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Problem statement:
!Segmentation of humans in front of cluttered, partially chan-

ging background is a challenging task; typical probems:

! Holes due to similar color distri-
butions of fore- and background.

! Sprawling segmentation results due to ambigious color distributions.

! Artifacts caused by motions in 
the background.

Qualitative results of gymnast sequence:
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!Segmentation by probabilistic fusion [1] and Levelsets [2] do 
not gain satisfying results individually.

!Fusion of [1] and Grabcut [3] are outperformed by the propo-
sed method.

! Increase of segmentation quality by fusion via Dempster-Shafer 
theory of evidence: 
! Part I:  Segmentation by probabilistic 3d fusion.
! Part II: Variational segmentation.
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Part II a): Feature fusion with Dempster-Shafer theory:
mjΩ = mj({Ω1,Ω2})

mnew = m⊗mfg = m1 ⊗m2 ⊗ . . .⊗mk ⊗ mfg
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fusion of image features and probabilistic foreground detection

+ν1

�

Ω
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! Define masses mj to model belief of fore- and background based on 
k feature distributions (e.g. color distributions).

! Create combined mass function from the FG segmentation arising 
from probabilistic 3d fusion and k features in the 2d image domain.

Part I: Segmentation by probabilistic 3d fusion:

! Intermediate result: Probabilistic 2d segmentation which is inter-
preted as a self-contained feature channel.
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! Minimizing the adapted energy function to obtain final segmentation:
Part II b): Variational segmentation: 

mjΩ = mj({Ω1,Ω2})

mnew = m⊗mfg = m1 ⊗m2 ⊗ . . .⊗mk ⊗ mfg

E(ϕ) =−
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fusion of image features and probabilistic foreground detection
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Compute 
mass functions 

for k feature 
channels

Combine k+1 
mass functions 

according to 
Dempster‘s rule

Update 
segmentation

Init curve from previous 
segmentation

Build mass function from 
previous segmentation

iterate

Quantitative results of gymnast sequence:

!Relative silhouette error percentage of the single approaches 
and the combined approach in two exemplary cameras.

!Proposed approach outperforms segmentation via probabilistic 
3d fusion, variational segmentation and combined grabcut.
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