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Abstract. This paper presents a method to estimate 3D human pose and body
shape from monocular videos. While recent approaches infer the 3D pose from
silhouettes and landmarks, we exploit properties of optical flow to temporally
constrain the reconstructed motion. We estimate human motion by minimizing
the difference between computed flow fields and the output of our novel flow
renderer. By just using a single semi-automatic initialization step, we are able
to reconstruct monocular sequences without joint annotation. Our test scenarios
demonstrate that optical flow effectively regularizes the under-constrained prob-
lem of human shape and motion estimation from monocular video.

Fig. 1: Following our main idea we compute the optical flow between two consecutive
frames and match it to an optical flow field estimated by our proposed optical flow
renderer. From left to right: input frame, color-coded observed flow, estimated flow,
resulting pose.

1 Introduction

Human pose estimation from video sequences has been an active field of research over
the past decades with various applications such as surveillance, medical diagnostics
or human-computer interfaces [22]. One branch of human pose estimation is referred
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to as articulated motion parsing [41], which defines the combination of monocular
pose estimation and motion tracking in uncontrolled environments. We present a new
approach to temporally coherent human shape and motion estimation in uncontrolled
monocular video sequences. Our work follows the generative strategy, where both pose
and shape parameters of a 3D body model are found to match the input image through
analysis-by-synthesis [21].

The 3D pose of a human figure is highly ambiguous when inferred from only a
2D image. Common generative approaches [14,15,8] try to find human poses that are
a good match to given silhouettes. However, human silhouettes can often be explained
by multiple poses [14]. Existing methods for landmark-based 3D human motion es-
timation from monocular images [25,33,1,39,40] can find a pose per frame indepen-
dently. Although 3D reconstructions from both approaches look very convincing on
single images, they can result in significant jumps in position and joint angles between
two successive frames. This creates highly unrealistic 3D reconstructions in the tem-
poral domain. Temporal consistency of tracked landmarks is only considered by few
researchers [26,35,36].

In our work we exploit the properties of the optical flow in the sequence to not only
enforce temporal coherence but also resolve the pose ambiguities of purely silhouette-
based or landmark-based approaches. We develop a motion tracker based on our novel
optical flow renderer. Optical flow has proven to improve 2D tracking while also sharing
much of the properties of range data [29]. By exploiting properties of the optical flow
we construct a robust and stable 3D human motion tracker working on monocular image
sequences.

The main idea behind our work is that the optical flow between two consecutive
frames largely depends on the change of the human pose between them. Following this
idea, we propose an energy minimization problem that infers those model parameters
that minimize the distance between observed and rendered flow for two input frames
(Fig. 1). Additional energy terms are derived based on typical constraints of the human
body, namely joint angle limits, limb interpenetration and continuous motion. For stable
tracking, silhouette coverage is enforced.

We evaluate the proposed method using two well known datasets. We analyze the
performance of our approach qualitatively and evaluate its 3D and 2D precision quan-
titatively. In the first experiment, 3D joint positions are compared against ground truth
of the HumanEva-I dataset [32] and results of two recently published methods [5,36].
The second evaluation compares projected 2D joint positions against ground truth of
the VideoPose 2.0 dataset [30] featuring camera movement and rapid gesticulation. We
compare our results against a recent deep-learning-based method for joint localization
[24]. Results demonstrate the strengths and potential of the proposed method.

Summarizing, our contributions are:

– We develop a novel optical flow renderer for analysis-by-synthesis.
– We propose a complete pipeline for 3D reconstruction of human poses from monoc-

ular image sequences, that is independent of previous annotations of joints. It only
uses a single semi-automatic initialisation step.

– Optical flow is exploited to retrieve 3D information and achieve temporal coher-
ence, instead of solely relying on silhouette information.
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2 Related Work

Human pose estimation is a broad and active field of research. Here, we focus on model-
based approaches and work that exploits optical flow during pose estimation.

Human pose from images. 3D human pose estimation is often based on the use of
a body model. Human body representations exist in 2D and 3D. Many of the following
methods utilize the 3D human body model SCAPE [2]. SCAPE is a deformable mesh
model learned from body scans. Pose and shape of the model are parametrized by a
set of body part rotations and low dimensional shape deformations. In recent work the
SMPL model, a more accurate blend shape model compatible with existing rendering
engines, has been presented by Loper et al. [20].

