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ABSTRACT

In this contribution five algorithms for two-dimensional displacement
estimation in digital television scenes based on the differential
method are mathematically analyzed. The estimation criterion and the
mathematical formulation for each algorithm are derived. The estimation
procedures and the simplifications are explained. Based on the analytic
results a new estimation algorithm is derived that estimates the cross
correlation peak of translatory displaced luminance signals within
small image segments. This analysis shows the advantage of the new

algorithm with respect to the convergency.

1. INTRODUCTION

Several algorithms which estimate the displacement of moving objects
between two successive television frames have already been published.
With respect to the mathematical formulation these algorithms are

divided into three classes /1/:

- Fourier methods
- correlation methods

- methods of differentials.

The third class of algorithms is particularly important for real-time
digital television signal processing, because, in many cases, signal
transformations or matching procedures are too complex. Concerning

calculation complexity the algorithms based on differential methods
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can be subdivided into three groups of algorithms, where

1. One displacement estimate is calculated for the

entire moving area /2/.
2. The displacement estimates are calculated within

the moving area for small rectangular image segments /3,4/.
3. The displacement estimates are calculated recursively

pel by pel /5,7/.

When weighting the advantages and drawbacks of each, it is of interest
to point out the differences between the algorithms with respect to the
formulation and the simplifying assumptions. In this contribution four
displacement estimation algorithms are compared on the base of a mathe-
matical analysis. In addition a new algorithm is presented and com-

pared to the others by some experimental results.



217
2. DISPLACEMENT ESTIMATION BY THE METHOD OF DIFFERENTIALS
2.1 NONRECURSIVE DISPLACEMENT ESTIMATION ALGORITHM OF LIMB AND MURPHY

Limb and Murphy /2/ have proposed an algorithm that calculates one
displacement estimate for the entire moving area. The algorithm is
based on the two assumptions that the television scene contains one
moving object and that the movement can be described by pure horizontal
translation. The moving area is determined by a simple frame difference
thresholding algorithm., By a heuristic approach the sum over the frame
differences within the moving area is found to be a function of the
displacement. However, this function depends upon the size of the mov-
ing area and the amount of detail within. In order to eliminate these
influences the sum over the frame differences is divided by the sum
over the spatial luminance differences of adjacent pels, i.e. the ele-
ment differences. Using this normalization, the amount lul of the

horizontal displacement estimate is determined by

I &, T(m,n)

ju = & (1)
L ola, T}
M

A I : frame difference
AmI : element difference

M : moving area

In order to determine the direction of the displacement, each sum in
(1) is divided into two parts in which the summation is carried out
with respect to the sign of the element and frame differences. The dif-
ference of both parts specifies the estimate of the horizontal dis-

placement

i
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0 , if (<) is negative
1, if (+) is positive

=  LOGICAL EQUIVALENCE
$ LOGICAL ANTIVALENCE

Sb(') =

which has the advantage of a relatively simple hardware realization.
An experimental evaluation by the authors results in a good performance
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for displacements of up to 2.5 pel per frame.

In Figure 1 an example for displacement estimation using this algorithm

is demonstrated.

I(m)
I (m)
I, (m) . St
ZAtI(m)
ZAmI(m)
m
| .
moving area
Figure 1. One—-dimensional example for displacement estimation

using equation (2)

The line denoted by I(m) represents the one-dimensional luminance
function of a moving object, the dashed line shows the function in the
succeeding frame. Using the displacement estimation algorithm (2) the
frame differences are summed over the hatched part in Figure 1 and re-
present approximately a measure of the area of a parallelogram. Divid-
ing this value by the height of the parallelogram, i.e. the sum over

the element differences along m, we get the displacement fi.

The problem of displacement estimation is led back to the calculation

of the base of a parallelogram knowing its area and height., This implies
the requirement that the integral over the frame differences is a

linear function in the displacement u. In this case equation (2) gives
an exact estimate for py. However, in most cases Figure 1 does not hold
for real television signals. To take into account the statistical
properties of television signals the expected values should be used

for an analytic evaluation. Before going into further detail the



219

algorithm of Cafforio and Rocca is derived because it is similar
to that of Limb and Murphy.

