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Abstract—The High Efficiency Video Coding standard and
its screen content coding extension provide superior coding
efficiency compared to predecessor standards. However, this
coding efficiency is achieved at the expense of very complex
encoders. One major complexity driver is the comprehensive rate
distortion (RD) optimization. In this paper, we present a deep
learning-based encoder control which replaces the conventional
RD optimization for the intra prediction mode with deep convolu-
tional neural network (CNN) classifiers. Thereby, we save the RD
optimization complexity. Our classifiers operate independently of
any encoder decisions and reconstructed sample values. Thus, no
additional systematic latency is introduced. Furthermore, the loss
in coding efficiency is negligible with an average value of 0.52%
over HM-16.6+SCM-5.2.

I. INTRODUCTION

During the last decades a tremendous improvement of video
coding algorithms was observed. In January 2013, the Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T
VCEG and ISO/IEC MPEG finished the technical work for
the latest video coding standard, High Efficiency Video Coding
(HEVC) [1]. It achieves the same visual quality at half the bit
rate compared to the predecessor standard Advanced Video
Coding (AVC) [2], [3]. After finalizing HEVC version 1,
the JCT-VC continued with the standardization of several
extensions addressing specific application scenarios.

Among these extensions is the HEVC screen content coding
extension, which is often referred to as HEVC SCC [4]. This
extension was finalized in February 2016 and brings new
coding tools addressing several key characteristics of screen
content (small number of different colors, recurrent patterns,
RGB source material, no noise, etc.).

The superior coding efficiency of HEVC and its exten-
sions is achieved at the expense of very complex encoders.
Bossen et al. analyzed in [5] that HEVC encoders are several
times more complex than AVC encoders. One main complexity
driver for HEVC encoders is the comprehensive rate-distortion
(RD) optimization which is indispensable to fully exploit all
benefits of the HEVC standard. A major disadvantage of
the RD optimization is that encoders which cannot afford a
comprehensive RD optimization will likely not accomplish the
optimal coding efficiency. The RD optimization consists in
the evaluation of all combination possibilities (coding modes,
parameter for these coding modes, partitioning, etc.) and the
selection of the combination with the smallest RD costs. In
case of the intra prediction, the RD optimization determines

the intra prediction mode. Specifically, for HEVC, there are 33
angular intra prediction modes, the DC mode and the planar
mode [6].

Therefore, to overcome the described disadvantage, we aim
at avoiding the RD optimization complexity for the intra
prediction mode decision. Taking into account that the intra
prediction mode decision can be formulated as a classification
problem with the different intra prediction modes forming the
classes, machine learning approaches suggest themselves as
solution. Deep learning is a very active topic in the machine
learning community [7]. It is evident that deep learning
approaches provide superior results for classification problems
by utilizing deep convolutional neural networks (CNNs) [8].

For this reason, we use CNNs for the intra prediction
mode decision. Additionally, we limit ourselves to original
input sample values of the encoded video. This way, the
decisions of the CNNs are computable independently from any
previous encoder decisions and reconstructed sample values.
By decoupling the encoding decision from the actual encoding
process all decisions could be carried out in parallel for all
blocks. Hence, no additional systematic latency is introduced.
Furthermore, CNNs are very suitable for screen content coding
systems such as servers.

Our contribution in this paper is a novel deep learning-based
video encoder control. It is based on the deployment of CNN
classifiers as part of the encoding process. By means of this
encoding process, we avoid the RD optimization complexity.

The remainder of this paper is organized as follows: In
Section II we analyze related work and discuss the differences
of our approach. Our novel deep learning-based encoder is
presented in Section III. Section IV describes the evaluation
of our method and Section V concludes the paper.

II. RELATED WORK

Numerous methods for fast video encoders are known
from the literature. In this section we discuss the state-of-
the-art and elaborate on the distinguishing features of our
contribution. Since we propose a machine learning-based fast
intra prediction mode decision algorithm, we discuss related
work in two categories: machine learning-based fast encoding
algorithms and fast intra prediction mode decision algorithms.