A variety of approaches to 3D pose estimation have been presented using various
cues including shape from shading, silhouettes and edges. Due to the highly ill-posed
and under-constrained nature of the problem these methods often require user interac-
tion e.g. through manual annotation of body joints on the image. Guan et al. [14] have
been the first to present a detailed method to recover human pose together with an ac-
curate shape estimate from single images. Based on manual initialization, parameters
of the SCAPE model are optimized exploiting edge overlap and shading. The work
is based on [4], a method that recovers the 3D pose from silhouettes from 3-4 cali-
brated cameras. Similar methods requiring multi-view input have been presented, e.g.
[3,31,27,10]. Hasler et al. [15] fit their own statistical body model [16] into monocular
image silhouettes with the help of sparse annotations. Chen et al. [8] infer 3D poses
based on learned shape priors. In recent work, Bogo et al. [5] present the first method to
extract both pose and shape from a single image fully automatically. 2D joint locations
are found using the CNN-based approach DeepCut [24], then projected joints of the
SMPL model are fitted against the 2D locations. In contrast to our work no consistency
with the image silhouette or temporal coherency is taken into consideration.

Pose reconstruction for image based rendering. 3D human pose estimation can
serve as a preliminary step for image based rendering techniques. In early work Car-
ranza et al. [7] have been the first to present free-viewpoint video using model-based
reconstruction of human motion using the subject’s silhouette in multiple camera views.
Zhou et al. [38] and Jain et al. [18] present updates to model-based pose estimation for
subsequent reshaping of humans in images and videos respectively. Rogge et al. [28] fit
a 3D model for automatic cloth exchange in videos. All methods utilize various cues,
none of them uses optical flow for motion estimation.

Optical flow based methods. Previous work has exploited optical flow for different
purposes. Sapp et al. [30] and Fragkiadaki et al. [12] use optical flow for segmentation
as a preliminary step for pose estimation. Both exploit the rigid structure revealing
property of optical flow, rather than information about motion. Fablet and Black [11]
use optical flow to learn motion models for automatic detection of human motion. Efros
et al. [9] categorize human motion viewed from a distance by building an optical flow-
based motion descriptor. Both methods label motion without revealing the underlying
movement pattern. In recent work, Romero et al. [29] present a method for 2D human
pose estimation using optical flow only. They detect body parts by porting the random
forest approach used by the Microsoft Kinect to use optical flow. Brox et al. [6] have
shown that optical flow can be used for 3D pose tracking of rigid objects. They propose



4 Alldieck et al.

the use for objects modeled as kinematic chains. They argue that optical flow provides
point correspondences inside the object contour which can help to identify a pose where
silhouettes are ambiguous. Inspired by the above mentioned characteristics, we investi-
gate the extent to which optical flow can be used for 3D human motion estimation from
monocular video.

3 Method

Optical flow [13] is the perception of motion by our visual sense. For two successive
video frames, it is described as a 2D vector field that matches a point in the first frame to
the displaced point in the following frame [17]. Although calculated in the image plane,
optical flow contains 3D information, as it can be interpreted as the projection of 3D
scene flow [34]. Assuming the presence of optical flow in the sequence (i.e. all observed
surfaces are diffuse, opaque and textured), the entire observed optical flow is caused by
relative movement between object and camera. Besides the motion of individual body
parts, optical flow contains information about boundaries of rigid structures and is an
abstraction layer to the input images. Unique appearance effects such as texture and
shading are removed [11,29]. We argue that these features make optical flow highly
suitable for generative optimization problems.

The presented method estimates pose parameters (i.e. joint angles), global position,
and rotation of a human model (Sec. 3.1) frame by frame. The procedure only requires
a single semi-automatic initialization step (Sec. 3.6) and then runs automatically. The
parameters for each frame are inferred by minimizing the difference between the ob-
served and rendered flow (Sec. 3.3) from our flow renderer (Sec. 3.2). A set of energy
functions based on pose constraints (Sec. 3.4) and silhouettes (Sec. 3.5) is defined to
regularize the solution to meaningful poses and to make the method more robust.