2.2 NONRECURSIVE DISPLACEMENT ESTIMATION ALGORITHM OF CAFFORIO
AND ROCCA

A displacement estimation algorithm for small image segments has been
proposed by Cafforio and Rocca /3/. Considering a moving object in a
television scene, the two-dimensional luminance signal of two suc-
ceeding frames is denoted by
Ik(m,n) = Ik_1(m—u,n—v) (3)
u,v : horizontal and vertical displacement

if the movement consists of pure translation. Calculating the frame

differences we get

A, I(m,n) = Ik(m,n)

. (m,n) (4)

Te-1

and approximating (4) by the truncated Taylor series expansions we get

3 )
AtI(m,n) = u-s— Ik_1(m,n) + v-§~ Ik_1(m,n) + e{m,n)
m n
~ “'AmIk~1(m’n) + v-AnIk_1(m,n) + £(m,n) (5)

where the partial derivatives are approximated by the spatial differ-
ences. The expression e(m,n) accounts for the error due to the trunca-
tion of the Taylor series expansion of Ik_1(m,n) around the location
(m,n). Assuming that the error term is not correlated with the signal
and has an even probability density function, the optimal estimates for
¢ and v ave obtained by linear regression. For example the horizontal
estimate i is

g o - P *p
N AT AtIAmI AmIAnI AtIAnI
f = . ! (6)
AmI T -9 AmIAnI

with the variance 0% and the correlation coefficient p

2
) AT (mi,nj) (7)
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The summation is carried out over all the picture element locations
(mi,nj) within the image segment. If the correlation between AmI and
AnI is assumed to be negligible and the approximation

1
P ‘o == ) A,I(m,n.)-sign A _I(m,,n.) (9)
AtIAmI AtI K i%5 t 1’73 m 173

is valid, the estimate is simplified to

izj AtI(mi,nj)'51gn AmI(mi,nj)
P

i;jIAmI(mi,nj)l

which is similar to equation (2). Writing equation (10) without using
the approximation (9) we get

o}

BT
f=p S - (11)
AtIAmI OAmI
-1 Bl ) -T_{ (me1,m) } AT, (m,n) -1, _, (m,m) ] (12)
= % [E[Ik_1(m+1,n)'Ik_1(m,n)] - E[Izk_1(m,nﬂ
+ E[n _(mn) -1 (mn)] - E[ﬁk_1(m+1,n)-1k(m,nﬂ) (13)
with
N = E[{1, _, (m,n)-1, _, (m+1,n)}?] (14)

The first two expressions in equation (13) are independent of the dis-
placement and represent an approximation of the first derivative of the
autocorrelation function around the peak. A model of the correlation
function based on the measurements of real-world television signals

is used for further evaluation of equation (13). Figure 2 shows the
two-dimensional correlation function of a monochrome television

signal. If pure translation is assumed Figure 3 shows the relation
between the actual displacement and the estimate according to equation
(13) . For simplicity in this case only the horizontal displacment
and its estimate {I have been evaluated.
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Figure 3. Relation between the actual displacement i and the

A

estimate {i according to equation (13)
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Figure 3 shows a linear relation between p and {i up to displacements

of about 1.5 pel per frame. Exceeding this value equation (13) obvious-
ly fails. This may be the reason why the authors of /3/ have evaluated
a good performance up to 2.5 pel per frame. For estimating larger dis-
placements they propose spatial low pass filtering of the luminance
signals. This would result in a deformation of the correlation function
slope in Figure 2, so that the linear range of the function in Figure 3

is enlarged.

Another displacement estimation algorithm which is essentially identi-
cal to Rocca's has been proposed by Schalkoff and McVey /4/ and evalu-
ated by Dinse, Enkelmann and Nagel /8/.

One component of the estimate is determined by

1

ﬁ =
2 2
,Z.Aml .Z_Anl - 2-'Z'AmIAnI
1,3 i,3 i,3
2
('Z.AnI . ‘E‘AmIAtI - 'E'AmIAnI . .Z‘AnIAtI) (15)
1,3 1,7 1,7 1i,]

which is identical to equation (6).

