by
reformulating equation (6) to:

γ̂ = (MT WM)−1 MT Wm, (9)

with

W =

⎛
⎜⎜⎜⎝

ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωn

⎞
⎟⎟⎟⎠ , (10)

where γ̂ is the estimation of the regression parameters
γ . The actual number of reweighting iterations is not of
crucial importance for the regression result as long as the
number is sufficiently high. Hence, it is chosen as 15 since
the computational complexity is negligible as evaluated in
Section IV.
None of the three proposed non-linear contour mod-

els considers that the curvature of the contour may change
unexpectedly – i.e. evasive by equation (7) – in the reference
area. As means against such evasive contour changes in the
reference area, we propose a fourth contourmodel (Contour
Model 4). The rational for this model is that in cases of such
contours, it is undesirable to consider parts of the contour
which are far away from the currently coded block. Thus,
the residues for the regression are weighted depending on
their distance to the currently coded block. To be precise,
the weights decrease linearly with increasing distance. In
contrast to Contour Model 3, the regression is only per-
formed once for Contour Model 4 since the distance does
not depend on the weights.
It is worth mentioning that it became apparent in our

research that splines – although being often used for signal
interpolation – are not capable of achieving a good contour
extrapolation. Moreover, our research revealed that higher
order polynomial models (i.e. cubic and higher) are not
robust enough.

C) Contour extrapolation
With the contour modeling being accomplished by the four
proposed models from Section III.B, the extrapolation of
the contours which are modeled will now be described.
For Contour Model 1, the contour is extrapolated by

directly calculating new function values with equation (2)
for the independent variable in the predicted block. For the
other three models which model the slope of the contour,
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Fig. 3. Combination of intersecting contour parts. (a) Original contour shape, (b) Separate extrapolation of the two contour parts results in inaccurate prediction,
(c) Combination of the two contour parts and transfer of the extrapolation problem into an interpolation problem results in accurate prediction.

Fig. 4. Different cases for the sample value prediction along the contours. (a) Contours hit the predicted block directly, (b) Contour hits the predicted block
indirectly, (c) Combination of contours.

the extrapolation is performed analogously by respectively
derived equations.
This extrapolation algorithm works reliably in most

cases. However, it may fail for contours which start in the
reference area, proceed through the predicted block, and
reenter the reference area. An example of such a contour is
illustrated in Fig. 3a. For the contourmodeling, it appears as
if there are two independent contours in the reference area.
The independent extrapolation of these two contours is
shown in Fig. 3b. Although the extrapolation of one contour
is accurate with respect to the original contour, the extrap-
olation of the second contour would cause a considerable
prediction error. As a solution to this issue, it is detected that
these two contours formone contour and they are processed
together. For this purpose, the contour points of the two
to-be-combined contours are summarized to one contour
at first. Then, the contour pixels of this combined contour
are modeled using the same independent variable. For this
combined contour, considering that a section in the middle
of the contour is to be predicted, the extrapolation problem
turns into an interpolation problem which is approached
with a cubic polynomial regression as illustrated in
Fig. 3c.

D) Sample value prediction
With the contours extrapolated following the description in
Section III.C, the sample values can be predicted by utilizing
the extrapolated contours. The sample value prediction
is based on the continuation of boundary sample values.

Three cases can be distinguished. They are discussed fol-
lowing the illustration in Fig. 4.
In the first case as illustrated in Fig. 4a, the contours

directly hit the predicted block either from the top or from
the left. In this case, the sample value of the contour pixel
directly adjacent to the predicted block (highlighted in red)
is used as a reference and extrapolated along the contour.
Slightly different is the second case (Fig 4b) in which the
contour hits the predicted block indirectly via the neigh-
boring block on the right side. Here, the sample value of
the adjacent pixel on the right side of the predicted block
is unavailable as a reference since this pixel is not yet pre-
dicted. Hence, the sample value of the nearest available ref-
erence pixel (which is highlighted in red) from the top-right
block is used as reference. As for the first case, this reference
sample is continued along the contour. The commonality of
these two cases is that the reference sample value is contin-
ued unaltered. This is different in the third case which is
used for combined contours as shown in Fig. 4c: For such
contours, there are two reference sample values, one at each
end of the extrapolated contour. Since these two reference
sample values may be different, we chose to linearly blend
the predicted sample values between them.
So far, only the sample values on the contour are pre-

dicted. To predict the remaining sample values, the above-
described process is extended horizontally or vertically,
depending on the orientation of the contour. The reference
sample values whose pixel location has an offset to the hit
point between contour and block boundary in horizontal
or vertical direction, respectively, are continued parallel to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/ATSIP.2018.14
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 29 May 2019 at 09:04:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/ATSIP.2018.14
https://www.cambridge.org/core


comic 7

Fig. 5. Illustration of the sample value prediction. The numbers indicate the
offset of the location of the reference pixel with respect to the reference pixel on
the contour.

