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Abstract
This chapter deals with fundamental methods as well as current research on
physics-based human gait analysis. We present valuable concepts that allow
efficient modeling of the kinematics and the dynamics of the human body. The
resulting physical model can be included in an optimization-based framework. In
this context, we show how forward dynamics optimization can be used to
determine the producing forces of gait patterns.

To present a current subject of research, we provide a description of a 2D
physics-based statistical model for human gait analysis that exploits parameter
learning to estimate unobservable joint torques and external forces directly from
motion input. The robustness of this algorithm with respect to occluded joint
trajectories is shown in a short experiment. Furthermore, we present a method that
uses the former techniques for video-based gait analysis by combining them with
a nonrigid structure from motion approach. To examine the applicability of this
method, a brief evaluation of the performance regarding joint torque and ground
reaction force estimation is provided.
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Introduction

The human locomotor system is a complex construction consisting of the skeleton,
the nervous system, muscles, tendons, and ligaments. Its functionality is a basic
human need and the focus of numerous biomechanical studies. In the course of these
studies, researchers require a measure to quantify healthiness of movement. A
mathematically straightforward approach to describing the action of the neuromus-
cular system is to compute the net joint moments acting on the segments through
inverse dynamics analysis. These net moments form a first approximation to the
analysis of stress at the skeletal joint and are the foundation for classifying human
motion. Let us consider an isolated joint in the human body. It might be effected by
the pressure of neighboring bone segments, muscular exertion, and the strain of
tendons and ligaments. In order to facilitate research, all of these forces are summa-
rized in one vector, the joint torque.

Based on inverse dynamics, researchers develop and evaluate rehabilitation
techniques, e.g., prosthetics alignment (Schmalz et al. 2002) and patient-specific
gait modification (Fregly et al. 2007). Others investigate interdependencies in the
locomotor system and their effect, such as the influence of abnormal hip mechanics
on knee injury (Powers 2010). Many of these studies focus on analyzing gait
patterns, as the basic form of human movement. A well-balanced walking style is
an essential feature of a healthy locomotor system.

Unfortunately joint torques are not directly measurable but have to be assessed by
interpreting their external effect, that is, the ground reaction force (GRF), which is
exerted by the feet on the ground. The clinical standard to estimate joint torques is to
inversely calculate them from the GRF vector, the geometry of the skeleton, and the
recorded motion of the body. For this purpose, the subject’s gait pattern has to be
recorded by a motion capture (MoCap) system, and the GRF has to be measured with
force plates, which restricts this method to a laboratory setup.

For more flexibility, researchers use the profound knowledge introduced by
physical models to support gait analysis. These models yield a comprehensive
description and control over the correlation between acting forces and resulting
motion. Based on a physical model, joint torques can be estimated in the context
of an optimization problem. There exist several established optimization formula-
tions for this particular problem, namely, forward, inverse, and predictive dynamics
optimization. A comparison of these approaches and a detailed description of
forward dynamics optimization can be found in section “Optimization-Based
Methods.”
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Optimization-based torque estimation entails several challenges: A representation
of the entire body rather than just isolated segments (e.g., only one leg) is often
required, and model properties such as the inertial parameters and the formulation of
foot-ground contact model have to be defined with care. Furthermore, optimization
approaches are usually connected with high computational cost and the necessity for
considerable stabilization of the dynamic system. These issues might be addressed
by the use of sophisticated optimization algorithms and refined constraints, but
researchers also propose an alternative route, circumventing the optimization prob-
lem and instead relying on machine learning techniques. In such a framework, the
connection between a motion pattern and the underlying forces is learned on the
basis of a training set of motion sequences and associated optimization results. This
way, the gait pattern of a new subject can be assessed using the knowledge gained in
the training phase, i.e., unobservable joint torques are directly inferred from the
motion data.

With the ever-increasing amount of easily accessible video data, the demand for
motion analysis based on image sequences is inevitable. In this context, a combina-
tion of 3D motion reconstruction from 2D landmarks (nonrigid structure from
motion) and physics-based motion analysis is sought for and determines the direc-
tion of research in this field.

This chapter is structured in the following way: First of all, we present state-of-
the-art methods for physics-based modeling and motion analysis. Then, we describe
fundamental concepts to formulate the kinematics and dynamics of physical models
and introduce optimization-based methods for the estimation of effective forces. On
the basis of this methodology, we present two approaches and related experimental
results in more detail: a two-dimensional statistical model and a video-based frame-
work for human gait analysis. Both approaches are data-driven, i.e., the respective
algorithm learns parameter correlations on a training set and uses this knowledge to
directly infer underlying forces from input motion data. Finally, we point to possible
future research directions in this field.

State of the Art

A wide range of state-of-the-art methods related to human motion simulation and
analysis rely on physics-based modeling as a tool to control movement or to gain
valuable insides into the dynamics of human motion. In the field of computer
graphics, physical models enable researchers to synthesize realistic looking human
motions (Fang and Pollard 2003; Liu et al. 2005; Safonova et al. 2004; Sok et al.
2007; Wei et al. 2011; Zordan et al. 2005). The naturalness of a generated motion is
either ensured by the closeness to motion capture (MoCap) data or by an efficiency
measure. The latter case is based on the assumption that humans perform low
energetic movement. Both approaches can be applied in an optimization framework.
General issues of physics-based optimization are computational expense concerning
calculation of objectives, constraints, and the associated derivatives and a high-
dimensional search space, which complicates the optimization process. Fang and
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Pollard (2003) introduce efficient physical constraints and objective functions for a
fast optimization-based character animation. The authors formulate constraints and
objectives in such a way that first derivatives can be computed analytically in linear
time. The reduction of a high-dimensional parameter space to an appropriate sub-
space is addressed in Safonova et al. (2004). In this work, the authors use MoCap
data to transfer the optimization problem to a low-dimensional subspace that
includes the desired motion characteristics, exclusively.