Recently, approaches to speed up encoders by employing
machine learning algorithms have emerged. The commonality
of the related works in this first category is the encoder
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Fig. 1: CNN model for the classification of 32�32 blocks. Each block is fed through two convolutional, one max pooling, and
two fully-connected layers. The capacity of the model is chosen such that a good trade-off between a low training error and
a good generalization is achieved. In the final layer a classification into 35 classes (i.e. intra prediction modes) is carried out.
Rectified linear units (ReLU) are not plotted for the sake of easy readability.

acceleration by using fast partitioning algorithms. Ruiz-Coll
et al. [9] design a decision tree based on manually defined
features and use data mining classifiers for a fast partitioning.
In [10], Duanmu et al. speed up the partitioning for screen
content coding by manually deriving features and by applying
various machine learning technologies. In addition to logistic
regression, linear perceptron classifiers, and support vector
machines, they also use CNNs as in our approach. Closest to
our method is a work by Yu et al. [11] in which the authors
present a fast partitioning algorithm that utilizes CNNs. As
main difference to these works, we apply machine learning
methods for the intra prediction mode selection rather than
for the partitioning. Another differentiation of our method to
some of the related works is that we do not rely on manually
designed features. Instead, our features are determined by the
learning process of our CNNs. Thereby, complex properties
of the video signal which are hardly captured by manually
designed features can be taken into consideration. Addition-
ally, we do only rely on original input sample values instead
of previous encoder decisions. Thus, our learning models can
be applied in parallel to the video encoding process without
introducing additional systematic latency.

The works in the second category have in common that
they accelerate the encoding process by pruning the list of
intra prediction modes which are evaluated during the RD
optimization. For instance, Gao et al. [12] take advantage of
the correlation between the intra prediction mode of the current
block and the intra prediction modes of adjacent blocks. In
another work, Jamali et al. [13] use edge detection to find
dominant edges in the signal and restrict the tested intra
prediction modes to directions near to these dominant edges.
A different approach is chosen by Lee et al. [14]. In their
work, the authors apply local binary patterns to reduce the
number of tested intra prediction modes. One recent work
by Shang et al. [15] addresses both, fast partitioning and
fast intra prediction mode decision. As one aspect, they use
the depth information of neighboring blocks to assist the
partitioning decision of the current block. As another aspect,

they utilize intra prediction modes from higher layer (i.e.
bigger) blocks to speed up the intra prediction mode decision
for corresponding smaller blocks. In contrast to these methods,
we deploy machine learning technologies to prune the list
of tested intra prediction modes rather than using manually
determined criteria. Furthermore, our method does not require
previous encoder decisions as input.

III. DEEP LEARNING-BASED INTRA PREDICTION MODE
DECISION

In this section, we describe our novel deep learning-based
intra prediction mode decision. By using CNNs we are able
to save the computational expensive RD optimization to find
the best intra prediction mode.

Conceptually, the original input samples of the current
block are parsed through the CNN of a classifier. This design
principle of using only original input sample values decouples
the deep learning-based classification process from the actual
video encoder. Hence, the classifier does not depend on any
decision made by the encoder or any reconstructed sample
values of the encoded video. In consequence, the input blocks
can be classified in a parallel track of the entire coding
system without introducing any additional systematic latency.
Additionally, only the luma component of the input blocks
is processed. This is motivated by the observation that the
chroma components contain only little structural information
which could be beneficial for the intra prediction mode deci-
sion.

The 35 different intra prediction modes (33 angular modes,
the DC mode, and the planar mode) are considered as different
classes for the classification process. Thereby, the i-th class
maps to the i-th intra mode as defined by the HEVC standard.
For example, class 26 maps to the intra mode 26 (i.e. the
vertical angular mode). Consequently, the input blocks are
classified into these classes.

