HALF-SIFT: High-Accurate Localized Features for SIFT

Kai Cordes, Oliver Müller, Bodo Rosenhahn, Jörn Ostermann

Institut für Informationsverarbeitung Leibniz Universität Hannover

IEEE Workshop on Feature Detectors and Descriptors: The State Of The Art and Beyond CVPR, Miami, USA, 2009-06-21

Outline

Introduction

Localization of Features

Experimental Results

Conclusions

Introduction

> Detection of features in images requirement for computer vision

- Usage of SIFT framework
- ► Focus of our work: Precise detection of scale invariant feature points

Introduction

Workflow of Scale Invariant Feature Transform

Introduction

Localization: Subpel and Subscale Interpolation

SIFT: Parabolic interpolation (*Taylor*)

$$D(\mathbf{x}) = D(\mathbf{x}_0) + \frac{\partial D(\mathbf{x}_0)^{\top}}{\partial \mathbf{x}} \mathbf{x}^{\top} + \frac{1}{2} \mathbf{x}^{\top} \frac{\partial^2 D(\mathbf{x}_0)}{\partial \mathbf{x}^2} \mathbf{x}$$
(1)

- $\mathbf{x} = (x, y, s)$ subpel feature localization
- $D(\mathbf{x})$: approximation of the Difference of Gaussian (DoG)
- $D(\mathbf{x}_0)$: DoG at fullpel sample point (x_0, y_0, s_0)
- Solution with Hessian Matrix

Motivation

- Image signal characteristics are not parabolic
- Assumption: Impulse response of lens-aperture system is Gaussian
 - Impulse response to real camera (Canon XL-1):

Main question: Proper approximation function for SIFT keypoints

Motivation

HALF-SIFT: DoG Signal Approximation Proposal

DoG signal curvature

- Difference of Gaussians Regression
 - Multiple Extrema
 - More challenging optimization
- Gaussian Regression

nstitut für Informationsverarbeitung

Regression Function Proposal (1)

• Gaussian Regression Function:

$$G_{\mathbf{x}_G, \Sigma}(\mathbf{x}) = \frac{r_G}{\sqrt{|\Sigma|}} \cdot e^{-\frac{1}{2}((\mathbf{x} - \mathbf{x}_G)^\top \Sigma^{-1}(\mathbf{x} - \mathbf{x}_G))}$$
(2)

• Covariance matrix
$$\Sigma = \begin{pmatrix} a^2 & b \\ b & c^2 \end{pmatrix} \Rightarrow$$
 rotated, scaled ellipse

•
$$\mathbf{x}_G = (x_0, y_0)$$
 subpel position

- Parameter vector $\mathbf{p}_{\mathbf{G}} = (x_0, y_0, a, b, c, r_G)$
- Levenberg-Marquardt (LM) optimization

Regression Function Proposal (2)

Difference of Gaussians (DoG) Regression Function:

$$D_{\mathbf{x}_{D},\sigma} = r_{D}(G_{\mathbf{x}_{D},\Sigma_{\sigma}} - G_{\mathbf{x}_{D},\Sigma_{k\sigma}}) * G_{\mathbf{x}_{D},\Sigma}$$

$$= r_{D}(G_{\mathbf{x}_{D},\Sigma_{\sigma}+\Sigma} - G_{\mathbf{x}_{D},\Sigma_{k\sigma}+\Sigma})$$
(3)

- Known distance k between scales
- Parameter vector $\mathbf{p}_{\mathbf{D}} = (x_0, y_0, a, b, c, r_D)$
- Levenberg-Marquardt (LM) optimization

Experimental Setups

1. Synthetically constructed Gaussian blob images (64×64):

2. Image pairs¹, estimated homographies (800×640, 1000×700)

3. Image pairs, constant extrinsics, varying illumination (1920x1080)

¹www.robots.ox.ac.uk/~vgg/research/affine/index.html

Gaussian blobs

Error: standard SIFT localization x_0

Gaussian blobs

Error: proposed HALF-SIFT DoG localization x₀

Gaussian blobs

i	σ_i	<i>x</i> ₀	E ^{max_x} PARAB	E ^{max_x} GAUSS	E _{DOG} ^{max_x}
13	1.63.9	-0.50.5	0.072	0.006	0.006
46	4.07.9	-1.01.0	0.142	0.009	0.009
78	8.09.9	-2.02.0	0.297	0.014	0.021

Natural image pairs, given homography

Repeatability criterion to verify corresponding feature points

$$|\mathbf{x}_a - H \cdot \mathbf{x}_b| < d_{thres}$$

- Only correspondences detected with both methods
- Feature point error classification into 30 bins

Natural image pairs

Error bins of *ubc 1-2* (homography H = E)

Institut für Informationsverarbeitung

Natural image pairs

Estimated homographies graf, bikes, ...

- Lead to mapping error > 0.4 pel per feature
- No reasonable ground truth homography

Pairs with exact homography (H = E, ubc)

- Accuracy gain of up to 13.9% for Gaussian
- Accuracy gain of up to 13.6% for DoG

Three scenarios with constant extrinsics

1. Intrinsics constant $\Rightarrow 2^{ND}$ image lower dynamics

2. Autoiris \Rightarrow compensation with aperture of the camera

3. Automatic gain \Rightarrow compensation with amplifier of the camera

DoG error bins of cars $A^{75\%}$ and $A^{50\%}$

Leibniz Universität

Hannover

10

100

Institut für Informationsverarbeitung

DoG error bins of cars $B^{75\%}$ and $B^{50\%}$

100

nformationsverarbeitung

DoG error bins of cars $C^{75\%}$ and $C^{50\%}$

Leibniz Universität

Hannover

10

100

Institut für Informationsverarbeitung

- Accuracy gain of up to 11.0% for Gaussian
- Accuracy gain of up to 15.6% for DoG

$$E_{PARA} = 0.6604$$

Institut für Informationsverarbeitung

$$E_{DOG} = 0.4159$$

- Accuracy gain of up to 11.0% for Gaussian
- Accuracy gain of up to 15.6% for DoG

$$E_{PARA} = 0.9368$$

Summary

- Keypoint localization improved using Gaussian / DoG regression instead of parabolic interpolation (standard SIFT)
- Functionality validated with synthetic data
- Natural image pairs show accuracy gain of up to
 - ▶ 15.6% for DoG and
 - 13.9% for Gaussian
- More results
 - http://www.tnt.uni-hannover.de/~cordes/half-sift/