While the minimization of an energy function to simulate movement corresponds
to the overall tendency of humans to avoid energy expenditure, this technique fails to
catch subject-specific motion traits and is not suitable for expressive motions, such
as dancing or acting. In those cases, an approach based on MoCap data that provides
more extensive information is sensible. Following this observation, Liu et al. (2005)
propose a physics-based dynamical model that incorporates specific features of a
persons’ motion style, e.g., the tendency to strain certain muscles more than others.

These characteristics are learned on a training set of MoCap sequences using an
introduced method called nonlinear inverse optimization.

A physical background is also suitable to support statistical approaches by
providing necessary constraints on the utilized model, e.g., (Wei et al. 2011)
combines statistical motion priors with physical constraints in a probabilistic frame-
work. The authors use a maximum a posteriori approach to synthesize a wide range
of physically realistic motions and motion interactions.

Apart from these graphic applications, physics-based models can be found,
facilitating typical computer vision tasks, like robust person tracking and 3D pose
estimation (Bhat et al. 2002; Brubaker and Fleet 2008; Vondrak et al. 2008; Wren
and Pentland 1998). Brubaker and Fleet (2008) use a simple planar model to estimate
biomechanical characteristics of gait and combine it with a 3D kinematic model for
monocular tracking. Due to the underlying physics, the model is able to handle large
occlusions. While this approach solely focuses on walking motions, a related work
by Vondrak et al. (2008) considers a wide range of motion types. The authors
introduce a full-body 3D physical prior that integrates the corresponding dynamics
into a Bayesian filtering framework. In addition to the motion dynamics, the
algorithm is able to model ground contact and environment interaction.

The previously described works concentrate on human pose tracking with
physics-based constraints but do not analyze the resulting force patterns. This
biomechanical objective, i.e., the estimation of inner joint torques and external
contact forces, is referred to as motion analysis and has been extensively treated in
various fields (Blajer et al. 2007; Brubaker et al. 2009; Johnson and Ballard 2014;
Stelzer and von Stryk 2006; Xiang et al. 2010; Zell and Rosenhahn 2015). In the
following, we will list a selection of recent works.

Brubaker et al. (2009) use an articulated body model to infer joint torques and
contact dynamics from motion data. They accelerate the optimization procedure by
introducing additional root forces and effectively decoupling the problem at different
time frames. This way an optimization step does not include the integration of EOM.
A similar goal is pursued by Xiang et al. (2010). The authors introduce predictive
dynamics as an approach for human motion simulation. Recently, researchers tried to
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learn a direct mapping from a motion parametrization (joint angles) to the acting
forces (joint torques) on the basis of MoCap data: Johnson and Ballard (2014)
investigate sparse coding for inverse dynamics regression and Zell and Rosenhahn
(2015) introduces a two dimensional statistical model for human gait analysis.

The transfer of motion analysis to a 2D setting, i.e., a video-based framework, is a
relatively novel subject of research (Brubaker et al. 2009). By combining physics-
based modeling with standard nonrigid structure-from-motion techniques (e.g.,
(Bregler et al. 2000)), it is possible to infer the unobservable physical parameters
from monocular image sequences. State-of-the-art human pose estimation methods
rely either on anthropometric constraints (Akhter and Black 2015; Ramakrishna
et al. 2012; Wang et al. 2014) or on temporal bone length constancy (Wandt et al.
2015, 2016). These assumptions are relatively weak compared to a kinematic model.
Therefore, the next step is a combination of pose estimation with a physics-based
model of humans. This will not only improve the 3D reconstruction but also allow
for the estimation of joint torques from an image sequence. An example implemen-
tation of a joint model for pose estimation and physical parameter regression is
described in section “Combining Physical Models with 3D Reconstruction.”

Models and Methodology

Kinematics and Dynamics of Physical Models

The groundwork of physics-based human motion analysis is a physical model of the
human body. The literature offers a large amount of different models with varying
complexity from which many have been developed in the scope of robotics appli-
cations. A frequently used type are mass-spring models that consist of bone seg-
ments and connected by joints which are provided with torsional springs to create
joint torques. Beyond that, muscular skeletal models are applied (especially in
biomechanical research) for a more realistic presentation of the human locomotor
system, modeling the interaction between bone segments, joints, and an elaborate
structure of muscles. Since the methods described in this chapter are more suitable
for simple skeletal models, we focus on the portrayal of mass-spring models in this
section.

The modeled skeleton comprises a number of bone segments with associated
inertial properties (mass and inertial tensor) and connecting torsional springs for
each joint degree of freedom (DOF). Examples of a 2D and a 3D model can be seen
in Fig. 1. An essential part of these models is the kinematic chain that provides the
linkage between all segments and predefines the space of possible motions. In the
following part, we show how a kinematic chain can be defined using the Denavit-
Hartenberg notation (Steinparz 1985), well-known from robotics.

Denavit-Hartenberg Convention
In 1955, Jacques Denavit and Richard Hartenberg introduced a convention to
characterize a kinematic chain by a minimal set of four parameters for each interlink
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transformation. A link refers to a rotational or translational degree of freedom. In this
presentation, coordinate frames are attached to every link of the chain, and the
Denavit-Hartenberg parameters specify the transformation between successive link
coordinate systems.