the extrapolated contour. An example is illustrated in Fig. 5.
Here, the numbers indicate the offset of the location of the
reference pixels.
In the presence of multiple contours, the predicted sam-

ple value of a non-contour pixel can be obtained frommul-
tiple references. One of our premises is that contours are
located at the borders of objects. Therefore, sample values
are continued up to the next contour. Individual contours
are processed in a clockwise direction.
Our decision to base the sample value prediction on

the continuation of neighboring reference sample values is
backed up by multiple reasons: (1) The continuation of the
reference sample is well understood from the intra coding
algorithms in recent video coding standards [6, 22]. (2) In
contrast to inpainting algorithms, the complexity is mod-
erate (cf. Section IV). (3) In contrast to texture synthesis
algorithms, the reconstructed signal (i.e. the sum of the
predicted signal and the transmitted quantized prediction
error) is suitable as a reference for future predictions.

E) Contour model selection
In total, there are four non-linear contour models. One
of them needs to be selected per block by the encoder.
The premise of our work is that it is beneficial to process
structural information (i.e. contours) and textural informa-
tion (i.e. sample values) separately. Hence, the decision for
the best contour model cannot be based on the quality of
the predicted sample values (e.g. by measuring the MSE).
Instead, the decision is based on the accuracy of the extrap-
olated contours. As the original contours are known at the
encoder, the extrapolated contours can be compared with
the original contours.
The Boundary Recall [23] is chosen as a metric to mea-

sure the accuracy of the extrapolated contours. This metric
is commonly used to measure the accuracy of superpixel
boundaries [24, 25]. Since these two tasks (measuring the
accuracy of extrapolated contours and superpixel bound-
aries, respectively) are very similar, we believe that the BR
is a suitable metric for our case. Letting norig, next, and
nmutual denote the number of pixels of the original contour,
the number of pixels of the extrapolated contour, and the
number of pixels which are mutual for the original and the
extrapolated contour, respectively. Then, the BR is defined
as in equation (11):

BR =

⎧⎪⎨
⎪⎩

n2
mutual

norig · next
for norig > 0, next > 0

0 otherwise.
(11)

The same contour model is selected for all contours in the
predicted block. It is worth noting that different models
might be better for different contours within the predicted
block. Thus, the selection is not optimal. However, the
selection of the contour model needs to be signaled to the
decoder because the BR cannot be calculated at the decoder
due to the absence of the knowledge of the original contour
location. Hence, the better trade-off between the selection
of a good contour model and signaling overhead is to use
only one contour model per block.

Fig. 6. CoMIC v2 pipeline. Novel contributions of this manuscript are in blue blocks, contributions from our previous work [15] are in gray blocks.
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Table 1. Bit rate savings over JPEG (quality 75): we compare our
algorithm (coMIC v2) with the results from the related work of Liu
et al., [12] and with the results from our conference paper [15]. Both

works are outperformed.

CoMIC v1 CoMIC v2
Image Liu [12] () [15]2 () (this paper) ()

Airplane 35.0 36.3
Baboon 25.7 27.1
Barbara 28.4 30.4
Boats 32.8 34.2
Goldhill 30.8 32.1
Jet* 20.6 35.0 36.3
Lena* 20.1 32.4 35.1
Milk* 44.0 34.4 36.9
Pepper* 20.8 34.9 37.4
Kodim 1 22.7 23.6
Kodim 2* 33.0 24.2 25.2
Kodim 3* 32.1 28.4 33.5
Kodim 4 28.6 32.2
Kodim 5* 15.2 26.4 26.7
Kodim 6 24.5 27.6
Kodim 7* 25.7 30.7 32.4
Kodim 8 27.9 28.6
Kodim 9 33.0 34.4
Kodim 10 31.0 32.1
Kodim 11* 23.5 25.0 27.4
Kodim 12 27.9 30.1
Kodim 13 23.9 23.9
Kodim 14 26.5 27.6
Kodim 15 28.0 30.3
Kodim 16 23.2 23.9
Kodim 17 28.2 29.5
Kodim 18 25.4 28.1
Kodim 19* 28.4 29.6 31.1
Kodim 20* 28.9 29.9 32.1
Kodim 21 27.2 30.8
Kodim 22 29.3 30.0
Kodim 23* 30.9 34.3 37.1
Kodim 24 24.9 34.7

