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Conclusion
 grouping of homogeneous regions using Dempster-Shafer
 efficient method for graph simplification
 segmentation error comparable to the full MAP solution 
 speedup of approx. 12.5 on large scale image (5% budget)
 up to 10 times faster on image sequences (5% budget)
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Fig. 3: Example for the di↵erent approaches for variable grouping. Columns:
(i) original image; (ii) variable grouping using [9]; (ii) proposed method using
MAXEDGE; (iv) proposed method using COMPACTEDGE; In contrast to [9]
where the grouping produces superpixels that are comparable in size our pro-
posed methods group large homogeneous regions to single variables.

Small-scale images: Table 1 shows the evaluation of the proposed algo-
rithm on the Microsoft segmentation benchmark in comparison to the works of
Felzenszwalb and Huttenlocher and Kim et al.. Since independently the benefit
of the proposed weight wDS

ij and the merging constraints is rather small, we only
evaluate the combination that outperformed existing approaches.

We can observe that the combination of Dempster’s theory of evidence and
the proposed constraint has a smaller average segmentation error with an even
smaller budget. The small minimum segmentation error using the MAXEDGE
constraint highlights that our idea to group large homogeneous regions to one
single variable makes sense and the proposed weights based on Dempster’s theory
of evidence reliably find those regions. In combination with small groups at the
objects boundaries the proposed COMPACTEDGE constraint outperforms the
existing approaches. See also Figure 3 for a visual comparison of the di↵erent
approaches.

High-resolution images: To evaluate the segmentation quality and the
possible speedup of the proposed method we used large-scale images with up to
20 MP and down sampled these images to several image-sizes. Similar to the
experiments on small-scale images and video sequences the di↵erence in segmen-
tation quality is small and the reduction of runtime is dramatic for large images.
As already shown by Delong and Boykov [8] the BK-algorithm is ine�cient and
unusable if the graph does not fit into the physical memory. For those large MAP
inference problems the ratio of runtime was approximately 0.08 using a budget

Example for the different approaches. Columns: (i) image; (ii) 
grouping using [3]; (iii) proposed MAXEDGE; (iv) proposed 
COMPACTEDGE.

Qualitative results
Method Avg. budget Avg. Rmse(x) Avg. Rse(x)

full MAP (reference) 100% (100) 0p (0) 0.075 (0.058)
FH-alg [2] 10.22% (10.22) 209.74p (209.74) 0.074 (0.063)
UNARYDIFF [3] 10.72% (10.84) 255.1p (219.08) 0.073 (0.065)
MAXEDGE 47.72% (15.21) 58.42p (4.21) 0.069 (0.058)
COMPACTEDGE 6.25 % (5.00) 321.5p (63.52) 0.061 (0.058)

 proposed method outperforms the others in terms of 
quality with a smaller budget

Dempster Shafer edge weights

Merging Constraint

Resulting edge weight elegantly combines the unary and 
pairwise terms

Idea: Allow large groups of pixels in homogeneous regions 
while maintaining small groups at object boundaries. 

Combination with [2] to allows compact groups at object 
boundaries

where hypothesis     means that two pixels are similar⌦1

Idea: Fuse the terms of energy     with Dempster-ShaferE

w

max

(i, j) := max{w
ik

, w

lj

| (i, k), (l, j) 2 EG}  W1 (MAXEDGE)

wDS
ij = 1�Bel(⌦1) = 1�m(⌦1)

and
w

pairwise
ij = 'i,j(xi, xj) wunary

i,j = ||'i � 'j ||

(MAXEDGE) or wij  MInt(Ci, Cj) (COMPACTEDGE)

Problem statement
This paper addresses the problem of efficiently 
segmenting an image/image sequence by discrete 
energy minimization [1].

Standard approach: maximum flow algorithm
 fast for low scale benchmark images
 not applicable for large scale images or videos

Many works on how to approximate large scale problems:
 parallel implementations, GPU processing, convex 
 optimization, multi-scale approaches, graph reduction

We propose a graph-based method for pixel-grouping to 
reduce the number of variables defining the energy to be 
minimized.

 reduction in computational costs and memory 
requirements

 almost identical segmentation results

Graph G with 
Energy E

proposed 
pixel-grouping

Graph G with 
Energy E

Proposed 
Pixel-Grouping

Energy 
Minimization

MAP solution 
recovery

Approximated 
MAP solution

Contribution

➡ original graph is reduced by grouping of pixels that are likely 
to take the same label in the minimum energy state
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Fig. 2: Example variable grouping. The nodes from the original graph (a) are
merged into three di↵erent groups of variables (b) and (c). The weights of the
new graph are changed according to the new energy function. A good grouping
(b) does not change the MAP solution of the original graph.