LetHj�1
j be the transformation matrix from link j � 1 to link j and [θj,dj,αj,aj] the

constituting parameters. Then the following operations are performed consecutively:
A rotation of the coordinate system around the zj�1-axis by the angle θj, a translation
along the zj�1-axis by the distance dj, a second rotation around the new xj-axis by the
angle αj, and a final translation along the xj-axis by the distance aj. The

corresponding transformation matrix H
j�1
j is composed of the total rotation R

j�1
j

and total translation T
j�1
j , with

ð1Þ

When considering a kinematic chain consisting of several links, the position and
orientation of every link are determined by its predecessor transformations. There-
fore, the transformation from the coordinate system at link j to the world coordinate
frame L0 is obtained by the product of all transformations in the sub-chain from the
root link to the respective link:

Hj
0 ¼ ∏

j

i¼1

Hi
i�1 ¼ Ri

0 Tj
0

0T 1

� �
(2)

The linear coordinates p0ci of the center of mass (COM) of segment i can be
derived from the total translation and the total rotation of the coordinate system
attached to link j with respect to L0:

p0ci ¼ T0
j þ R0

j p
j
ci
, (3)

where pjci are the coordinates of the considered segment COM in the coordinate
system of the preceding link.
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TMT Method
The dynamics of the considered mass-spring model are specified by a set of
equations of motion (EOM), which we will formulate using the TMT method
(Schwab and Delhaes 2009). This approach combines advantages of both the
Newton-Euler method and the Lagrange-Euler formulation by basically trans-
forming from constrained to unconstrained dynamics. In the Newton-Euler
approach, the EOM have to be extended to differential algebraic equations by
additional constraints that model the interconnection (kinematic chain) between
the model coordinates. This often leads to poor accuracy of solutions provided by
numerical solvers. In contrast to that, the Lagrange-Euler approach deals with a
minimum set of independent generalized coordinates, and the EOM are formulated
based on an energetic view point. For this purpose, all arising energies have to be
identified and their derivatives have to be calculated analytically, which might be
difficult in the case of complex, large DOF models.

To exploit the benefits of both methods, the TMT method uses a force approach,
but incorporates the kinematic constraints in a transformation T from dependent
coordinates x (segment COM position and orientation) to independent generalized
coordinates q (joint angles):

x ¼ T qð Þ (4)

Derivation supplies the corresponding linear and angular velocities and
accelerations:

_x ¼ @T

@q
_q (5)

€x ¼ @T

@q
€qþ @

@q

@T

@q
_q

� �
_q (6)

The second term in Eq. (6) is referred to as convective acceleration

G ¼ @
@ q

@ T
@ q

_qÞ _q:
�

Furthermore the relation

δx ¼ @T

@q
δq (7)

between virtual displacements of the coordinates is valid and can be inserted into
D’Alembert’s principle of virtual work:

δx F�M€xð Þ ¼ 0 (8)

@T

@q
δq F�M

@T

@q
€qþ G

� �� �
¼ 0 (9)
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Here F summarizes all applied forces and torques and M is the system’s inertia
matrix. Because of the independence of δq and the validity of virtual displacements
larger than zero, we can write Eq. (9) as

@T

@q

� �T

F�M
@T

@q
€qþ G

� �� �
¼ 0 (10)

Rearranging of Eq. (10) yields the EOM, formulated in independent generalized
coordinates:

@T

@q

� �T

M
@T

@q
€q ¼ @T

@q

� �T

F�MGð Þ (11)

This equation can be simplified by introducing the Jacobian J ¼ @ T
@ q and the

generalized inertia matrix M ¼ @ T
@ q

� �T
M @ T

@ q, so that

M€q ¼ JT F�MGð Þ: (12)

Formulating the Equations of Motion
For a clearer insight into the described methods, we will now provide an outline of
the derivation of EOM following Eq. (12) and using the 3D mass-spring model
depicted in Fig. 1 on the right-hand side. The model has 23 joint DOF and 6 DOF for
the global position and orientation of the root joint, resulting in a total of 29 DOF.
Therefore, we will receive a set of 29 coupled EOM.

The kinematic interconnection between the DOF q, i.e., between the generalized
coordinates, is defined via the Denavit-Hartenberg transformation matrices. In this
context, the coordinates q appear either as a translation a or d (prismatic joints) or as
a rotation α or θ (revolute joints). The Jacobian J of the according coordinate
transformation T (q) from generalized coordinates to Cartesian coordinates (position
and orientation of segment COM) is composed of a linear and a rotational part:

_x ¼ Jlin

Jrot

� �
_q (13)

Instead of formulating T (q) and calculating every differential @ Ti

@ qj
to determine

the Jacobian, we choose a geometric approach. In the Denavit-Hartenberg conven-
tion, the rotation and translation axis associated with a DOF qj is always equal to the
z-axis of the respective coordinate frame Lj�1. This leads to the following equations
for prismatic joints (Spong et al. 2005):

Jlinij ¼ z0j�1

Jrotij ¼ 0,
(14)
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and for revolute joints:

Jlinij ¼ z0j�1 � p0ci � T0
j�1

� �
Jrotij ¼ z0j�1,

(15)

with T0
j�1 and p0ci calculated according to Eqs. (2) and (3), respectively.

