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Abstract. In boosting-based object detectors, weak classifiers are often build on
Haar-like features using conventional integral images. That approach leads to the
utilization of simple rectangle-shaped structures which are only partial suitable
for curved-shaped structures, as present in natural object classes such as faces.
In this paper, we propose a new class of fractal features based on space-filling
curves, a special type of fractals also known as Peano curves. Our method incor-
porates the new feature class by computing integral images along these curves.
Therefore space-filling curves offer our proposed features to describe a wider
variety of shapes including self-similar structures. By introducing two subtypes
of fractal features, three-point and four-point features, we get a richer represen-
tation of curved and topology separated but correlated structures. We compare
AdaBoost using conventional Haar-like features and our proposed fractal feature
class in several experiments on the well-known MIT+CMU upright face test set
and a microscopy cell test set.

1 Introduction

Most object detection frameworks inspired by Viola and Jones [1] are based on simple
Haar-like features using integral-images. Haar-like features are easy and fast in compu-
tation, but represent only rectangular structures. Such detection frameworks often apply
very large sets of low-resolution training images to learn the classifiers. These training
sets mostly contain low-resolution object details which are often corrupted with com-
pression artefacts. Hence features having rough shapes are sufficient to describe its

(a) (b) (c)

Fig. 1. (a) Illustration of the Peano-Hilbert curve traversing a face image. (b) Example of a se-
lected fractal feature in training. (c) Microscopic cell with selected fractal feature.
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gross characteristics. In contrast, we suggest to learn from high-resolution images to
locate features that represent fine object details.
In this work, we propose and analyze a new integral image representation based on
space-filling curves to explore fine non-rectangular structures. We introduce three types
of fractal features based on the Peano-Hilbert-, Gosper- and E-Curve, respectively. Our
new fractal feature class is evaluated on the well-established MIT+CMU upright face
test sets A,C [2] and compared to standard Haar-like features. In addition to face de-
tection we applied our fractal features to microscopic cell-data, see Figure 1(c) and 2.
In Figure 1(a) is exemplary shown how the Peano-Hilbert fractal curve traverses an im-
age plane. Figure 1(b) presents a feature formed by the Gosper curve and selected by
AdaBoost for face detection.

1.1 Related Work

Object detection using classifiers learned by boosting algorithms is a popular topic
in computer vision. In all components of such a detection framework, researchers are
working to improve the detector’s performance. Zhang et al. [3] present a well struc-
tured survey of advances in face detection. They categorize developments into varia-
tions of the boosting learning algorithm and advances in feature extraction. The boost-
ing algorithm has been improved by many researchers since Viola and Jones [1] intro-
duced their object detection framework. E.g. FloatBoost [4] allows to drop earlier weak
classifiers having a high classification error later in training. MILBoost [5] addresses the
problems given by high variations in the training set that e.g. unlabeled subcategories
induce. Hence cost functions known from Multiple Instance Learning are integrated
into the boosting algorithm. Other variants, such as LPBoost, SoftBoost or S-Adaboost
[6–8] control the detection performance by interventions in the learning and weighting
scheme itself. Xiao et al. propose a very efficient method to dynamically learn a cascade
of classifiers [9].
In the advances of feature extraction, many different types of features based on his-
tograms [10], binary patterns [11] or edges [12] have been developed. But a notable
field of research is also the improvement of Haar-like features. For instance, Lienhardt
and Maydt introduced a set of rotated Haar-like features [13] to extend the feature space.

Fig. 2. Example images of the training dataset consisting of faces and non-faces as well as cells
and non-cells or corrupted cells.
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Pham et al. developed polygonal Haar-like features [14] to increase the variety of shapes
that a feature can represent. In this way, most of the improved Haar-like features rely
on combinations of multiple rectangular structures.