This algorithm has been implemented and evaluated in /8/. The measure-—
ments have shown that the sums over the mixed derivatives in (15) are
between one and two orders of magnitude less than the principal dia-
gonal elements and can be neglected in the calculation of estimates.
The reason is that these expressions represent the correlation between
the partial derivatives in the m~ and n-directions which can be as-

sumed to tend to zero. In this case equation (15) becomes

oA TA T
.~ i3 mt
b= —J“*"—~§— (16)
Yy AT
. . om
i,3
OAtI
p (17)
AtIAmI UA T

which is identical to equation (11).
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2.3 RECURSIVE DISPLACEMENT ESTIMATION ALGORITHM OF NETRAVALI AND
ROBBINS

An elegant method for recursive displacement estimation has been pub-
lished by Netravali and Robbins /5/. In order to use a pel recursive
gradient technique the quadratic error function is given by the squared

displaced frame difference DFD2 which is to be minimized,

DFD? > min (18)

!

with

DFDm'n = Ik(m,n) - Ik_1(m—ui_1,n—vi_1) (19)

and the displacement estimates from the previous pel using vectorial

representation

Y

i1 (My_qrV5.1) - (20)

This formula leads to the recursion formula

EY
D, =D, , - E'DFD-VIk~1(m—ui_1,n~vi_1) (21)

V : NABLA Operator

where VIk_1 approximates the spatial gradient of the displaced lumi-~

nance in frame k-1 by differences.

In the following equation the statistic expectancies of DFD and Ik__1
are used instead of just one value, because luminance signals generally
represent non-deterministic source signals. If we calculate the update

term of (21) with an initial estimate My _q 0= v, = 0, we get for

i-1
instance the horizontal displacement estimate

=
i

-e-E[DFDm,n . AmIk_1(m,nH

i

—e-E[{Ik(m,n) - Ik_1(m,n)}-{Ik_1(m,n) - Ik_1(m+1,n)}J (22)
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which is identical to equation (12), if we choose ¢ = %u The negative
sign is due to the definition of DFD in (19). In contrast to /3/ the
recursive procedure tries to keep the estimate within the linear range

of the curve in Figure 3.

2.4 NEW DISPLACEMENT ESTIMATION ALGORITHMS

Let us consider again the estimation criterion which demands for

minimizing the displaced frame differences

E [DFD2 ] .
m,n min

£ [DFD?

[l

2
mnl = EHT @) = Iy (mepy_gon=vy )37

2 2
E[1% (m,n)] + E[I ke (@=Uy 4 m=v, )]

i

“2E([T 4 (m-u,_yyn=vy ) ¢ I (myn)]

= RIz (0) + R12(O)
k-1 k
- 2R (M=, _4,v=-v,_ ) (23)
Ik—1Ik i-1 i-1

R : correlation function

Using the gradient technique for recursive minimization we get the

recursion formula for the displacement vector )

3 - _E. 2
Dy (,v) = D;_;(u,v) - 5 VEDFD ]

14

>
= Di_‘](UI\)) + €V R I <U‘Ui_1/\)"\)i_1) (24)

Te-1Tx

and, for instance, for the horizontal component

3R
R =
i T Hie o . (25)
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If we exchange the summation and the derivation we get for the update

term in equation (25)

IR
Te-1Tk

Y I, _,{m-u,n-v)-I {(m,n)
S k-1 k

Ri-

2
au

1 9
= TR L wmmey Teeq oY) Ty ()

-~ E[I'k_1(m—u,n-v)'1k(m,nﬂ

T (26)

An approximation of the first derivative of the luminance signal by

spatial differences leads to the formula

Ry ¢ = BT (mm) - I (m+T,m)} - {Ik(m,n)}] . (27)
k-17k
For an initial value of the displacement W, 4 = v, 4, = 0 we get
i, = - E[E[Ik_1(m,n)'1k(m,n)] - B[I, _, (m+1,n) "I, (m,n)]] (28)