Apart from the Jacobian, we also need an expression for the convective acceler-
ation G, which can be derived in a similar fashion with

G ¼ Glin

Grot

� �
_q: (16)

The corresponding sectional matrices for prismatic joints are

Glin
ij ¼ 0

Grot
ij ¼ 0,

(17)

and for revolute joints, we get

segment COM 

joint DOF with torsional
spring

x

y

(0,0)

y

z
x

contact point

global DOF 

Fig. 1 Physical mass-spring-models in 2D (left) and 3D (right). Joint degrees of freedom (DOF)
are depicted in blue and global DOF in green. Each joint degree of freedom is equipped with a
torsional spring and each segment is assigned with a mass and a tensor of inertia.
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Glin
ij ¼

Xi�1

k¼0

z0min j�1, kf g � z0max j�1, kf g � p0ci � T0
max j�1, kf g

� �� �
_qk

Grot
ij ¼ z0j�1 �

Xi�1

k¼j

z0k _qk:

(18)

The Jacobian together with the convective acceleration describes the kinematic of
our model. To characterize the dynamics of the system, i.e., formulate the EOM, we
need further properties, more precisely, the inertia matrixM and the active forces and
torques F (cf. Eq. (12)).

The inertia matrix is composed of mass values and inertia tensors for all model
segments. Let Mci and Ici be diagonal matrices containing masses and moments of
inertia in the segment coordinate frames, i.e., the values for the inertial properties
correspond to the rotation axes in the local frames attached to the individual segment
COM. Then the inertia matrix related to the coordinates x in the global frame L0 is

M ¼ Mci

R0
ci
IciR0T

ci

� �
, (19)

with the rotationR0
ci
given by Eq. (2). Finally, the generalized inertia matrix required

for the EOM is obtained by M = JTMJ.
The motion of the 3D mass-spring model is driven by spring torques and outer

contact forces. The spring torques τj are applied at every joint DOF of the model
(represented by blue arrows in Fig. 1). A commonly used parametrization is

τj ¼ �κj qj � q
0ð Þ
j

� �
� dj _qj, (20)

with a linear resetting torque depending on the spring constant κj and the resting

angle q 0ð Þ
j and an additional damping term proportional to the angular velocity of the

joint DOF with damping constant dj (Brubaker and Fleet 2008). To simulate
increasingly dynamic and natural-looking motions, additional nonlinear terms
might be added, e.g., Zell and Rosenhahn (2015):

τj ¼ �κj qj � q
0ð Þ
j qð Þ

� �
� dj _qj,

q
0ð Þ
j qð Þ ¼ q

0ð Þ
j þ

X4
k¼1

ckx
k
CoM qð Þ:

(21)

Here, the resting angle is characterized by a fourth-order polynomial of the
position of the whole body COM. It is noteworthy that this representation is only
sensible for motions like walking or running that exhibit an even forward movement
of the COM. The single joint torques are summarized in the vector τ with τj = 0 for
j � 6 (six global DOF that are not actuated by a joint torque).
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When the model is in contact with its environment, e.g., standing on the ground or
lifting objects, it is effected by contact forces, denoted by Fc in the following. For the
majority of human motion types, our feet have to touch the ground and so-called
ground reaction forces (GRF) act on the sole of the foot. These forces mostly
accelerate the body in vertical direction, balancing the gravitational force. They act
as a braking force when the foot contacts the ground and a propulsive force at push off
from the ground. Furthermore, a horizontal friction force, depending on the properties
of the touching materials and the vertical force, prevents a sliding of the feet on the
ground. There are several possibilities to model the ground contact: The 2D model
illustrated in Fig. 1 is equipped with circular feet that enables a rolling motion of the
feet on the ground during gait. The GRF is concealed in a model constraint, by
defining the contact point as the root of the kinematic chain and effectively setting
its vertical coordinate to zero (Zell and Rosenhahn 2015). This approach is not
advisable for a 3D model with a significantly larger DOF, since it would result in
intolerably long kinematic chains that entail high simulation uncertainties.

As an alternative, Brubaker et al. (2009) suggest a spring contact force that
accelerates points on the sole of the foot, when approaching the ground plane. The
force is modulated by two sigmoid functions, which on the one hand ensure that a
contact point p is only effected when it is very close to the ground surface S and on
the other hand prevent an acceleration toward the ground. The force is defined by the
following equations:

Fc p, _p, θSð Þ ¼ h �60dS pð Þð Þh 5nc pð Þð Þ nc pð ÞnS pð Þ þ tc pð Þ½ �,
nc pð Þ ¼ �κN dS pð Þ � 1ð Þ � δN _pTnY pð Þ,
tc pð Þ ¼ �δT _p� nS pð ÞT _pÞnS pð Þ

� �
,

� (22)

with the sigmoid h xð Þ ¼ 1
2
1þ tanh xð Þð Þ. The total force is composed of the normal

force ncnS and the tangential attenuation tc, where nc denotes the magnitude and nS is
the surface normal. The sigmoidal modulation depends on the shortest distance d(p)
between the point p and the ground surface S. Finally, model parameters are included
in the vector θS, namely, the position and orientation of the ground plane, the spring
stiffness κN, the normal damping constant δN, and the tangential damping constant δT.

The last force term we are still missing for a complete description of the 3D model
with our EOM is the gravitational force:

Fg ¼ Mg, (23)

where g is the gravitational acceleration with respect to the dependent coordinates x.
Since the acceleration g = �9.81 m/s2 only affects the linear coordinates of the
segment COM in vertical direction, all other components are set to zero.

Finally, we insert all discussed terms into Eq. (12) and receive the model EOM:

M€q ¼ JT τ þ Fc þ Fg �MG
� �

: (24)

Physics-Based Models for Human Gait Analysis 11



This equation determines the dynamics of our model; in other words, it predicts
the development originating from an initial configuration of joint angles and angular
velocities. The acting forces and therefore the accelerations of the generalized
coordinates are completely defined by the model parameters θ and the current state

of the model q, _q½ �T. The model parameters include all spring and contact parameters,
e.g., stiffness and damping constants, resting angles and the position and orientation
of the contact plane.

Optimization-Based Methods

On the basis of the previously described physical models, we can estimate the
underlying forces and torques of motion data in an optimization framework. The
corresponding approaches found in the literature can be divided into three different
categories, inverse dynamics, forward dynamics, and predictive dynamics.