Average* 26.9 30.4 32.6
Average 28.8 30.9

F) Codec integration
The proposed algorithms were integrated into the CoMIC
stand-alone codec software which was originally proposed
in [15]. This new version of the codec is referred to as
CoMIC v2.
In the following, we will describe the integration of the

proposed algorithms in the CoMIC v2 pipeline with ref-
erence to Fig. 6. At the encoder, the picture is partitioned
into blocks. For the prediction, we use blocks with a size of
32 × 32. Subsequent to the contour detection, the four dif-
ferent contourmodels are organized in parallel tracks to the
linear contour model. Among the four non-linearly extrap-
olated contours, the most accurate extrapolation is chosen
with the Boundary Recall-based contour model selection.
In the case of intersecting contours, the contour connec-
tion algorithm is applied. Thereby, the contour extrapola-
tion is finished. Consecutively, the sample values are pre-
dicted along the non-linearly extrapolated contour. After
this stage, there are three predicted signals: one for the linear

Table 2. BD rate gains over JPEG. Positive values indicate increased
coding efficiency. CoMIC v1 is outperformed by CoMIC v2

CoMIC v1 CoMIC v2 CoMIC v2
Image versus JPEG () versus JPEG () versus CoMIC v1 ()

Airplane 33.47 35.02 2.35
Baboon 24.55 25.06 0.60
Barbara 32.13 33.70 2.38
Boats 30.29 31.92 2.34
Goldhill 27.64 29.04 1.93
Jet 33.47 35.02 2.35
Lena 31.18 33.90 3.87
Milk 33.35 37.03 5.31
Pepper 33.68 36.09 3.58
Kodim 1 22.29 23.44 1.49
Kodim 2 23.79 24.79 1.29
Kodim 3 27.19 29.93 3.89
Kodim 4 27.55 29.54 2.73
Kodim 5 25.36 25.78 0.61
Kodim 6 23.84 25.00 1.51
Kodim 7 29.80 31.84 3.01
Kodim 8 25.69 26.56 1.19
Kodim 9 30.29 32.08 2.65
Kodim 10 28.15 30.07 2.70
Kodim 11 23.81 24.82 1.34
Kodim 12 25.46 27.53 2.72
Kodim 13 22.50 22.87 0.51
Kodim 14 25.18 26.15 1.30
Kodim 15 24.61 27.53 3.68
Kodim 16 22.98 24.12 1.52
Kodim 17 28.31 29.84 2.20
Kodim 18 25.93 26.27 0.48
Kodim 19 26.90 28.05 1.60
Kodim 20 28.52 30.15 2.18
Kodim 21 26.87 27.90 1.47
Kodim 22 27.10 28.01 1.27
Kodim 23 33.25 35.95 3.96
Kodim 24 24.11 25.17 1.40

Average 27.55 29.10 2.16

prediction, one for the non-linear prediction, and as fall-
back one for theDCmode. For these three predicted signals,
the prediction error is transform coded (DCT and quanti-
zation) and the signal is reconstructed with the quantized
prediction error. It is worth noting that we use a different
block size for the encoding of the prediction error than for
the prediction, namely the same 8 × 8 block size which is
used for JPEG. The reason is that this allows to measure
the gain of our prediction over the direct encoding of the
picture as it is done by JPEG. For the same reason, we uti-
lize the same quantization matrix which is suggested by the
Independent JPEG Group and implemented in the JPEG
reference software [26].
Finally, the best mode is selected by a rate-distortion

optimization [27]. The selection of a Lagrange multiplier
for rate-distortion optimization is non-trivial. This states
true especially since the rate-distortion optimization is an
application-specific task. Hence, there is no single correct
λ value. Basically, choosing a Lagrange multiplier is about
expressing how the distortion would change in case of
a slightly changing bit rate. Therefore, we modeled this
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Table 3. BD rate gains over HM. Positive values indicate increased coding efficieny. It is observed that HM is outperformed.