3.1 Scene Model

In this work, we use the human body model SMPL [20]. The model can be reshaped
using 10 shape parameters β. For different poses, 72 pose parameters θ can be set,
including global orientation. β and θ produce realistic vertex transformations and cover
a large range of body shapes and poses. We define (γ,β,θi,σi) as the model state at
time step i, with global translation vector σ and gender γ. Here, for simplicity we
assume that the camera positions and rotations as well as its focal lengths are known
and static. It is however not required that the cameras of the actual scene are fixed, as
the body model can rotate and move around the camera (cf. Sec. 4).

3.2 Flow Renderer

The core of the presented method is our differential flow renderer built upon OpenDR
[19], a powerful open source framework for analysis-by-synthesis. The rendered flow
image depends on the vertex locations determined by the virtual human model’s pose
parameters θ and its translation σ. To be able to render the flow in situ, we calculate
the flow from frame i to i − 1, referred to as backward flow. With this approach each
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pixel, and more importantly, each vertex location contains the information where it
came from rather than were it went and can be rendered in place. The calculation of
the flow is achieved as follows: The first step calculates the displacement of all vertices
between two frames i and j in the image plane. Then the flow per pixel is calculated
through barycentric interpolation of the neighboring vertices. Visibility and barycentric
coordinates are calculated through the standard OpenGL rendering pipeline.

The core feature of the utilized rendering framework OpenDR is the differentiabil-
ity of the rendering pipeline. To benefit from that property, our renderer estimates the
partial derivatives of each flow vector with respect to each projected vertex position.

3.3 Flow Matching

Having a flow renderer available, we can formulate the pose estimation as an optimiza-
tion problem. The cost function Ef over all pixels p is defined as follows:

Ef =
∑
p

||Fo(i, i− 1, p)− Fr(i, i− 1, p)||2 (1)

where Fr refers to the rendered and Fo to the observed flow field calculated on the input
frames i and i− 1. The objective drives the optimization in such way that the rendered
flow is similar to the observed flow (Fig. 1). As proposed in [19], we evaluate Ef not
over the flow field but over its Gaussian pyramid in order to perform a more global
search.

For this work we use the method by Xu et al. [37] to calculate the observed optical
flow field. The method has its strength in the ability to calculate large displacements
while at the same time preserving motion details and handling occlusions. The defini-
tion of the objective shows that the performance of the optical flow estimation is crucial
to the overall performance of the presented method. To compensate for inaccuracies
of the flow estimation and to lower the accumulated error over time, we do not rely
exclusively on the flow for pose estimation, but employ additional constraints as well
(Sec. 3.4 and Sec. 3.5).

3.4 Pose Constraints

SMPL does not define bounds for deformation. We introduce soft boundaries to con-
strain the joint angles in form of a cost function for pose estimation:

Eb = ||max(eθmin−θi − 1, 0) + max(eθi−θmax − 1, 0)||2 (2)

where θmin and θmax are empirical lower and upper boundaries and e and max are
applied component-wise.

Furthermore, we introduce extended Kalman filtering per joint and linear Kalman
filtering for translation. In addition to temporal smoothness, the Kalman filters are used
to predict an a priori pose for the next frame before optimization, which significantly
speeds up computation time.

During optimization the extremities of the model may intersect with other body
parts. To prevent this, we integrate the interpenetration error term Esp from [5]. The
error term is defined over a capsule approximation of the body model. By using an
error term interpenetration is not strictly prohibited but penalized.
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Fig. 2: Method initialization. Observed image, manual pose initialization, first optimiza-
tion based on joint positions (red: model joints; blue: manually marked joints), final
result including silhouette coverage and optical flow based correction.

3.5 Silhouette Coverage

Pose estimation based on flow similarity requires that the rendered human model ac-
curately covers the subject in the input image. Only body parts that cover the correct
counterpart in the image can be moved correctly based on flow. To address inaccuracies
caused by flow calculation, we introduce boundary matching.

