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Quantitative results:

➡ Precision-Recall-Diagramm of 47 images from the 
Berkeley segmentation dataset [3]. The DS theory of 
evidence (circles) outperform the Bayesian framework (x) 
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Conclusion:
➡ proposed DS as an extension to the Bayesian framework of 
level-set based image segmentation
➡ combine feature channels by modeling inaccuracy and 
uncertainty at the same time

Problem statement:
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Image segmentation using a variational framework [1]
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➡ fusing feature channels in a Bayesian framework favours 
small probabilities

two feature channels (blue BG, 
red FG)

product of the two densities 
(Bayesian model)
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Contribution:
Dempster-Shafer evidence theory [2]  for Image Segmentation
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m(A) = m1(A)⊗m2(A) =
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B∩C=∅ m1(B)m2(C)

➡ define mass functions:
mj(Ω1) = p1,j(I(x)), mj(Ω2) = p2,j(I(x)) ,

mj(∅) = 0 , mj(Ω) = 1− (p1,j(I(x))) + p2,j(I(x))) ,

➡ fuse mass functions according to Dempster‘s rule:

➡ proposed energy functional:

➡ proposed method favours high probabilities
➡ separates much better the semantically interesting and 
different regions
➡ in some cases the proposed method leads to slightly 
worse segmentations

two feature channels (blue 
BG, red FG)

mass function fused with 
DS (proposed model)
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➡ the Bayesian framework using level-sets does not provide 
satisfying results
➡ feature fusion with Dempster‘s rule of combination 
outperform the standard approach

Qualitative results:
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