1.2 Contribution

In our method, we replace the conventional Haar-like features by a new class of fractal
features that are able to adopt to curved-shaped structures. Conforming with Haar-like
features, the fractal features utilize an intermediate image representation to allow for
an efficient computation. Preceding the feature extraction an integral image traversing
along a fractal curve is calculated. In that way only two memory references are re-
quired to represent complex fractal structures by computing the sum of pixel intensities
covered by that structure. Similarly to Haar-like features, the difference between pixel
intensities in two image regions builds a feature. Utilizing three points on the fractal
curve, a feature can exploit two adjacent fractal structures. The end point of the first
path segment is here as well the starting point of the second path segment. Four-point
features represent non-cohesive image regions defining separated fractal path segments.
To summarize, our contributions are:

– We developed a new fractal feature class.
– Three-point and four-point features allow for a richer representation.
– We evaluated our new method in the field of face and microscopic cell detection.

The paper is structured as follows. Section 2 presents the proposed fractal feature class.
The utilized fractal curves are described and their properties and construction are ex-
plained. Experimental results on face detection and microscopic cell detection are given
in Section 3 while Section 4 concludes the paper.

2 Boosted Fractal Integral Paths

Boosted fractal integral paths are based on the object detection framework developed by
Viola and Jones [1]. They introduced AdaBoost, a machine learning algorithm proposed
by Freund and Schapire [15, 16], into object detection. In that application, AdaBoost
constructs a strong classifier for object detection as a linear combination of weak clas-
sifiers based on Haar-like features.
In this work, we propose to learn an object detector based on fractal features. We de-
scribe the new class of fractal features in detail in this section.

2.1 Fractals

Following [17], a fractal is ”a rough or fragmented geometric shape that can be split into
parts, each of which is (at least approximately) a reduced-size copy of the whole”. Such
a property is also called self-similarity so that a pattern observed in one scale can often
be found on other scales. There exist many examples in nature which demonstrate the
beauty and importance, but also frequent appearance of fractals, e.g. in crystals, in snow
flakes, or plants such as the romanesco broccoli. Therefore we assume that fractals can
provide a good description for structures in all natural images including the test sets of
faces and microscopic cells employed in our work.
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2.2 Fractal Features

We want to take advantage of that common appearance of fractal structures by the fea-
ture model of our learned classifier. Hence, our proposed class of features utilizes a
special type of fractal curves to compute fractal integral images along these curves.
Conventional integral images are constructed by summing up pixel intensities from the
upper left to the lower right corner of an image. Similarly, the fractal integral images
integrate the pixel intensities of a 2D image plane along the fractal curve. Figure 3 dis-
plays the conventional integral image used for Haar-like features and the fractal integral
images following three different fractal curves. These integral images have been nor-
malized and computed on a homogeneous image. Precalculated integral images provide
the benefit, that only few references into the integral image are required to compute the
sum of pixel intensities in a region of the original image. In that way, pixel sums of arbi-
trary rectangular regions can be calculated by accessing four points in the conventional
integral image. In contrast, differences between two pixels in the fractal integral image
represent the sum of pixels covered by diverse fractal structures having a huge vari-
ability of shapes. According to Haar-like features, a fractal feature is as well calculated
as the difference of the sums of pixel intensities in two image regions. These regions
are defined by sampling numerous positions on the fractal integral path and build the
feature set of the AdaBoost machine learning algorithm.

2.3 Fractal Properties

To appropriately construct the integral image it is desirable that the followed fractal path
traverses every pixel in the image exactly once. This property is given by space-filling
curves also referred to as Peano curves. One member of this type of fractal curves is
the Peano-Hilbert curve. Like other space-filling curves it has the property of creating
a 1D-representation of a 2D-image while preserving its proximity relationship better
than a raster scan. Thus the Peano scan was examined for texture analysis and image
compression due to its improved autocorrelation [18–21]. The integral image shown
in Figure 3(b) illustrates the proximity of the Peano-Hilbert curve as each quadrant is
completely traversed before the next quadrant is entered. Several space-filling curves
are known but not all of them are suited for fractal integral paths. Fractals that base on
tree structures as H tree fractals cannot be used. The difference of two pixels of an inte-
gral image computed on this tree is not as required in any case the sum of pixels of the
original image along the fractal path that connects these two points. The Z-order curve

(a) Conventional (b) Hilbert (c) Gosper (d) E-Curve

Fig. 3. Normalized integral images traversing different paths on a homogeneous image.
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(a) Hilbert curve (b) Gosper curve (c) E-Curve

Fig. 4. Fractal curves used to traverse image plane and to define fractal structures exploited in
feature computation.