All intra Random Access Low Delay

Sequence Y () Cb () Cr () YCbCr () Y () Cb () Cr () YCbCr () Y () Cb () Cr () YCbCr ()

Steam Locomotive 0.30 0.04 0.05 0.23 0.19 0.38 0.28 0.22 0.15 −0.11 0.02 0.10
Kimono 0.50 0.35 0.30 0.46 −0.16 −0.06 0.10 −0.11 0.12 0.18 0.02 0.11
Park Scene 0.19 0.14 0.24 0.19 −0.01 0.22 0.06 0.03 0.10 0.16 0.16 0.11
Basketball Drive 0.39 0.12 0.16 0.33 0.36 −0.09 −0.15 0.24 0.24 0.17 −0.13 0.18
BQ Terrace 0.37 0.03 0.16 0.30 0.37 0.32 0.29 0.36 0.15 −0.05 0.14 0.12
Johnny 0.16 0.50 0.50 0.24 0.38 −0.13 0.67 0.36 −0.01 2.33 2.65 0.61
Ball Under Water 0.98 1.58 2.32 1.23 1.45 2.18 2.21 1.64 1.12 2.24 1.72 1.34
Bubbles Clear 0.41 0.78 0.77 0.50 2.48 0.27 0.35 1.94 2.17 0.86 0.54 1.80
Calming Water 0.23 0.05 0.11 0.19 0.18 0.16 0.13 0.17 0.19 0.11 0.14 0.17
Carpet Circle Fast 0.32 0.11 0.35 0.29 0.65 0.71 0.59 0.65 0.08 −0.49 −0.06 −0.01
Drops on Water 0.27 0.07 0.13 0.22 0.19 0.10 0.15 0.18 0.20 0.11 0.20 0.19
Flowers 2 0.29 0.01 0.03 0.22 0.12 0.05 0.31 0.14 0.20 −0.07 −0.04 0.14
Paper Static 0.17 0.21 0.84 0.26 0.15 0.26 0.01 0.14 0.07 0.28 0.83 0.19
Smoke Clear 0.58 0.00 0.00 0.44 0.51 0.00 0.00 0.38 0.51 0.00 0.00 0.38
Sparkler 0.45 0.60 0.73 0.51 0.99 0.24 0.73 0.86 0.66 0.30 0.77 0.63
Squirrel 0.17 0.01 0.01 0.13 0.16 0.22 0.27 0.18 −0.03 0.02 0.19 0.01
Bike 1 0.16 0.19 0.39 0.19 0.18 0.14 0.69 0.24 0.13 0.27 0.26 0.17
Bike 2 0.16 0.26 0.35 0.20 0.35 −0.32 0.23 0.25 0.20 0.62 1.11 0.37
Bike 3 0.24 0.39 0.68 0.31 0.49 0.14 1.36 0.56 0.33 −0.10 1.26 0.39
Bike 4 0.21 0.32 0.51 0.26 0.50 0.15 0.39 0.44 0.39 0.54 1.00 0.49
Bike 5 0.30 0.61 1.19 0.45 0.43 −0.21 0.56 0.37 0.31 0.47 0.96 0.41
Bike 6 0.31 0.43 0.59 0.36 0.36 0.06 0.34 0.32 0.36 0.16 0.52 0.35
Bike 7 0.28 0.21 0.47 0.30 0.59 0.01 0.48 0.51 0.37 0.13 0.79 0.40
Bike 8 0.24 0.39 0.44 0.28 0.74 −0.01 −0.23 0.52 0.44 0.06 0.21 0.36
Bike 9 0.12 0.20 0.44 0.17 0.36 0.17 0.70 0.38 0.29 0.43 0.20 0.29
Bike 10 0.14 0.17 0.17 0.15 0.57 0.05 0.70 0.52 0.34 0.15 0.68 0.35
Bike 11 0.35 0.70 0.63 0.43 0.52 0.06 0.44 0.45 0.36 0.46 0.09 0.34
Bike 12 0.10 0.34 0.34 0.16 0.39 0.24 0.51 0.38 0.20 0.19 0.13 0.19
Bike 13 0.19 0.05 0.24 0.18 0.31 0.27 0.55 0.34 0.15 0.38 0.25 0.19
Bike 14 0.42 0.97 1.32 0.60 0.71 0.56 1.62 0.81 0.59 0.89 0.96 0.67

Average 0.30 0.33 0.48 0.33 0.48 0.21 0.48 0.45 0.35 0.36 0.52 0.37

change as a function of the quality parameter for the
MSE(rate) curve for the pictureMilk.

