Classification of Atomic Density Distributions using Scale Invariant Blob Localization

Kai Cordes¹, Oliver Topic², Manuel Scherer² Carsten Klempt², Bodo Rosenhahn¹, Jörn Ostermann¹

Institut für Informationsverarbeitung (TNT), Leibniz Universität Hannover, http://www.tnt.uni-hannover.de

Institut für Quantenoptik (IQO), Leibniz Universität Hannover, http://www.iqo.uni-hannover.de

International Conference on Image Analysis and Recognition (ICIAR) Burnaby, Canada, 2011-06-22

Bose-Einstein Condensate: Imaging System¹

At ultra-cold temperatures: capture atoms with a CCD camera

Bose-Einstein Condensate: Imaging System¹

- At ultra-cold temperatures: capture atoms with a CCD camera
- Density distributions: Bessel functions J_l with zeros β_{nl} :

$$n_{nl}(\mathbf{r}) \propto J_l^2(eta_{nl}rac{|\mathbf{r}|}{r_{
m tf}}) \qquad (|\mathbf{r}| < r_{
m tf}) \tag{1}$$

Atoms at different states ⇔ Types of Bessel and zeros

Atomic Density Distributions

Goal: Automatic Classification

- Different scales, not necessarily circular
- Strong noise
- Known shape of inputs: Bessel functions

Goal: Automatic Classification

- Different scales, not necessarily circular
- Strong noise
- Known shape of inputs: Bessel functions

Determine location and shape parameters to perform classification:

- $I_0 \cup I_1$ differ from I_2 by the Curvature in its center
- I_0 and I_1 differ by a Ring Structure

Scale Invariant Feature Detection

- Image pyramid to obtain scale invariance (MSER: watershed based)
- Detect feature at dominant scale (Scale Space Extremum)

Scale Invariant Feature Detection

- Image pyramid to obtain scale invariance (MSER: watershed based)
- Detect feature at dominant scale (Scale Space Extremum)

- Ambiguous results
- Shape not considered
- Accuracy ?

Institut für Informationsverarbeitung

Scale Invariant Feature Detection

- Image pyramid to obtain scale invariance (MSER: watershed based)
- Detect feature at dominant scale (Scale Space Extremum)

- Ambiguous results
- Shape not considered
- Accuracy ?

nstitut für nformationsverarbeitung

Proposed:

- Unique feature
- Localization of first zeros

Classification of Atomic Density Distributions

Results

Conclusion

Feature Shape in the Scale Space

Ĩ0

Ĩ

- Experimental analysis
- Synthetic test images of the three classes I_0 , I_1 , and I_2

Feature Shape in the Scale Space

SINC Function Model

Function Model f_p :

$$f_{\mathbf{p}}(\mathbf{x}) = \left\{ egin{array}{ll} v \cdot rac{\sin \sqrt{R_{\mathbf{x}_0, \Sigma}(\mathbf{x})}}{\sqrt{R_{\mathbf{x}_0, \Sigma}(\mathbf{x})}} & ext{, for } R_{\mathbf{x}_0, \Sigma}(\mathbf{x}) \leq t_0 \\ 0 & ext{, otherwise} \end{array}
ight.$$

Institut für Informationsverarbeitung

SINC Function Model 🖙 🖘

Function Model f_p :

$$f_{\mathbf{p}}(\mathbf{x}) = \begin{cases} v \cdot \frac{\sin \sqrt{R_{\mathbf{x}_0, \boldsymbol{\Sigma}}(\mathbf{x})}}{\sqrt{R_{\mathbf{x}_0, \boldsymbol{\Sigma}}(\mathbf{x})}} & \text{, for } R_{\mathbf{x}_0, \boldsymbol{\Sigma}}(\mathbf{x}) \leq t_0 \\ 0 & \text{, otherwise} \end{cases}$$

$$R_{\mathbf{x}_0, \boldsymbol{\Sigma}}(\mathbf{x}) := (\mathbf{x} - \mathbf{x}_0)^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \mathbf{x}_0), \quad \boldsymbol{\Sigma} = \begin{pmatrix} a^2 & b \\ b & c^2 \end{pmatrix}$$

$$(2)$$

Minimize Residuum ep using LM

$$e_{\mathbf{p}} = \sum_{\mathbf{x} \in \mathcal{N}} (f_{\mathbf{p}}(\mathbf{x}) - DoG_{(o,i)}(\mathbf{x}))^2$$

$$\mathbf{p} = (x_0, y_0, a, b, c, v)$$
(3)

Leibniz

Universität

Hannovei

Institut für Informationsverarbeitung

Workflow Diagram

Select best feature:

- Choose feature with minimal Residuum epopt
- Brute force search
- Computational expense increases, but acceptable (10 sec / image)

Workflow Diagram

Curvature at Feature Center:

Evaluate gradients (DoG) in neighborhood \mathcal{N} :

$$egin{array}{lll} \mathcal{N}\textit{concave} &\Rightarrow & \textit{I}_0 \cup \textit{I}_1 \ \mathcal{N}\textit{convex} &\Rightarrow & \textit{I}_2 \end{array}$$

Workflow Diagram

Ring Structure Localization:

• Use function parameters \mathbf{p}_{opt} to determine ring area \mathcal{S}

Classification of Atomic Density Distributions

Normalized Energy Function

Results

Energy E_{S}

- Simple threshold value thr sufficient
- Scale invariant classification

Results

Classification rate

	I ₀	I_1	I_2	Σ
TP _{Curv}	96.2%		75.0%	85.6%
TP _{Ring}	100%	100%	—	100%
TP_{Σ}	96.2%	100%	75.0%	90.4%

True Positives (TP)

- *Curvature* stage: *TP_{Curv}* : 85.6%
- *Ring Structure* stage *TP_{Ring}* : 100%

Conclusion

Summary:

- New robust and accurate blob detector
- Incorporate known shape of targets
- Extract shape parameters from blobs

Conclusion

Summary:

- New robust and accurate blob detector
- Incorporate known shape of targets
- Extract shape parameters from blobs
- Application: classification of atomic densities
- $\rightarrow\,$ Perfect Ring Structure detection
- $\rightarrow~$ Overall classification rate : 90.4%

Conclusion

Summary:

- New robust and accurate blob detector
- Incorporate known shape of targets
- Extract shape parameters from blobs
- Application: classification of atomic densities
- \rightarrow Perfect Ring Structure detection
- $\rightarrow~$ Overall classification rate : 90.4%

Future Work:

- Estimate noise structure and compensate
- Classify more Atom Distribution Types

Top: number of detected features, Bottom: the mean *Surface Error*

Backup: Failures

Classification failure examples for features I_2

- Misclassification caused by strong noise covering the convex shape in the feature center
- \Rightarrow Blobs of type I_2 very similar to I_1 .

Backup: Future Work

More Atom Distribution Types²

²Scherer et al., Phys. Rev. Lett., Vol. 105 (2010)

Institut für Informationsverarbeitung