(a) 1. iteration (b) 2. iteration (c) 3. iteration (d) 4. iteration

Fig. 5. First four iterations of the Peano-Hilbert curve.

has applications similar to the Peano scan, but the Peano-Hilbert curve is preferred in
this paper due to its better preservation of proximity. The E-Curve is favored over the
Moore curve because its shape has compared to the Moore curve a stronger difference
to the Peano-Hilbert curve. Space-filling curves that are closed curves like the Sierpin-
ski curve are not suited as well. They could be splitted defining a start and an end point,
but the property of the conventional integral image that the start and end point are at
different sides of the image plane would be lost. We choose the Gosper curve as a third
fractal for our method. Figure 4 illustrates the selected fractal curves. The Gosper curve
is not a space-filling curve in terms of the definition given above as it traverses approx-
imately every sixth pixel of the 2D-image a second or third time. But due to the locality
of the curve this yields only some slightly enlarged features in which the corresponding
pixels are weighted two or three times. As the feature selection process is performed
by the AdaBoost algorithm with respect to the minimization of the classification error
the disparity of those fractal features is acceptable. We select the Gosper curve because
of its different shape containing angles that are multiples of 60 degrees. This leads also
to an non-square outer boundary. Hence we clip an inner part of the curve as the frac-
tal path has discontinuities at its boundary. Similar to the disparities in features this
discontinuities are also tolerable due to the feature selection process.

2.4 Construction of Fractals

Fractal curves can be build using a Lindenmayer system, also referred to as L-System.
The biologist Aristid Lindenmayer defined in 1968 a mathematical model to simulate
the growth of multi-cellular organisms [22]. He developed a system of string replace-
ment rules which are applied in parallel to recursively create an output string. The L-
System grammar is defined by a tupel G = (V, ω, P ), where
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– V is the alphabet of the system,
– ω is a string of symbols from V and defines the initial state,
– P defines a set of production rules. Each rule consists of the predecessor, a string of

symbols from V , and the successor, the string of symbols from V the predecessor
is replaced by.

In contrast to a formal grammar the production rules of a L-System are in parallel ap-
plied in each iteration of the system. The alphabet V consists of constant symbols that
are not substituted by the production rules and variables that are replaced and thus can
be found on the left hand side of the rules. In our topic of constructing a small set of
space-filling curves we use context-free L-Systems, in which the production rules only
refer to an individual symbol and do not take its neighbouring symbols into account.
Interpreted as turtle graphics the output of a Lindenmayer system can be used to con-
struct fractals. In turtle graphics a so-called turtle bot draws by executing a queue of
simple instructions, like draw line, turn left and turn right. The length of one line seg-
ment and the angle to turn is often given as global parameter that can be a function of
the iteration depth. Therefore each constant in the alphabet of the Lindenmayer system
represents a command for the turtle bot.
The Peano-Hilbert curve for example can be described by the following L-System:

– V = {X,Y,+,−},
– ω = X,

– P :

{
X → +Y F −XFX − FY+

Y → −XF + Y FY + FX−
,

where F instructs the turtle bot to draw a line of length 1, + to rotate anticlockwise by
90◦ and − to rotate clockwise by 90◦. X and Y are variables and thus do not represent
commands to the bot. Figure 5 shows the first four iterations of the Peano-Hilbert curve
starting at an initial angle of 0◦. Similarly, the E-Curve and the Gosper curve can be
constructed by slightly more complex L-Systems that are, due to the limited space, not
reported in this paper.