I V . EVALUAT ION

In this section, we will describe the experiments we per-
formed to evaluate the proposed methods. In [15], we inte-
grated our algorithm into the HEVC reference implemen-
tation (HM) and proposed a stand-alone codec implemen-
tation to enable a comparison with related works from the
literature. Similarly, for this paper, we implemented the pro-
posed algorithms into the stand-alone CoMIC software and
into HM as well.
Liu et al., chose to measure the performance of their

method in terms of bit rate savings over JPEG at a JPEG
quality of 75. In [15], we adopted this procedure. We do the
same for this paper to compare the performance of our new
contour models with these two related works. The resulting
bit rate savings are listed in Table 12. It is worth noting that
only a limited number of test pictures were used in [12]. The

2Various minor improvements of the CoMIC framework were added
after the release of CoMIC v1. The binarization of the prediction error was
changed from one descriptor with signed values to two descriptors, one
with unsigned values and one for the sign. Entropy coding was introduced

subset is highlighted by a star (*). For this paper, we extend
the set of used pictures to all pictures listed in the table.
However, to facilitate an overview at a glance, we calculate a
separate average value for the *-subset. CoMIC v2 achieves
bit rate savings between 23.6 and 37.4 over JPEG. In
average, 30.9 (and 32.6 for the *-subset) are achieved.
Thereby, both related works are outperformed. With the
new contribution proposed in this paper and incorporated
inCoMICv2, the bit rate savings are increased by on average
2.1 percentage points compared with CoMIC v1. Another
interesting finding is that the gap over the results of Liu et al.,
depends on the content in the encoded images. For images
with lots of structural parts (e.g. Lena) the gap is larger than
for images with many homogeneously colored areas (e.g.
Milk or Kodim 02). For the latter, Liu et al., can max out
the benefits of their inpainting algorithm.
The evaluation of bit rate savings for a quality of 75 is a

necessary experiment to compare the performance between
CoMIC and the related work of Liu et al. In addition to this
experiment, we also calculate BD rate [28] gains over awider
quality range (30–90) to assess our algorithm for different

for the mode usage. As these improvements are not considered as contri-
butions for this paper, we re-ran the simulations for CoMIC v1 with the
additional improvements. This way, only the increased coding efficiency
as result of the proposed methods is measured.
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Fig. 7. Exemplary prediction results for the proposed algorithms. The left
column (Sub-figures a, c, e, g) shows the original blocks and the right column
(Sub figures b, d, f, h) shows the corresponding predicted blocks.

qualities. BD rate gains indicate bit rate savings for equal
PSNR. The results are summarized in Table 2. It is observed
that CoMIC v1 and CoMIC v2 achieve BD rate gains of
27.55 and 29.10 over JPEG, respectively. These values are
almost the same than those for the bit rates savings at qual-
ity 75 (28.8 and 30.9). It can be concluded that the coding
gain is achieved consistently over different qualities. When
comparing CoMIC v2 with CoMIC v1, the gain is 2.16.
As second implementation, the proposed algorithms

were implemented as additional coding mode in the HEVC
reference software HM. The usage of the additional mode
is determined by the rate-distortion optimization [27] on
coding unit level. CoMIC v2 is chosen if it provides the low-
est rate-distortion costs. One binary flag for themode usage
is signaled in the bitstream as part of the coding unit syn-
tax. For blocks for which CoMIC v2 is used, an additional

syntax element is introduced to indicate the selected con-
tour model. To cover a variety of different contents, 30 test
sequences as listed in Table 3 were selected from various
databases: MPEG Common Test Conditions [29] (Steam
Locomotive, Kimono, Park Scene, Basketball Drive, BQ
Terrace, Johnny), BVI Texture database [30] (Ball Under
Water, Bubbles Clear, Calming Water, Carpet Circle Fast,
Drops on Water, Flowers 2, Paper Static, Smoke Clear,
Sparkler, Squirrel) and action camera content [31] (Bike).
The encoder was configured in all the intra, RA, and low
delay configurations [29]. BD rates are calculated following
[28]. Additionally, as suggested in [32], weighted average BD
rates BDYCbCr were calculatedwithweighting factors of 6/1/1
for the three color components Y/Cb/Cr. The experimental
results are summarized inTable 3. It is observable thatHM is
noticeably outperformed with BD rate gains of up to 2.48.
Some subjective results for the predicted signal are illus-

trated in Fig. 7. The left column shows the original blocks
and the right column shows the corresponding predicted
blocks. It can be observed that the non-linear contour are
predicted accurately.
We measure the computational complexity of CoMIC