The selection of suitable parameters for the model and
the solver is of crucial importance for machine learning
approaches. For this reason, we discuss our model set-up fol-
lowing Figure 1 (CNN model illustration) and Table I (model



TABLE I: Parameters for the CNN models. The network includes two convolutional, three rectified linear unit (ReLU), one
max pooling, and two fully-connected layers. Deviating parameters for blocks with a size smaller than 16�16 are noted in
brackets.

Layer Type #outputs Filter size Stride Weight fill Bias fill
1 convolutional 96 4� 4 1 gaussian, std=0.01 constant, 0
2 ReLU
3 convolutional 256 5� 5 (3� 3) 1 gaussian, std=0.01 constant, 1
4 ReLU
5 MAX pooling 256 3� 3 2
6 fully-connected 1024 gaussian, std=0.005 constant, 1
7 ReLU
8 fully-connected 35 gaussian, std=0.01 constant, 0

parameters) for the example of 32�32 blocks. Variations for
other block sizes are highlighted if applicable. All parameters
were chosen to achieve a good trade-off between a low training
error and a good generalization to previously unseen data.

Our overall CNN structure is roughly inspired by the award-
winning CNN of Krizhevsky et al. [8]. However, we drasti-
cally reduced the capacity of the network (e.g. by eliminating
some layers and reducing the filter sizes) to cope with the
smaller input blocks and fewer classes in our application
scenario. Thereby, we avoid overfitting which occurs if the
capacity of the network is too high for a given set of training
samples. Each input block is fed through two convolutional,
one max pooling, and two fully connected layers. Rectified
linear units (ReLU) are chosen as hidden units for the activa-
tion of the neurons in the hidden layers. They implement the
non-linear activation function f(x) = max(0; x) for the input
x. Taking into account this activation function, it is apparent
that these hidden units are very easy to optimize because of
their similarity to linear units [7].

The first convolutional layer takes the luma component
of the input block (i.e. dimension 32�32�1) and filters it
with 96 filters of size 4�4 and a stride of one. Thus, the
dimension of the succeeding layer is 32�32�96. Afterwards,
in the second convolutional layer, the data is filtered by 256
filters of size 5�5. As before, the spatial resolution remains
unchanged, i.e. the resulting dimension is 32�32�256. The
parameters for this layer vary for blocks smaller than 16�16:
the filter size is reduced to 3�3 to cope with the smaller block
size. Subsequently, the spatial resolution is halved by a max
pooling layer. The reduced size after this layer is 16�16�256.
Finally, the data is fed through two fully-connected layers.
The first one has 1024 outputs while the second one leads
to a softmax output over the 35 classes (i.e. intra prediction
modes). The parameters of all layers (which include the
filter coefficients) are initialized with common values [8]: the
weights are initialized with Gaussian distributed values and
the bias is initialized with constant values.

Given the described CNN architecture, we use the well-
known caffe framework [16] to learn the CNNs. The caffe
framework was selected because it provides the tool chain for
the entire learning process starting from the training of CNNs

TABLE II: Parameters for the learning of our CNNs. Deviating
parameters for blocks with a size smaller than 16�16 are noted
in brackets.

Parameter Value
optimization method stochastic gradient descent
base learning rate (�) 10�5 (10�2)
learning rate policy step [8]
step size 105

learning rate update 0.1
momentum (�) 0.9
weight decay (�) 5 � 10�4

on GPUs to the deployment of the trained CNNs as part of
an application. Additionally, results are easily reproducible by
configuring caffe according to the description in the remainder
of the paper. Taking into account that the distribution of
selected intra prediction modes depends on the block size,
we learn separate CNNs for each block size. The parameters
for the learning process are summarized in Table II. Similar
to our CNN architecture, our learning strategy is inspired by
Krizhevsky et al. [8] with modifications as appropriate for our
application.