We use the method presented by Bălan et al. [4] and adapt it to make it differentiable
(cf. Sec. 3.7). A cost function measures how well the model fits the image silhouette SI

by penalizing non-overlapping pixels by the shortest distance to the model silhouette
SM . For this purpose Chamfer distance maps CI for the image silhouette and CM for
the model are calculated. The cost function is defined as:

Ec =
∑
p

||aSMi
(p)CI(p) + (1− a)SI(p)CMi

(p)||2 (3)

where a weighs SMiCI stronger as image silhouettes are wider to enforce the model to
reside within in the image silhouette than to completely cover it. To be able to compute
derivatives, we approximateCM by calculating the shortest distance of each pixel to the
model capsule approximation used for Esp. The distance at p is the shortest distance
among all distances to each capsule. To lower computation time, we calculate only a
grid of values and interpolate in between.

3.6 Initialization

For the initialization of the presented method two manual steps are required. First the
user sets the joints of the body model to a pose that roughly matches the observed
pose. It is sufficient that only the main joints such as shoulder, elbow, hip and knee
are manipulated. In a second step the user marks joint locations of hips, knees, ankles,
shoulders, elbows and wrists in the first frame. If the position of a joint cannot be seen
or estimated it may be skipped. From this point no further user input is needed.

The initialization is then performed in three steps (Fig. 2). The first step minimizes
the distance between the marked joints and their model counterparts projected to the
image plane, while keeping Esp and Eb low. We optimize over translation σ, pose θ
and shape β. To guide the process we regularize both θ and β with objectives that
penalize high differences to the manually set pose and the mean shape. In the second
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step we include the silhouette coverage objectiveEc. Finally, we optimize the estimated
pose for temporal consistency. We initialize the second frame with the intermediate
initialization result and optimize on the flow field afterwards. While optimizing Ef we
still allow updates for θ0 and σ0.

3.7 Optimization

After initialization we now iteratively find each pose using the defined objectives. The
final objective function is a weighted sum of the energy terms of the previous sections:

min
σ,θ

(λfEf + λcEc + λbEb + λspEsp + λMEM ) (4)

with scalar weights λ. EM regularizes the current state with respect to the last state

EM = ||θi − θi−1||2 + ||σi − σi−1||2. (5)

Each frame is initialized with the Kalman prediction as described in Sec. 3.4.
For the optimization we use the OpenDR toolbox [19]. It allows for automatic dif-

ferentiation of most partially differentiable functions. Therefore we can avoid the la-
borious and inaccurate task of calculating finite differences. All our energy terms are
designed to be fully or partially differentiable. Using this auto-differentiation we are
able to optimize Eq. (4) efficiently.

4 Evaluation

We evaluate the 3D and 2D pose accuracy of the presented method using two publicly
available datasets: HumanEva-I [32] and VideoPose2.0 [30]. Ground truth is available
for both datasets. We compare our results in both tests, 3D and 2D, against state-of-
the-art methods [5,36,24]. Foreground masks needed for our method have been hand-
annotated using an open-source tool for image annotation1.

HumanEva-I. The HumanEva-I datasets features different actions performed by
4 subjects filmed under laboratory conditions. We reconstruct 130 frames of the sets
Walking C1 by subject 1 and Jog C2 by subject 2 without reinitialization. The camera
focal length is known. We do not adjust our method for the dataset except setting the
λ weights. Fig. 3 shows a qualitative analysis. The green plots show the history of the
joints used for evaluation. The traces demonstrate clearly the temporal coherence of
the presented method. The low visual error in the last frames demonstrates that the
presented method is robust over time.

We compare our method against the state-of-the-art methods of Bogo et al. [5] and
Wandt et al. [36]. We use [5] without the linear pose regressor learned for the HumanEva
sequences, which is missing in the publicly available source code. Frames that could not
be reconstructed because of undetected joints have been excluded for evaluation. The
3D reconstruction of [36] is initialized with the same DeepCut [24] results as used for
[5]. We measure the precision of the methods by calculating the 3D positioning error

1 https://bitbucket.org/aauvap/multimodal-pixel-annotator
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Fig. 3: Resultant poses of frames 30 to 120 of the HumanEva-I test sets. Green traces
show the history of evaluated joints.

as introduced by [33]. It calculates the mean euclidean distance of 13 reconstructed 3D
joint locations to ground truth locations from MoCap data. Beforehand, optimal linear
alignment of the results of all methods is achieved by Procrustes analysis. In order to
demonstrate the global approach of our method, we follow two strategies here: First we
measure the joint error after performing Procrustes alignment per frame. Afterwards we
calculate a per sequence alignment over all joint locations in all frames and measure the
resulting mean error. Table 1 shows the result of all tests.