theory is to define a so-called mass function on a hypotheses set ⌦. Let us note
the hypotheses set ⌦ composed of n single mutually exclusive subsets ⌦i, sym-
bolized by ⌦ = {⌦1,⌦2, . . . ,⌦n}. In order to express a degree of confidence for
each element A of the power set }(⌦), an elementary mass function m(A) is
associated with it to indicate all confidences assigned to this proposition. The
mass function m is defined by: m : }(⌦) ! [0, 1] and must fulfill the following
conditions:

(i) m(;) = 0 (ii)
X

An✓⌦

m(An) = 1 . (5)

The quantity m(A) is interpreted as the belief strictly placed on hypothesis
A. Compared to a Bayesian probability function, the mass function in evidence
theory is the totality of belief. This belief is distributed on both simple and
composed classes and models the impossibility to separate several hypotheses.
Thereby the principal advantage of the evidence theory is characterized.

From the basic belief assignment m, a belief function Bel : }(⌦) ! [0, 1] can
be defined as

Bel(A) =
X

An✓A

m(An) , (6)

with An 2 }(⌦). The belief function is the mass of hypothesis A plus the mass
attached to all subsets of A. This can be interpreted as the total belief committed
to a hypothesis. Bel(A) is then the total positive e↵ect the body of evidence has
on a value being in A. It quantifies the minimal degree of belief of the hypothesis
A.

A particular characteristic of Dempster-Shafer evidence theory di↵ers from
Bayesian theory: If Bel(A) < 1, then the remaining evidence 1 � Bel(A) does
not need necessarily refute A (i.e. support its negation A). That is, we do not
have the so-called additivity rule Bel(A) +Bel(A) = 1.

Dempster’s rule of combination To unify evidence from a variety of features
we use Dempster’s rule of combination. This rule combines two independent

Our method is based on "efficient graph-based image 
segmentation" proposed by Felzenszwalb and 
Huttenlocher [2]:

Original Graph                   with Energy    of      and    
and and possible reduced Graphs 

new grouping weights 
based on Dempster-
Shafer

new merging constraint

G = (V, E) E 'i 'i,j
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Algorithm1: Dempster-Shafer based Variable Grouping

1: (V 0
G ,m) = DempsterShaferGrouping(G,', w)

2: Input:
3: G = (VG , EG) // an instance of the graph
4: 'i,'i,j // node and edge energies
5: w : EG ! R // dissimilarity weights
6: Output:
7: VG

0 // set of grouped variables
8: m // surjective map
9: Algorithm:
10: VG

0  VG , EG
0  EG

11: m {(i, i) | i 2 VG}
12: ⇡  sort(EG , w) {sort weights in ascending order}
13: for e = 1, . . . , |⇡| do
14: (i, j) ⇡e

15: if m(i) = m(j) then
16: continue {already merged}
17: end if
18: if wij fulfills given constraint then
19: merge Ci and Cj in m,VG

0

20: end if
21: end for

3.1 Merging Function

The grouping resulting from the algorithms in [13] and [9] can be described as
compact since the free parameter k in ⌧(C) penalizes the size of a group. In
[9] the goal was to produce compact groups of variables that will have the same
label according to the minimum energy state. Therefore the weight functions are
based on the unary or pairwise potentials of the energy function. In contrast, our
goal is to group as many variables as possible that are likely to have the same
label according to the minimum energy state and to the ground truth labeling.

To allow big groups of variables, e.g. in homogeneous regions, we propose
new merging constraints based on the maximum weight among outgoing edges.
Instead of using a global criterion, balancing the size and the internal coherence
of a group we merge all nodes that are connected by a su�ciently small edge.
E.g. one could use the function wij  W to merge all nodes connected by an
edge smaller than the parameter W . As we will show in the experiments this
simple constraint does not produce groups that agree with either the minimum
energy state or the ground truth. To produce groups of homogeneous variables,
we propose two new merging constraints based on the local edge weights of two
nodes. The first constraint takes into account the maximum value of any edge
connected to one of the two nodes. Therefore two components connected by the
edge wij are grouped if

wmax(i, j) := max {wik, wlj | (i, k), (l, j) 2 EG}  W1 (MAXEDGE). (9)
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