by using the run time on an Intel Core i7-4770K
CPU @ 3.50 GHz as metric. For a 512 × 512 pel picture
(Lena), the encoding requires 1.65 s (excluding the time for
file reading and writing). Similar run times are observed for
other pictures. Thereby, the CoMIC is very fast compared
with the related work from Liu et al., for which the authors
indicate a run time of “multiple minutes” for a picture of the
same size. A breakdown of this time is illustrated in Fig. 8:
The largest part in the run time is caused by the non-linear
prediction, followed by the linear prediction, the trans-
form coding, and the mode selection. The decoding time is
lower than the encoding time. This is because the encoder
tests all modes per block while the decoder only performs
the mode which is signaled in the bit stream for a given
block.
Conceptually, for pictureswith linear content, the predic-

tions with CoMIC and with HEVC should be similar. This
is demonstrated with the synthetic example in Fig. 9. The
most noticeable difference in this example are two blocks
that are very close to a contour but next to it. For these
blocks the CoMIC DC mode produces a prediction which
is slightly too dark. This is caused by the different refer-
ence areas for the calculation of the mean sample value
in the DC modes of HEVC and CoMIC: While HEVC
uses only one row/column of sample values, CoMIC uses
the entire reference area as demonstrated in Fig. 1. This is

Fig. 8. Run time analysis.
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Fig. 9. Predicted signals for a synthetic example: it is observable that
CoMIC (left) and HEVC (right) can generate a similar prediction for linear
structures.

Fig. 10. Distribution of the selected contour models (left vertical axis) and
ratio of blocks coded with non-linear contour models (right vertical axis).
Contour Model 1 is the regular polynomial model, Contour Model 2 models
the slope, Contour Model 3 additionally ensures robustness in case of outliers
by iterative reweighting, and Contour Model 4 includes distance-dependent
weighting.

more stable in general, but not for this particular synthetic
example in which a contour passes through the otherwise
homogeneous reference area. Also, some lines appear to be
straighter in case of HEVC. The reason is that for CoMIC
v2 they are approximated by a quadratic polynomial whose
coefficient for the squared term is not exactly determined
as zero by the least-squares estimation. Besides that, this
example reveals that CoMIC (which extracts all informa-
tion from the reconstructed signal) is as good as brute-force
selection on block-level of one of 35 HEVC intra prediction
modes.
To get a deeper understanding for the four different pro-

posed contour models, we analyze their distribution over
the test set. The results are visualized in Fig. 10. On aver-
age, in 50.2 Contour Model 1 is selected, in 12.7 Contour
Model 2, in 23.8 Contour Model 3, and in 13.3 Con-
tour Model 4. The data also suggest that the modes with
small average values have a reason for existence: For some
pictures (Fig 11), their share in the distribution is consider-
ably larger than their average values. One example is Kodim
1 for which Contour Model 3 is used more often. This pic-
ture shows a brick wall with lots of artifacts in the bricks.

Fig. 11. Pictures Kodim 1 and Kodim 13.

The color of the artifacts is similar to the color of the joints.
We hypothesize that these artifacts result in outliers after
the contour detection, which are subsequently suppressed
by the re-weighting of Contour Model 3. Kodim 13 includes
wavy water with contours whose slope varies. For such con-
tours the distance-dependent weights of Contour Model 4
are beneficial. This hypothesis is supported by the observa-
tion that this contour model is used with an above-average
share for this picture. Additionally, the ratio of blocks which
are coded using non-linear contour models is illustrated on
the right vertical axis of the same figure. Naturally, the num-
ber of blocks for which the (non-linear) contour models are
applicable is limited by the number of blocks which contain
such contours. Our analysis is that the non-linear contour
models are primarily used for such blocks.

V . CONCLUS ION

In this paper, we proposed non-linear CoMIC. It is based
on the following main contributions: four non-linear con-
tour models, an algorithm for the connection of inter-
secting contours, an along-edge sample value continuation
algorithm, and a mode decision algorithm for the selec-
tion of the best contour model based on the Boundary
Recall. The evaluation reveals that related works are out-
performed. Compared with the closest related work, BD
rate gains of 2.16 are achieved on average. Furthermore,
it is worth noting that the CoMIC method can be inte-
grated into any modern video codec where it could be
combined with other beneficial tools like advanced predic-
tion error coding or variable block sizes. Namely, BD rate
gains of up to 2.48were achieved over theHEVC reference
implementation HM.
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