2.5 Feature Types

To describe diverse structures we implemented two different types of features for each
fractal, three- and four-point features. Their specific name refers to the property that the
calculation of these fractal features requires only three and four memory references, re-
spectively. Three-point features represent two adjacent integral path segments and thus
give preferences to cohesive regions. Similarly the Haar-like features used by Viola and
Jones only describe connected areas but require in the case of a two-rectangle feature six
memory references. Additionally we define four-point features that describe separated
regions that better conform to diverse structures.

3 Experimental Results

We applied fractal features to two different fields of computer vision: face detection and
the detection of microscopic cells.
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(a) E-Curve feature (b) Hilbert feature (c) Gosper feature

(d) E-Curve feature (e) Hilbert feature (f) Gosper feature

Fig. 6. Examples of fractal features found in training.

3.1 Face Detection

We trained our face detector on 1022 gray level images showing 340 individuals taken
from the BioID face database [23], the MUCT face database [24] and the AT&T database
of faces. Thus we give credit to AT&T Laboratories Cambridge. In an automatic process
the faces were localized with respect to the given eye positions. The extracted images
were then aligned and zoomed to a common scale resulting in a final patch resolution
of 128× 128 pixels.
We trained our three types of fractal features and, for comparison, Haar-like features
for 46 rounds. Figure 6 presents some fractal features selected in the training process.
For validation we tested these boosted classifiers on the MIT+CMU frontal face dataset
A and C [2]. Figure 7 presents the detection performance in a ROC curve. The fractal
features and Haar-like features (Rectangles) show different characteristics. On the one
hand the Haar-like features demonstrate better results in the high precision range and
are at some point outperformed by the Hilbert fractals. On the other hand the fractal
features achieve higher true positive rates.

In a second experiment we want to combine the characteristics of rectangle and frac-
tal features. Hence we select the Hilbert fractals as they achieved the best results on our
microscopic cell test set (see Table 1) and incorporate them into a combined rectangle-
fractal framework. The training success of the combined framework is compared in
Figure 8 to the corresponding homogeneous frameworks. The combined framework
shows less fluctuations in the detection rates during training indicating that the different
characteristics of fractal and rectangle features stabilize the combined training. Figure
8(d) demonstrates despite some fluctuations the overall improvement of the combined
classifier compared to a pure Haar-like classifier.
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Fig. 7. ROC-Curves showing the detection performance on the MIT+CMU frontal face dataset.
Classifiers consisting of fractal features are compared to conventional Haar-like features (Rect-
angles) and a mixed classifier of Peano-Hilbert fractals and Haar-like features.

We conducted additional experiments on degraded and modified versions of the
training data to give an analysis of the strengths and weaknesses of the different feature
classes. Figure 9(a) illustrates the detection rates achieved on the positive training set
when its contrast is degraded. Controlled by a parameter between 0 and 1 the appear-
ance of each training image is transformed between the original image having the ex-
pected contrast and a homogeneous mean image with minimal contrast, respectively. In
Figure 9(b) the influence of rotation is shown. The training images are therefor rotated
up to 45◦ prior to the detection process. It can be observed that especially in case of
low contrast the application of fractal features can improve the detection performance.
In case of strong rotations the rectangle features perform better. These observations in-
dicate that fractal features fit closer to curve-shaped object structures. The closer fitting
can result in an improved robustness to contrast changes but can also lead to a higher
sensitivity to rotations.

The over-all performance of our tested detection framework is not as high compared
to very sophisticated face detectors as we focused our studies on the impact of features
and compared our new feature class to the conventional Haar-like features. Hence we
intentionally selected a basic, non-cascaded boosting framework and relinquished addi-
tional pre- or post-processing steps like e.g. canny pruning in OpenCV [25] to increase
the detector’s performance. Another reason for the performance gap is the discrepancy
in the properties of our training set and the MIT+CMU dataset. We constructed and
trained highly adaptable features suitable for higher image resolutions that are com-
mon these days. In contrast to that the well-known MIT+CMU test set contains several
low-resolution images which do not provide fine details like our training set.