While equation  (28) contains only a displacement dependent expression
which can be interpreted as an approximation of the first derivative
of the cross correlation function R(u,v) in direction of p the
formulation according to equation (22) additionally contains two

expressions which are independent from the displacement

- E[Izk_1(m,nﬂ + E[Ik_1(m,n)'Ik_1(m+1,nH

(o) + R 5 (1) (29)

k-1
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The algorithm according to equation (24) requires the calculation of

the gradient of the cross correlation function within a small image
segment. If a minimum window size of only one pel is used, the displace-
ment calculation would require one subtraction and multiplication, while
equation (21) requires one subtraction additionally. Thus the gradient

technique (24) has the advantage of a more simple hardware realization.

For a more detailed analysis we discuss the convergence behaviour of
the gradient algorithm. If we have a symmetric cross correlation func-
tion the algorithm converges around the peak up to the two next locally
adjacent minima. Assuming an actual displacement u* convergence is
provided if the update term in equation (25) is smaller than the

amount of 2|ui - u*,

2

3
¥ R
Mi~¥ | 7€ |3u RI I ]' (30)

k-17k

Equation (30) gives an upper limit for the constant e in the neighbour-
hood of the actual displacement,
Ui’U*
e < 2-liml——*————-~—| (31)

u.»u*é— R

i ou 1Tk
In order to determine the convergence rate we calculate the estimation
error for successive recursions, i.e. the difference between estimate

and actual displacement,

e(i) =u; - ¥ (32)
e(i+1) =y - W¥
- g
My Al ur. (33)

In /9/ it has been shown that gradient methods are linear convergent.
This means that the limit value of the ratio of successive estimation

errors can be determined by

e(i+1) (34)

¢ = lim =

1o

By ihserting (32) and (33) we get

W LT
c = lim 1+ — , (35)

>
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and, because lim yu, = u¥, we obtain
i 1
5 2
c =1 +~e§iy RI T N (36)

Equation (36) determines the convergence rate /9/ of the linear con-
vergent recursion sequence (25) in dependence of e. The smaller the
amount of c¢ the faster the algorithm converges to the optimum esti-
mate p¥. If we choose, for instance, an e which is equal to the right

side of relation (31) we will get a convergences rate

Ui“ll 32
c=1+2 lim |+—2—n|e 2> R (36a)
%9 aus "I, I
wpF e Re g k=1"k | oy
k~1"k
Using the rule of l'Hospital we get
2 Cli B 27 36D
= 1 + —2 R ¢ R
¢ Bu* "I q Ty R N (360)
H

po=u¥ =q
Because the second order derivative of the cross correlation function

at the location u=u* is negative, equation (36b) becomes

c = -1. (36c)
In this case the estimates oscillate between the initial estimates
+po, “Hgr in the case |c[>1 divergence is provided. For every other
chosen €, whereby relation (31) is valid, equation (36) yields a con-
vergence factor within the limits

-1 <ec < 1. (36d)

For a graphical demonstration of the convergence rate in dependence
of € we approximate the estimation error as a function of the number
of recursion steps using equation (33):

e(i+1)

o (1) i=0,1,2,... .

lel =
This leads to an exponentially decreasing estimation error, for
instance
e(i) = a + exp{pi}. (37)

Then we can determine B by

|e| = exp{B} (38)
and with a normalized estimation error o = 1 we get
e(1) = exp { In|c]| » i} (39)

where ¢ is determined by equation (36) for a given €.
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In Figure 4a the estimation error with parameter |c| is graphically

shown. For a large number of recursion steps both curves |c| = 0.5
and |c| = 0.25 show sufficient small errors. Especially for only one
or two steps the parameter curve ]c| = 0.25 shows a better convergence

concerning the remaining estimation error after truncation.