The inverse dynamics approach considers the motion parameters (e.g., joint
angles q) as optimization variables. A suitable objective function, e.g., the distance
to a target motion or a human performance measure, is minimized and joint torques
are calculated inversely. This way, the expensive integration of EOM is avoided and
the optimization problem is easily controlled, i.e., no sophisticated constraints are
necessary. A disadvantage of this method is the indirect derivation of forces that is
affected by the characteristic inaccuracy of joint trajectories and their accelerations.

In contrast to that, forward dynamics treats the forces and joint torques as design
variables that generate a motion through integration of EOM. As a result, the
optimization problem induces large computational cost and accurate boundaries
are crucial for the convergence of the optimization algorithm. Advantages of this
approach are the directly optimized forces and a natural conclusion of motion
parameters via EOM. Inverse as well as forward dynamics depends on the accuracy
of the inertial properties to achieve a sound torque estimation.

A rather novel approach, called predictive dynamics, was introduced by Xiang
et al. (2010). Both the joint torques and the model states are optimization parameters
and the EOM are treated as equality constraints. The method is closely related to
direct collocation methods (Stelzer and von Stryk 2006). It is computationally
efficient since no integration of EOM is required but because of the large number
of design variables an optimization algorithm suitable for large-scale problems that
has to be used.

Optimization Problem Setup
In this section, we will focus on forward dynamics optimization, since it is based on
the natural relation between forces and motion and provides a convenient frame to
introduce optimization principles. We will formulate the problem and present appro-
priate objective functions, regularization, and constraint terms. Let us consider a
problem of the form

12 P. Zell et al.



min
θ

f θð Þf g
s:t:gi θð Þ � 0, i ¼ 1, . . . ,m
hi θð Þ ¼ 0, i ¼ 1, . . . , n,

(25)

where θ are model parameters, f denotes the objective function, and gi and hi are
inequality and equality constraints, respectively. The forward dynamics step, i.e., the
integration of the EOM, is represented by the functionD and results in the temporal
development of the model states

q tð Þ, _q tð Þ½ �Tmod ¼ D t, θ, q 0ð Þ, _q 0ð ÞÞ,ð (26)

with the initial state q 0ð Þ, _q 0ð Þ½ �T. For the approximate solution, an ordinary differ-
ential equation (ODE) solver has to be used. These solvers are generally based on a
Runge-Kutta method (Mayers and Sli 2003).

In our problem statement, the motion data exists as input information, e.g.,
recorded by a MoCap system and we want to estimate appropriate joint torques.
Therefore, it is reasonable to define an objective function that includes the distance

between modeled states and target states: q tð Þ, _q tð Þ½ �Ttarg,e.g., the quadratic L2-norm of

their difference:

f θð Þ ¼
ðT
0

D t, θ, q 0ð Þ, _q 0ð Þð Þ � q tð Þ, _q tð Þ½ �Ttarg
��� ���2: (27)

Since the optimization algorithm generally has to deal with a high-dimensional
parameter space and the subspace that creates realistic motions is non-convex,
careful regularization and constraints on the system are indispensable. A number
of human performance measures can be used to support the optimization routine.
These measures penalize motions with high energetic cost which are considered to
be unnatural. Commonly used quantities are the dynamic effort:

f ¼
ðT
0

jjτjj2dt, (28)

and the jerk:

f ¼
ðT
0

jj _τjj2dt: (29)

Minimizing the jerk increases the smoothness of the simulated motion.
Furthermore, we can reduce the searched parameter space by incorporating prior

knowledge as constraints gi and hi. Obviously, it is advisable to set boundaries on the
model parameters, such as
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0 � κj � uκj ,

lqj � q
0ð Þ
j � uqj ,

0 � dj � udj ,

(30)

with the respective lower and upper bounds l and u for the joint spring parameters. In
addition to that, we might have knowledge about the motion of certain points of our
model, e.g., the contact points during walking are not supposed to slide over the
ground, but have to stay fixed. This information can be taken into account by the
equality constraint

hc ¼
ðT
0

jjJc _qjj2dt ¼ 0, (31)

where Jc is the section of the Jacobian that is associated with the coordinates of the
contact points.

In some scenarios, GRF have been recorded with force plates and can be used as
ground truth data Ftarg. Then we can constrain the modeled contact force with

hf ¼
ðT
0

jjFc � Ftragjj2dt ¼ 0: (32)

In practice, it is often beneficial to formulate equality constraints as soft inequality
constraints by introducing an upper threshold or to include them as regularization
terms. This way the convergence of the optimization algorithm is more likely.

Learning Force Patterns in 2D

In this section, we will present a statistical approach for the analysis of human gait
(Zell and Rosenhahn 2015). The general idea of this work is to learn model
parameters on a set of MoCap walking sequences from 115 subjects and then use
this knowledge to infer the underlying joint torques of a new gait pattern directly
from the motion data. The proposed model considers the 2D projection of walking in
the sagittal plane (cf. Fig. 1 on the left-hand side). It consists of ten segments and
nine DOF for the joint angles. The corresponding EOM can be derived as described
in section “Formulating the Equations of Motion” and have the form

M qð Þ€q ¼ F q, _q, θÞ:ð (33)

Based on this, movement can be simulated by solving the related initial value
problem according to Eq. (26).
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Combined Statistical Model
For the direct regression of joint torques from motion, a statistical model has to be
learned that combines motion characteristics with a physical representation. Follow-
ing Troje (2002a), the authors represent walking as a linear combination of principle
component postures pi with sinusoidal variation of coefficients:

p tð Þ ¼ p0 þ p1 sin ωtð Þ þ p2 sin ωtþ ϕ2ð Þ
þ p3 sin 2ωtþ ϕ3ð Þ þ p4 sin ωtþ ϕ4ð Þ: (34)