3.2 Microscopic Cell Detection

Additional experiments are conducted using microscopic cell images, see Figure 2. The
cell images are acquired during cryo-conservation and as a result ice fronts are rising
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Fig. 8. (a)-(c) Detection rates showing training success in face detection vs. amount of training
rounds. (d) Difference in detection rates of Rectangles+Hilbert and Rectangles only vs. amount
of rounds, presenting the benefit of mixed training.

around the cells. The goal is to detect (and track) the cells in videos. 250 images of cells
and 350 images of non-cells are collected in a reasonable database. These image bases
have been divided into a training and validation set using a 67/33 ratio. Crowther and
Cox [26] illustrated that especially for small bases a split containing only a small part
for validation is not recommendable. They suggested a ratio between 50/50 and 70/30.
We trained classifiers for Haar-like, Hilbert-, Gosper- and E-curve features. Table 1
presents the results of classifiers trained in 50 rounds. The results illustrate that the
fractal features and above all the Hilbert curve increases the detection performance
described by the F1 score.

The ROC curve in Figure 10 illustrates that the fractal features, except for the E-
curve, slightly outperform the Haar-like features. The Gosper curve clearly reaches first
a TP-rate of 100%. The dependency of the detection rate from the number of training
rounds is illustrated in Figure 11. In earlier rounds of the training the detection rates
of the fractals (see Figures 11(b), 11(c), 11(d)) are more stable having less fluctuation.
Figure 11(a) shows that the rectangles reach with less classifiers 100% TN-rate but the
TP-rate decreases to 93,69%. But in the following rounds the detection rates of the
rectangle features highly fluctuate.



10 Arne Ehlers, Florian Baumann, Bodo Rosenhahn

0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

Decrease of contrast

Tr
ue

po
si

tiv
e

ra
te

Rectangles

Hilbert

Rec+Hilbert

Gosper

E-Curve

(a)

15 20 25 30 35
0

0.2

0.4

0.6

Degree of rotation (+/- combined)

Tr
ue

po
si

tiv
e

ra
te

Rectangles

Hilbert

Rec+Hilbert

Gosper

E-Curve

(b)

Fig. 9. (a) Detection rate on training face images with lowered contrast. (b) Detection rate on ro-
tated training face images. For visual clarity the intermediate interval, showing most differences,
is presented in both figures.

Table 1. Results of microscopic cell-data detection. Hilbert curve achieves the best result.

Application Feature class F1 score

Microscopic cell-data Rectangles 95.89%
Microscopic cell-data Hilbert curve 97.27%
Microscopic cell-data Gosper curve 96.33%
Microscopic cell-data E-curve 96.33%
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Fig. 10. ROC-Graph showing the detection performance on the microscopic cell dataset.

3.3 Training- and Computing Time

Due to precompiled fractal paths the training time between conventional- and fractal
features does not differ. Furthermore the classical- and fractal integral image computa-
tion is an initial process at the beginning of the algorithm. There are some differences
in the validation process using a sliding window. For the classical Haar-like features it
is sufficient to compute the integral image once for each scale and cut out sub-windows
at arbitrary positions. In contrast using fractal features we must compute the fractal
integral image for every sub-window. Despite precompiled fractal paths the validation
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Fig. 11. Detection rates showing training success in microscopic cell detection vs. amount of
training rounds.

time, applying a sliding window, is slower. But this disadvantage could be overcome
for example by programmable hardware like FPGAs.

4 Conclusions

We introduced a new type of features for object detection which describe fractal struc-
tures that enable to better adapt to curved-shaped objects. Our experiments in the do-
mains of face detection and the detection of cells during cryo-conservation showed the
improved detection performance of the fractal feature class.
Indeed, the usefulness of the fractal integral paths highly depend on the object classes
to be detected. E.g. artificial objects, such as cars or manufactured parts might be better
detected with rectangular features. But to our experience, especially for high-resolution
images of natural object classes, the fractal curves lead to a noticeable improvement
with only minor algorithmic modifications.
This seamless integration enables our approach to be easily utilizable in several boost-
ing frameworks using integral image representations.
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