To optimize our CNN weights, we use the back propagation
algorithm which is based on a stochastic gradient descent
solver. Let � denote the momentum, � the learning rate,
and i and i � 1 the current and previous learning iteration,
respectively. Additionally, let rL(wi�1) be the derivative of
the objective function (softmax multinomial logistic loss) and
� the weight decay. With this notation, the weight wi in
iteration i is calculated based on the weight in the preceding
iteration wi�1 and the previous weight update

�wi�1 = wi�1 � wi�2 (1)

as follows:

wi = wi�1 + � ��wi�1 � � (� � wi�1 +rL(wi�1)) : (2)

For a better fine tuning at the end of the learning process, a
step learning rate policy with step size 105 and learning rate
update 0:1 is applied as in [8]. Thereby, the learning rate is
multiplied by 0:1 every 105 iterations.



TABLE III: Luma BD-rates for the proposed deep learning-
based intra prediction mode classification. Positive numbers
indicate a coding efficiency loss. It can be observed that only
negligible losses of in average 0.52% are introduced. The
baseline results are achieved by random intra mode decision.
It is evident that our method considerably outperforms the
baseline. BD-rate

Category Sequence Ours Baseline
Flying Graphics 0.25% 5.08%

Text & graphics Desktop 0.01% 2.12%
with motion, 1080p Console 0.25% 2.10%

Chinese Editing 0.05% 2.27%
Web Browsing 0.17% 5.03%

Text & graphics Map 0.54% 10.68%
with motion, 720p Programming 0.32% 7.81%

Slide Show 1.40% 13.43%
Mixed content, Basketball Screen 0.64% 12.32%
1440p Mission Control Clip 2 0.75% 11.87%
Mixed content, 1080p Mission Control Clip 3 0.65% 11.31%
Animation, 720p Robot 1.73% 18.22%
Animation, 768p China Speed 0.82% 12.84%
Mean text & graphics with motion 0.37% 6.07%
Mean mixed content 0.68% 11.83%
Mean animation 1.28% 15.53%

CAD Waveform 0.09% 0.25%
Video Conferencing 0.04% 0.32%

screen content Slide Editing 1.08% 4.15%
cross validation Social Network Map 0.11% 0.53%

Twist Tunnel 0.34% 1.26%
Word Editing 0.72% 1.19%

Mean cross validation 0.40% 1.28%
Mean all 0.52% 6.46%

IV. EVALUATION

In this section, the proposed deep learning-based intra pre-
diction mode decision process is evaluated. For this purpose,
the CNNs were learned as described in the previous section.
The training and test data with ground truth information for
the learning process were generated by encoding the first ten
pictures of the sequences listed in Table III (excluding the
sequences which are listed in the cross validation section of
the table). This way, the encoder decision for each encoded
block was used to label the data. Furthermore, due to the high
temporal and spatial variations in the test sequences, this is a
good training set, although the same sequences were used for
the evaluation.

The novel intra prediction mode classification process by
CNNs was implemented into the HEVC SCC reference soft-
ware HM-16.6+SCM-5.2 [17]. Moreover, the encoder was
configured to the all-intra configuration as defined by the
common test conditions (CTC) [18]. For the purpose of
determining the worst-case coding efficiency loss by our
introduced method, we used the full intra prediction mode
RD optimization as anchor in our evaluation. Four commonly
used quantization parameters from the CTC (22, 27, 32, 37)
were used for the encoding process. A set of 13 JCT-VC
test sequences as defined in Table III, covering a variety of
different content characteristics in multiple categories (text
& graphics with motion, mixed content and animation), was
encoded. Since the first ten pictures were used for the CNN
learning, they were skipped for the evaluation. In addition,
taking into account the all-intra encoder configuration, we

decided that more valuable results are achieved by encoding
few pictures from many sequences rather than encoding many
pictures from few sequences. Thus, the pictures 10-109 from
each sequence were encoded.

