Increasing the Precision of Junction Shaped Features

Kai Cordes • Jörn Ostermann

SFOP Feature Localization

- The Scale-invariant Feature OPerator [1] detects junctions
- Detection: select fullpixel positions with locally maximal precision in each scale
- Localization: estimate subpixel/subscale using 3D quadratic approximation
 - **REF SFOP**
 - **DOG SFOP**

Approach

- Exchange suboptimal subpixel/subscale localization
- Estimate subpixel/subscale using signal adapted approximation [3]:
 \[
 D_{x_0, \sigma, l}(x) = l \cdot \left(e^{\exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)} - e^{\exp\left(-\frac{(x-x_0)^2}{2\sigma^2 k}\right)} \right)
 \]
- Increases precision in most cases
- Choose localization method (DoG, Quadr.) with larger precision

Evaluation: Repeatability

- Repeatability protocol [4]
- Data sets [4,5] provide:
 - Ground truth homography
 - Planar scenes
- **DOG SFOP JUNC:**
 - More features, incr. repeatability
 - Similar results for SFOP CIRC

Conclusions

- Proposed approach improves subpixel/subscale localization of SFOP feature detector
 - The DoG approximation function increases the precision for 72.5 % of the features (cf. Tab. 1)
 - The number of extracted feature pairs increases by up to 30 % and in every case (cf. Fig. 3)
 - Results are valid on circular symmetric features (SFOP CIRC) as well (cf. Fig. 3)