e(i)
! le| =1
\. /|C| = .5
T\
\ el = .25
.25 ¢ AN
L1254 '\.\
{ é é 4 5 6 i

Figure 4a. Estimation error in dependence of the convergence
factor |c|

The essential disadvantage of the gradient estimation technique

is the constant stepwidth €. By defining the stepwidth the convergency
behaviour is determined only for the considered error function, in

this case the squared displaced frame differences. Minimizing this
function is traced back to maximize the cross correlation function
where the direction of the recursive search is derived from its gra-
dient. If the error function is slightly varying its shape the stabi-
lity and the convergence of the algorithm are influenced. In order to
avoid oscillations the stepwidth normally has to be chosen small enough.
This would result in a large number of iterations for reaching the zero
crossing. A faster convergence is obtained by adapting the stepwidth

to the slope of the error function. If the second derivative of the

cross correlation function is used for the determination of g,
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€ = "’RTTTJ““‘—‘ (40)

Te1Ty

the algorithm is similar to the known Newton search method for one-
dimensional signals. In Figure 4ban example is shown for the gradient

technique and the Newton search technique.

R' (u)

P 1/R" (1)

Figure 4b. Example of recursive zero crossing approximation using a

constant and an adaptive step width

In /7/ a displacement estimation technique utilizing the derivatives of
the cross correlation function for correlation peak estimation is pro-
posed for two-dimensional monochrome television signals. The estimate

for the horizontal displacement is given by

3
2 R
. A L Iy
Hi = Hig 2
2R
su?  Tk-11x
.ZjAmIk—1Ik
- ’
Hiog o+ (41)

2
I a,°1

1
Ry -1%k
i,] k
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where the derivatives are approximated by differences and calculatea
within small image segments. The recursion is carried out pel by pel,
using the estimate from the previous pel as displacement prediction for
the current pel. In general the Newton search technique has a quaaratic
convergence. If the cross correlation function is symmetrical, i.e.

the derivative is S-shaped, it can be shown that the Newton algorithm
has a third order convergence /9/. The convergence rate according to

/6/ is then given by

e(it+1)

c = lim ; (42a)
i-»w e(l>3
and in our case
3
— R )lll
.- 1 3 Ik—1Ik (42b)
T30 T
o Ik—1Ik u u

For the measured cross correlation function according to Figure 2 we
get a convergence rate ¢ = -0.35 . This shows that the new algorithm
converges relatively fast because the stepwidth is adapted to the slope

of the cross correlation derivative.

In order to compare the performance of both algorithms /5/ and /7/ an
experimental evaluation has been done by means of computer simulations.
The input signal consists of a digitized monochrome television signal
containing a swinging pendulum of 20 x 10 pel size. The known hori-
zontal displacement can be descibed by a sinusoidal function and serves
as reference function. Figure 5 shows the actual displacement as
reference function and the estimate values. In Figure 6 the RMSE of

all estimates within one field is shown. For displacements up to

2.5 pel per frame the RMSE of the gradient algorithm lies between

0.7 and 1.3 pel per frame. For displacements above 2.5 pel per frame
the algorithm does not converge fast enough due to the small constant
stepwidth e. The RMSE of the Newton correlation peak estimation

remains small and varies only slightly with the amount of the displace=-
ment.
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Figure 5. Estimates and reference displacement for the horizontal

displacement of the pendulum swing
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Figure 6. RMSE as a function of the reference displacement Uy
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3. CONCLUSION

The analyzation has shown that four of the discussed displacement
algorithms basically utilize equation (11). For small displacements
each algorithm has a good performance. For larger displacements the
recursive gradient technique is expected to have a better performance.
But as the stepwidth has to be chosen small in order to avoid oscilla-
tions the algorithm does not converge fast enough, i.e. it requires too
many iterations for large displacements. This may be the reason for
the relatively high root mean square error which has been measured on
real television sequences. This analysis has shown that the calcula-
tion complexity of the gradient algorithm can be reduced. An improved
convergence can be achieved by using the Newton search method for
displacement estimation. In this case the stepwidth is derived from
the quotient of the first and second order derivatives of the cross
correlation function of the displaced luminance signals. A new dis-
placement estimation algorithm which works on the base of the Newton
search method has been proposed. The improvement with respect to the
convergence could be proved by some experimental evaluations. However,
in special cases the range of convergence of the new algorithm may be
decreased. Therefore further investigations are provided for optimizing
the stepwidth adaptation with respect to a fast convergence within an
enlarged range of stability.
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