The Bjøntegaard-Delta (BD)-rate as defined in [19] was
calculated to evaluate the coding efficiency. Table III sum-
marizes the resulting luma BD-rates. All losses are negli-
gible with an average value of 0.52%. For two sequences,
Desktop and Chinese Editing, the loss is barely noticeable
(<0.1%). Furthermore, a breakdown by categories reveals that
the proposed method performs better for text & graphics
with motion sequences than for mixed content sequences. In
turn, mixed content sequences have better results than the
animation sequences. The reason for this gradation is based
in the different complexity of the structures of the sequences
in these categories. Along with the losses, the complexity of
the structures increases. Thereby, the correct intra prediction
mode is more difficult to predict. Examples for sequences in
the three categories are illustrated in Figure 2.

As baseline for the evaluation we use the BD-rate losses that
are caused by randomly selecting an intra mode instead of con-
ducting the rate distortion optimization. With this comparison
we are able to rank our results between optimal approximation
(0% BD-rate loss) and worst case (random baseline). These
BD-rates are listed in Table III as well. It is noteworthy that
the losses for random intra mode selection vary considerably
across the different sequences. For sequences with easy and/or
only few structural parts, especially in the text & graphics
with motion category, losses of slightly more than 2% were
measured. For complex content, e.g. Robot, losses of more
than 18% can be observed. For all sequences, our deep
learning-based method clearly outperforms the baseline. On
average, the losses for the baseline are 12 times higher than
the losses for out method. Thus, it can be concluded that the
CNNs have learned to predict the correct intra mode.

The state-of-the-art works for fast intra prediction mode
decision, which were introduced in Section II, present aver-
age BD-rate losses of 1.0% [12], 1.07% [13], 0.69% [14],
and 0.66% [15], respectively. Therefore, it can be concluded
that our deep learning-based method achieves competitive
losses compared to conventional encoder optimizations. This
observation is reasonable because deep CNNs can learn to
process image characteristics which are only hardly captured
by manually designed fast mode decision algorithms.

We evaluated the generalization of the learned CNNs by
encoding previously unseen sequences. The results are listed
in the cross validation section of Table III. The average BD-
rate loss is 0.4% which is better than the average result.
This indicates an excellent generalization for screen content.
In addition, we encoded the pure natural content sequence
Basketball Drive. Taking into account that the CNNs never
saw a natural content sequence during the learning process,
a BD-rate loss of 2.74% for Basketball Drive suggests that
the proposed method is also applicable to natural content. The
loss for natural content would drop if the CNNs would see
natural content during the training.



(a) Chinese Editing (b) Mission Control Clip 3 (c) Robot

Fig. 2: Exemplary sequences for the categories text & graphics with motion (a), mixed content (b) and animation (c)

This paper is of explorative nature. Its purpose is to study
the applicability of CNNs for encoder decisions. In the light of
the presented results it can be concluded that CNNs are very
suitable to approximate encoder decisions. Additionally, it is
believed that CNNs will be implementable very efficiently in
the next few years due to the very regular architecture of filter-
ing operations which can be highly parallelized. For instance,
CNN chips could be incorporated into real world devices.
However, for this paper we use a classification deployment
server based on caffe which receives requests from the HM
encoder. Given this architecture, run times are not meaningful.
Moreover, it is worth mentioning that the proposed method
does not introduce additional systematic latency because only
original sample values are required. Hence, the CNNs can
operate independently of previous encoder decisions and re-
constructed sample values.

V. CONCLUSIONS

In this paper, we presented a novel deep learning intra
prediction mode decision process for HEVC. It is based on
feeding the original input sample values of the block to be
coded through a deep convolutional neural network. Thereby,
the decision over the selected intra prediction mode is formu-
lated as a classification problem without RD optimization of all
available modes. BD-rate losses are negligible with an average
value of 0.52% over the HEVC SCC reference software.
Thus, it can be concluded that CNNs are suitable for making
video encoder decisions. Additionally, no systematic latency is
introduced. Our method is beneficial for application scenarios
in which multiple representation of a video are encoded
(e.g. for streaming providers) since the encoder control solely
operates on original samples. Thus, a single classification for
the best intra prediction mode can be used by all encoders.
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