Here, ω is the fundamental frequency of the gait and (ϕ2,ϕ3,ϕ4) are phase shifts.
In Troje (2002a), a posture consists of 15 three-dimensional joint positions, resulting
in a 45-dimensional vector p. For a full motion representation, all characterizing
parameters are summarized in one vector:

u ¼ p0, p1, p2, p3, p4,ω,ϕ2,ϕ3,ϕ4½ �T : (35)

To include information about physical properties, the gait patterns from the
training set are approximated using a forward dynamics optimization approach
(cf. section “Optimization-Based Methods”). The EOM are integrated, resulting in
a simulated motion which is compared to the target motion at a set of key times {tk}k.
The authors optimize the physical model parameters θ together with the initial state

q0, _q0�T
h

by minimizing the sum of squared reconstruction errors and constraining

the simulated GRF Fc to lie in the vicinity of ground truth data Ftarg. This way,
realistic force patterns are ensured. The optimization problem is formulated as
follows:

q0, _q0, θð Þ ¼ arg min
qo, _q0 , θ

X
k

D tk, q0, _q0, θð Þ � q tkð Þ, _q tkð Þ½ �Ttarg
��� ���2

( )
,

s:t: Fc q tkð Þ, _q tkð Þ, €q tkð ÞÞ � Ftarg

� �� � ηk,
��

with thresholds ηk. The simulated GRF vectors are normalized with respect to body
weight and compared to a normalized mean ground truth force Ftarg, obtained from
force plate measurements. The effective GRF is calculated via

Fc q, _q,€qð Þ ¼
X
i

mi

M
ai q, _q,€qÞ � gð Þ,ð (37)

where g is the gravitational acceleration and ai is the Cartesian acceleration of body
segment i with respective to mass mi. The total body mass is denoted by M.

The optimization problem can be solved by sequential quadratic programming
(SQP) (Powell 1978) and the resulting physics-based model parameters are
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v ¼ q0, _q0, θ,M½ �T : (38)

Based on the combined parametrization of u and v, it is possible to infer joint
torques from joint angle trajectories and vice versa. The corresponding parameter
vectors are optimized for each walking sequence in the training set and then stacked
in one matrix:

W ¼ u1...u115
v1...v115

h i
|fflfflfflfflffl{zfflfflfflfflffl}
115 subjects

�ℝ229 motion Eq: 35ð Þð Þ
�ℝ52 physical model Eq: 38ð Þð Þ (39)

The combined statistical model encompasses geometrical properties, dynamical
behavior, and the physical description of a walking motion. All of these features
contribute to the characteristics of a gait pattern, and their mutual dependence can be
exploited to infer missing information based on an incomplete parameter set. Two
different regression methods are applied: a k-nearest neighbor (k-NN) regression and
an asymmetrical projection into the principal component space (aPCA), as intro-
duced by Al-Naser and Söderström (2012).

Force Estimation with Occluded Input
The proposed direct regression methods are evaluated regarding the deviation of
estimated 2D GRF and stance knee torques from ground truth data and inversely
calculated torques, respectively. For this purpose, MoCap sequences of three differ-
ent subjects with synchronized force plate measurements were recorded. Based on
the motion parameters u of the considered sequence, the physical parameters v are
inferred and used as input to the physical model simulation. This yields the estimated
GRF via Eq. (37) and the estimated joint torques through the respective spring torque
equation, e.g., Eqs. (20) or (21).

In order to evaluate the robustness of the direct regression methods with respect to
incomplete input information, joint trajectories are iteratively removed from the
considered gait sequence. Starting with missing left-hand trajectory, the authors
successively remove the trajectories of the left elbow, ankle, and knee, resulting in
a final regression based solely on the right-hand side of the human body. The number
of missing joint trajectories is denoted by N. Results for one example subject are
illustrated in Fig. 2. For a quantitative evaluation, the symmetric mean absolute
percentage errors (SMAPE) eF and eτ for GRF Fc and stance knee torques τK1

,
respectively, are listed in Table 1 together with the arising computation times. To
compare the performance of the direct regression methods to an optimization
procedure, a third method (OPT) following the forward dynamics optimization in
Eq. (36) was implemented. In the case of missing joint trajectories, an additional
term, based on the dynamic effort, is minimized to compensate for the incomplete
information.

With zero missing input trajectories, the best approximation is achieved by the
optimization-based method OPT, as expected. Under these circumstances, the phys-
ical parameters are optimized, to create a simulated motion as close to the target
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motion as possible with no additional energy minimization that affects the results. As
the input information is reduced, the direct regression methods (k-NN, aPCA)
increasingly outperform OPT. In particular, the estimates based on the k-NN method
show consistently low SMAPE values. In regard to the computational cost, the
optimization requires computation times that are at least three orders of magnitude
higher than those for the direct regression methods. All of these values were
generated using unoptimized Matlab code.