The results show that our method performs best in three of four test scenarios. In
contrast to [5] and [36], our method does not require prior knowledge about the per-
formed motion or training of plausible poses. The better performance of our method
can be explained by the temporal coherent formulation using optical flow. This strength
is especially noticeable in the global analysis. The method of [5] takes no temporal
consistency into consideration, which results in jumps of joint locations between two
frames and unresolved pose ambiguities (cf. Fig. 4). Note that some frames cannot be
reconstructed due to the joint detector failing to find a feasible skeleton. The algorithm
of [36] also estimates the camera trajectory. A slightly wrongly estimated person size
results in a global offset of the camera path and causes a larger global error. In order
to demonstrate, that our method resolves ambiguities successfully, we conduct the ex-
periment again with Ef set to zero. The resultant motion does no longer resemble the
performed action (Fig. 5) and the positioning error raises significantly to 9.8 and 15.9
for local and global analysis of Walking C1 and 14.5 and 22.3 for Jog C2 respectively.

VideoPose2.0. After evaluation with fixed camera and under laboratory conditions,
we test our method under a more challenging setting. The second evaluation consists
of three clips of the VideoPose2.0 dataset. We choose the ”fullframe, every frame”
(720× 540px) variant in order to face camera movement. Ground truth is given in form
of projected 2D location of shoulders, elbows, and wrists for every other frame. The
camera focal length has been estimated.

We evaluate our method in 2D by comparison against DeepCut [24], the same
method that has been used before as input for the 3D reconstruction methods. Table
2 shows the mean euclidean distance to ground truth 2D joint locations. We use the
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Fig. 4: Temporal behavior of the left hip angle of our method for Walking C1 in com-
parison against ground truth (GT) and Bogo et al. (SMPLify) [5].

Fig. 5: Frame 120 of Walking C1 in comparison to reconstruction with Ef set to zero.

first detected person by DeepCut and exclude several undetected joints from its eval-
uation. For our method, we project the reconstructed 3D joint locations to the image
plane. The mixed performance of [24] is due to problems of the CNN with background
objects. In order to enable fair comparison, we hand filter the results of [24] to fore-
ground detections only and exclude several undetected joints. The comparison shows
that our method produces similar precision while providing much more information.
However, the increasing performance of CNN-based methods suggests that our method
can benefit from semantic scene information for reinitialization in future work.

5 Conclusions

We have presented a new method for estimating 3D human motion from monocular
video footage. The approach utilizes optical flow to recover human motion over time

Table 1: Mean 3D joint error in cm for local per frame Procrustes alignment and global
per sequence alignment.

Walking C1 Jog C2
local global local global

Bogo et al. [5] 6.6 17.4 7.5 10.4
Wandt et al. [36] 5.7 34.0 6.3 38.0

Our method 5.5 7.6 7.9 9.9
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Fig. 6: Resultant poses of frames 1, 21 and 41 of the VideoPose2.0 sets (Chandler, Ross,
Rachel) with ground truth arm locations (green and blue).

Table 2: Mean 2D joint error (shoulders, elbows, and wrists) in pixels.
Chandler Ross Rachel

DeepCut [24] 25.3 10.5 32.8
Our method 23.3 21.9 15.9

from a single initialization frame. For this purpose a novel flow renderer has been de-
veloped that enables direct interpretation of optical flow. The rich human body model
SMPL provides the description of estimated human motion. Different test cases have
shown applicability and robustness of the approach.

The presented method is dependent on realistic flow fields and good segmentation.
It finds its natural limitations in the typical limits of optical flow estimation. Improve-
ments in optical flow estimation, especially multi-frame optical flow, can help to further
improve our method. Although our temporal coherent formulation allows for a good oc-
clusion handling, large occlusions and reappearances can still lead to tracking errors.

Our work is focused on automatic estimation of human motion from monocular
video. In future work we plan to further automatize our method. The method might
benefit from recent developments in semantic segmentation [23] and joint angle priors
[1]. Building upon the presented framework, the next steps are texturing of the model
and geometry refinement, enabling new video editing and virtual reality applications.
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