In summary, the combination of motion and force parameters in one statistical
representation allows a fast and robust regression of joint torques from MoCap data.
In this work, a limiting factor of the approximation quality is the rather simple 2D
physical model.
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Fig. 2 Comparison between different regression and optimization methods concerning estimated
GRF components Fy, Fx and knee torques τK1. Positive values correspond to flexor torques. The
results are based on full joint trajectory information (in (a)) and on partial information with N = 4
(in (b)), respectively. In the case of GRF components, the black line illustrates ground truth data,
and in the case of joint torques, it represents torques calculated via inverse dynamics. A quantitative
evaluation can be found in Table 1

Table 1 SMAPE values EF and Et for GRF and knee torque estimates with related computation
times tc

k-NN aPCA OPT

N eF eτ tc [s] eF eτ tc [s] eF ετ tc [s]

0 1.504 1.624 2.994 1.726 2.019 0.881 1.483 1.420 8103

1 1.504 1.586 2.117 1.780 2.052 0.934 1.811 1.851 4358

2 1.496 1.582 2.112 2.005 2.083 0.913 1.890 1.793 3096

3 1.524 1.562 2.583 1.606 2.169 0.619 1.843 2.069 3229

4 1.528 1.565 2.538 1.594 2.072 0.669 1.911 2.188 2092

N indicates the number of missing input joint trajectories

Physics-Based Models for Human Gait Analysis 17



Video-Based Gait Analysis

As shown in the previous sections, methods based on motion capture records
combined with additional force measurement achieve high-quality results. However,
they require expensive and complex laboratory setups. With the increasing ease of
capturing videos, for example, with mobile devices, the demand for purely video-
based motion capture rises. In the combination of structure-from-motion methods
with complex physical models, researchers found a tool to infer physical parameters
directly from monocular input videos.

A Short Introduction to NRSfM
Structure-from-motion (SfM) describes techniques to infer a 3D structure of an
object from its 2D projections into an image plane. Early work concerning the 3D
reconstruction of rigid objects was done in the 90s by Tomasi and Kanade (1992). In
their seminal work, they proposed to decompose a 2D measurement matrixW2D into
camera matrices K and a shape matrix S:

W2D ¼ KS: (40)

With observations from multiple viewpoints, they were able to reconstruct the
rigid 3D structure of the object. In 2000, Bregler et al. (2000) generalized Tomasi
and Kanades work to the nonrigid case, where the observed object is allowed to
deform over time. Their method rests upon the idea that a deformable shape S can be
represented by a linear combination of K-weighted base shapes Qi:

S5
XK
i¼1

diQi, (41)

where di is the weighting factor for the i-th base shape. This leads to a generalization
of Eq. (40):

W2D ¼ KDQ, (42)

where D contains the weighting factors di for the base shapes in Q. A common
approach is to minimize a reprojection error er such as

er ¼ W2D � KDQk k (43)

for the different variable sets with respect to orthogonality constraints on the camera
matrix. For further detail, the reader is referred to Bregler et al. (2000).

Since the base shapes in this mathematical representation are nonunique in the
following years, numerous authors (e.g., Dai and Li 2012; Hamsici et al. 2011; Park
et al. 2010; Torresani et al. 2003, 2008) proposed several constraints to convert this
problem into a more feasible one.
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NRSfM for 3D Reconstruction of Human Motion
Although the methods briefly introduced in section “A Short Introduction to
NRSfM” were developed for arbitrary deformable objects, they also showed great
success in the 3D reconstruction of human motion. However, they require a suffi-
cient camera or object motion to achieve acceptable results. Therefore, they are not
applicable for more realistic scenarios with limited camera motion such as in
surveillance situations. This leads to the idea of including prior knowledge about
the observed object into the problem formulation.

In 2002, N. Troje (2002a, b) showed that a single human pose during a gait
motion can be described by the linear combination of specific weighted vectors.
These vectors (named eigenpostures) are obtained by performing a PCA on multiple
3D gait sequences. It was shown that the first four eigenpostures were sufficient to
cover more than 98% of the variance of a walking motion. N. Troje also discovered
that for a walking motion, the weights for the eigenpostures describe a sine curve.
This leads to the conclusion that the human gait can be described by just the four
eigenpostures and the corresponding sine functions which are defined by their
amplitude, frequency, and phase shift. In Troje (2002a, b), this discovery was used
to identify and create gait patterns for different gait characteristics. Since Troje’s
formulation is in close proximity to Eqs. (41) and (42), the applicability for 3D
reconstruction is obvious.

Multiple researchers used the idea of representing human poses in a PCA basis for
the 3D reconstruction from single images, e.g., Akhter and Black (2015), Ramakrishna
et al. (2012), and Wang et al. (2014). Since these learned bases also include many
nonhuman poses, further anthropometric priors are applied, such as symmetry and
predefined bone length relations. Wandt et al. (2015, 2016) were the first to combine
temporal information of the skeletal structure with the learning of subspaces by
employing a bone length constancy term. They also exploited the periodic behavior
of the eigenpostures coefficients for periodic motions as proposed by Troje (2002a).
Thus, their method appears to be well suited for gait reconstruction tasks in general,
but not for a detailed analysis of idiosyncratic gait (e.g., pathological gait caused by
neurological disorders) due to the limited number of used principle components.

Combining Physical Models with 3D Reconstruction
Here an algorithm is presented to jointly infer the 3D pose and physical parameters
from monocular input data. The presented algorithm first performs the 3D pose
reconstruction followed by the physical simulation to eliminate any ambiguities
between camera and object motion as well as enforcing a physically plausible
reconstruction. The dynamical description is based on a 3D physical mass-spring
model (cf. Fig. 1 on the right-hand side) with spring and contact parameters θ that
result from the following optimization procedure:
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θ5 arg min
θ

w0

T

XT
t¼1

q, _q½ �mod, t
T � q, _q½ �Ttarg, t

��� ���2
(

þ w1

T

XT
t¼1

τtk k2 þ _τtk k2
� �

þ w2

T

XT
t¼1

Jc _qmod, tk2
�� )

,

(44)

with regularization weights (w0,w1,w2). A description of the individual terms has
been given in section “Optimization Problem Setup.”

A joint parameter space is built consisting of the weighting matrix D from
Eq. (43) and the physical parameters θ. As shown in Eq. (42), the 3D shape can be
written as S = DQ. For known 3D shapes S from the training data, D can be directly
calculated via

D ¼ SQþ, (45)

where Q+ denotes the Moore-Penrose pseudoinverse of Q. Finally, a vector vk
composed of the vectorized weighting matrix D and the physical parameters θ is
assigned to each sequence k in the training set:

vk ¼ vec Dð Þ
θ

� �
: (46)

Here, vec(�) is the vectorization operator which stacks the columns of the matrix
into a vector. We assume that a newly observed motion lies in the space spanned by
the vectors vk for each sequence k.

In the first step, the algorithm performs a 3D reconstruction of the observation
matrixW2d alternatingly minimizing Eq. (43) for the camera matrix K and coefficient
matrix D. The consequent 3D shapes are calculated by S= DQ. Since a linear model
is used to represent nonlinear deformations, the estimated 3D motion is expected to
differ from the real motion. This can be easily seen when analyzing the temporal
behavior of the bone lengths, shown on the left in Fig. 3. After the 3D reconstruction,
the bone lengths fluctuate heavily due to the above mentioned linear model. This
issue is addressed by limiting the parameter space to physically valid motions; in
other words, the weighting coefficients and physical parameters are inferred by
means of a k-nearest neighbor (k-NN) regression in the space spanned by the vectors
vk. As suggested by Zell and Rosenhahn (2015), a local k-NN regression can be used,
which outperforms global approaches like PCA or asymmetric PCA for this partic-
ular problem.

The recovered physical parameters θ are now employed to simulate a 3D motion
by integrating the corresponding set of EOM. This step provides the resulting joint
torques and contact forces and converts the rough 3D pose estimation to a physically
feasible 3D reconstruction of the observed motion. Comparing the bone length
variation before (cf. Fig. 3 left) and after physical simulation (cf. Fig. 3 right)
indicates an improvement regarding plausibility.

Additionally, the use of the physical model allows for resolving the ambiguity
between camera and object motion. Based on the knowledge gained from the
physical simulation of the observed object, e.g., the forward movement during
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walking, a standard camera calibration technique with known 2D-3D point corre-
spondences can be used to reconstruct the camera parameters.

Experiments on Force Estimation
The joint model is evaluated on a training set consisting of 45 MoCap walking
sequences with synchronized force plate data. For each reconstruction, the consid-
ered sequence is excluded from the training set. First of all, the estimation of knee
torques from video data is assessed. The torque profiles are generated as described in
the previous section. Figure 4 shows the mean value of estimated knee torques for all
reconstructed gait sequences together with the related standard deviation. The graph
on the right-hand side of Fig. 4 displays the inversely calculated knee torque of an
example sequence for comparison.

The torque was computed based on force plate data using a bottom-up procedure,
i.e., calculating all acting lever arms, joint forces, and torques from the center of
pressure (COP) on the ground to the knee joint. Because of this, only the torque
during the stance phase is shown. The kinematic chain from the COP to the knee at
the swing leg would be too long and consequently the accumulated error would
become too high. It can be seen that the estimated torques are consistent for all
reconstructed 3D motions and the absolute values are similar to inverse dynamics
torques. The maximal extension torque is reached during the second half of the
swing phase and not during double support.

This discrepancy is mainly due to the estimated contact model, that is very
sensitive to the distance of contact points to the ground. Further error sources are
model inaccuracies, e.g., concerning mass distribution, imprecision of the fitted
skeleton, and of course the reconstruction error of θ.

To further analyze the joint model regression, vertical GRF are compared to
ground truth data in Fig. 5. The absolute values of the extremal points are slightly
high, but the overall curve progression resembles ground truth reaction forces. The
experiment shows that the joint model provides a sound estimation of unobservable
3D torques from monocular videos without the need for tedious optimization.

To demonstrate the applicability of the algorithm to real-world scenarios, a
sequence from the KTH football database (Kazemi et al. 2013) has been
reconstructed. This dataset contains multiview sequences of a challenging noisy
outdoor scene that shows a football player walking over a playfield. The 3D
reconstruction from camera 1 with estimated torques is illustrated in Fig. 6. As
expected, the reconstructions from the remaining two cameras yield very similar
results with a maximal reconstruction error of 0.05 m.

Future Directions

In this chapter, we gave you an overview over motion, in particular gait analysis
based on a physical simulation. We presented basic concepts of physical modeling,
parameter optimization, and 3D reconstruction and showed how these methods can

22 P. Zell et al.



be extended to data-driven learning approaches for force estimation. At this point,
there are multiple promising directions for future research.

Considering the video-based gait analysis presented in section “Video-Based Gait
Analysis,” it is a straightforward conclusion to search for a method that does not
combine the 3D reconstruction and the physical simulation in a pipeline as separate
steps, but joins them in one model. A further goal in this context is the development
of algorithms for handheld devices that would be able to jointly estimate the 3D
motion and 3D forces from an integrated monocular camera view. Based on this,
short video clips could be directly analyzed using the smartphone that recorded
them. For this objective, we require a very robust algorithm concerning camera
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motion and an implementation that enables real-time processing, in order to ensure
the applicability in everyday life.

Another interesting, sparsely treated research direction is the fusion of different
sensor types to facilitate human motion analysis. For example, prior knowledge
about the acceleration and the orientation of a subset of body segments could be
supplied by including inertial measurement units (IMU). This way, the search space
for underlying forces could be reduced significantly. In addition, when considering a
muscular skeletal model, the fusion between video data and electromyograph (EMG)
measurements might provide vital constraints on the high-dimensional system.
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